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Supplementary Materials: Derivation of Equation (5)
The model’s time-resolved, three-dimensional temperature distribution T(x, y, z, t)

used in the main text is deduced in the following. The approach is analogous to that for
two dimensions, described concisely in [2] and in more details in chapter three in [1]. The
variables whose meaning is not described below are explained in the main text.

Here, the heating source, i.e., a laser beam, propagates along with the moving fluid in
the x-direction. Thermal diffusivity is considered in all directions. The derivation starts
with the temperature differential equation, which is found in the main text and writes as:

∂T(x, y, z, t)
∂t

= D∇2T(x, y, z, t)− vx∇T(x, y, z, t) +
1

ρcp
Q(x, y, z, t). (1)

The Green’s function method solves Equation (1), yielding:

T(x, y, z, t) =
∞∫

0

∞∫
−∞

∞∫
−∞

∞∫
−∞

Q(ξ, η, θ, τ) G(x/ξ; y/η; z/θ; t/τ) dξdηdθdτ, (2)

with G being the Green’s function and Q the heat. The latter is defined as:

Q(x, y, z, t) =
2αE0

πa2 t0
e− 2(y2 + z2)/a2

for 0 ≤ t ≤ t0 ∧ x0 ≤ x ≤ x1,
(3)

with E0 and t0 being the total energy and time duration of one laser pulse, respectively.
For t > t0, Q(x, y, z, t) is zero.

The differential equation for the Green’s function is:

− D ∇2
xyz G + vx

∂G
∂x

+
∂G
∂t

=
1

ρ cp
δ(x− ξ) δ(y− η) δ(z− θ) δ(t− τ), (4)

with the boundary conditions being:

G(±∞/ξ; y/η; z/θ; t/τ) = 0,

G(x/ξ; ±∞/η; z/θ; t/τ) = 0,

G(x/ξ; y/η; ±∞/θ; t/τ) = 0,

G(x/ξ; y/η; z/θ; 0/τ) = 0.

(5)

Fourier transform of Equation (4) is:

(ω2
x + ω2

y + ω2
z)D GF − iωxvxGF +

∂GF
∂t

=
1

(2π)3/2ρ cp
ei(ωxξ+ωyη+ωzθ) δ(t− τ). (6)

Laplace transform of Equation (6) gives:

(ω2
x + ω2

y + ω2
z)D GFL − iωxvxGFL + s GFL =

1
(2π)3/2ρ cp

ei(ωxξ+ωyη+ωzθ) e−sτ . (7)

The solution of Equation (7) is:

GFL =
eiωxξ eiωyη eiωzθ e−sτ

(2π)3/2ρ cp[D(ω2
x + ω2

y + ω2
z)− iωxvx + s]

. (8)

The inverse Laplace transform of GFL gives:
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GF =
eiωxξ eiωyη eiωzθ Hτ(t)

(2π)3/2ρ cp
e(iωxvx−(ω2

x+ω2
y+ω2

z )D)(t−τ), (9)

with Hτ(t) being the Heaviside function:

Hτ(t) =

{
0 for 0 ≤ t < τ

1 for t ≥ τ.
(10)

The inverse Fourier transform of GF yields the Green’s function:

G =
Hτ(t)

(2π)3/2ρ cp

1
(2π)3/2

∞∫
−∞

eiωx(ξ+vx(t−τ))e−ω2
x D(t−τ)e−iωx x dωx

·
∞∫
−∞

eiωyηe−ω2
y D(t−τ)e−iωyy dωy

·
∞∫
−∞

eiωzθe−ω2
z D(t−τ)e−iωzz dωz.

(11)

For solving the integrals in Equation (11), the convolution theorem is used, which, in
the following exemplarily for x, has the form:

∞∫
−∞

F(ωx)G(ωx)e−iωx x dωx =

∞∫
−∞

F−1
ωx {F(ωx)}(λ) F−1

ωx {G(ωx)}(x− λ) dλ

=

∞∫
−∞

f (λ) g(x− λ) dλ.

(12)

Applying the convolution theorem, the first integral in Equation (11) writes as:

∞∫
−∞

F−1
ωx

{
e−ω2

x D(t−τ)
}
(λ) F−1

ωx

{
eiωx(ξ+vx(t−τ))

}
(x− λ) dλ

=

∞∫
−∞

1√
2
√

D(t− τ)
e− λ2/(4D(t− τ))

√
2π δ((x− λ)− v(t− τ)− ξ) dλ

=

√
π√

D(t− τ)
e− (x− ξ − v(t− τ))2/(4D(t− τ)).

(13)

The second integral in Equation (11) writes as:

∞∫
−∞

F−1
ωy

{
e−ω2

y D(t−τ)
}
(λ) F−1

ωy

{
eiωyη

}
(y− λ) dλ

=

∞∫
−∞

1√
2
√

D(t− τ)
e− λ2/(4D(t− τ))

√
2π δ((y− λ)− η) dλ

=

√
π√

D(t− τ)
e− (y− η)2/(4D(t− τ)).

(14)

The third integral solves equally to the latter for (y→ z, η → θ).
The Green’s function in a simpler form is obtained by substituting the solutions of the

Equations (13) to (14) back into Equation (11):
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G =
Hτ(t)

(2π)3ρ cp

π3/2

(D(t− τ))3/2 e− (x− ξ − v(t− τ))2/(4D(t− τ))

e− (y− η)2/(4D(t− τ)) e− (z− θ)2/(4D(t− τ))

=
Hτ(t)

8π3/2ρ cp(D(t− τ))3/2 e− ((x− ξ − v(t− τ))2 − (y− η)2 − (z− θ)2)/(4D(t− τ)).

(15)

Substitution of G from Equation (15) and Q from Equation (3) into Equation (2) yields
the result:

T(x, y, z, t) =
t0∫

0

2αE0

πa2 t0

1
8π3/2ρ cp(D(t− τ))3/2

·
∞∫
−∞

∞∫
−∞

x1∫
x0

e− ((x− ξ − v(t− τ))2 − (y− η)2 − (z− θ)2)/(4D(t− τ)) e− 2(η2 + θ2)/a2
dξdηdθdτ

=

t0∫
0

αE0

4π5/2ρ cp a2 t0(D(t− τ))3/2

∞∫
−∞

∞∫
−∞

x1∫
x0

e− (x− ξ − v(t− τ))2/(4D(t− τ))

· e− 2η2/a2 e− (y− η)2/(4D(t− τ)) e− 2θ2/a2 e− (z− θ)2/(4D(t− τ)) dξdηdθdτ

=

t0∫
0

αE0

4π5/2ρ cp a2 t0(D(t− τ))3/2

√
π
√

D(t− τ)

·
(
−er f

{
−x + v(t− τ) + x0

2
√

D(t− τ)

}
+ er f

{
−x + v(t− τ) + x1

2
√

D(t− τ)

})

·
∞∫
−∞

∞∫
−∞

e− 2η2/a2 e− (y− η)2/(4D(t− τ)) e− 2θ2/a2 e− (z− θ)2/(4D(t− τ)) dηdθdτ

=

t0∫
0

αE0

4π2ρ cp a2 t0D(t− τ)
4πa2D(t− τ)

1
a2 + 8D(t− τ)

·
(
−er f

{
−x + v(t− τ) + x0

2
√

D(t− τ)

}
+ er f

{
−x + v(t− τ) + x1

2
√

D(t− τ)

})
· e− 2(y2 + z2)/(a2 + 8D(t− τ)) dτ

=

t0∫
0

αE0

πρ cp t0 (a2 + 8D(t− τ))
· e− 2(y2 + z2)/(a2 + 8D(t− τ))

·
(
−er f

{
−x + v(t− τ) + x0

2
√

D(t− τ)

}
+ er f

{
−x + v(t− τ) + x1

2
√

D(t− τ)

})
dτ

for t ≥ t0 ∧ x0 ≤ x ≤ x1,

(16)

with er f being the Gauss error function.
We are considering a time-dependent input power source, e.g., a modulated laser

beam. Thus the time-independent term E0/t0, i.e., P0, is substituted by the time-dependent
term P(t). We define T̃(x, y, z, t) = T(x, y, z, t) / P0, and express T(x, y, z, t) as convolution
of P(t) and T̃(x, y, z, t):

T(x, y, z, t) = (P ~ T̃(x, y, z))(t) =
t∫

0

P(τ) T̃(x, y, z, t− τ) dτ. (17)
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This leads to the following expression:

T(x, y, z, t) =
α

πρ cp

t∫
0

P(τ)
e− 2(y2 + z2)/(a2 + 8D(t− τ))

a2 + 8D(t− τ)

·
(
−er f

{
−x + v(t− τ) + x0

2
√

D(t− τ)

}
+ er f

{
−x + v(t− τ) + x1

2
√

D(t− τ)

})
dτ

for x0 ≤ x ≤ x1.

(18)

We further include R′(t) into (18), which is a function of the target- and fluid-specific
excitation relaxation time τE and accounts for the delayed heat release from the excited
molecules:

R′(t) =
e−t/τE

τE
. (19)

Combining this with the definition of x0 as zero leads to the final expression for the
temperature distribution found in the main text:

T(x, y, z, t) =
α

πρ cp

t∫
0

P(τ) R′(τ)
e− 2(y2 + z2)/(a2 + 8D(t− τ))

a2 + 8D(t− τ)

·
(
−er f

{
−x + v(t− τ)

2
√

D(t− τ)

}
+ er f

{
−x + v(t− τ) + x1

2
√

D(t− τ)

})
dτ

for 0 ≤ x ≤ x1.

(20)
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