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Abstract: Coordinated multipoint joint transmission (JT) is one of the critical downlink transmission
technologies to improve network throughput. However, multiple cells in a JT group should have the
same user data to transmit simultaneously, resulting in a considerable backhaul burden. Even when
cells are already equipped with caches in fifth-generation networks, JT groups, without effectively
utilizing the caching data, still cause unnecessary backhaul data traffic. In this article, we investigate
the JT grouping problem with the consideration of caches at cells. Then, we propose a genetic
approach to solve the above problem with the objective of minimizing the amount of backhaul data
traffic subject to the data-rate requirement of each user. The simulation results show that our proposed
generic algorithm can significantly decrease the backhaul bandwidth consumption compared to the
two baselines.

Keywords: CoMP; joint transmission; cache; backhaul; 5G cellular networks

1. Introduction

With improvements in smartphone screen resolution, the requirement for high video
quality has increased. According to Cisco’s data traffic forecast, by 2023, fifth-generation
(5G) networks will generate approximately three times more traffic than fourth-generation
(4G) networks [1]. Advanced wireless communication technologies need to support vast
video traffic to increase network throughput, particularly for cell-edge users.

To achieve a higher network throughput, the third-generation partnership project
(3GPP) introduced coordinated multipoint (CoMP) transmission and reception to mitigate
inter-cell interference and improve spectrum efficiency [2]. The CoMP is an essential tech-
nology for 5G [3,4] and future wireless networks. Two coordination schemes can be used
for downlink–joint transmission (JT) and coordinated scheduling/beamforming (CS/CB).
In the CoMP-JT, multiple coordinated cells transmit an application file simultaneously to
the user equipment (UE). The superimposed signal enhances the signal strength and further
increases the data transmission rate. In the CS/CB, each user connects to a single cell [5].
This article focuses on the CoMP-JT because it generally performs better than the CS/CB [6].
However, in the CoMP-JT, several cells must join a JT group to transmit the same file at
the same time and frequency, resulting in heavy backhaul traffic. The performance of
the CoMP-JT is significantly degraded if the backhaul capacity cannot transmit extremely
duplicated data traffic.

Therefore, the diminishing backhaul traffic from the JT has been studied [7,8]. Some
works [9–11] have considered caching files in cells. If the file requested by a UE is stored
in the cells, the cells can use the JT to transmit data to the UE without fetching it from
cloud servers so that the backhaul bandwidth is saved [12]. However, if we do not consider
the caching status of the cells to select the JT groups, then the cells quickly exhaust the
radio resources without suitably using the caching files, increasing the backhaul traffic.
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Consequently, this article investigates the JT grouping problem considering cells with
caching files.

The JT grouping problem is a challenging issue in the CoMP [13]. The JT grouping prob-
lem initially considers a limited backhaul bandwidth as a constraint for optimizing different
objective functions [14–18]. Some studies have attempted to minimize backhaul traffic,
considering the signal-to-noise ratio (SNR) constraint of UEs [8,19]. Elhattab et al. [20]
jointly optimized the clustering and power control for the CoMP-JT in the cooperative non-
orthogonal multiple-access networks. The objective is to maximize the network sum rate.
Shami et al. [21] proposed a user-centric clustering approach and a bandwidth allocation
algorithm for the CoMP. However, these works did not consider caches in cells.

Recently, some studies investigating the JT clustering problem have considered caches
in cells [22–24]. Chen et al. [22] formulated the CoMP-JT clustering problem with the
objective of maximizing the network throughput and proposed a binary particle swarm
optimization algorithm to maximize the throughput. Yu et al. [23] considered mmWave
links between cells in the JT clustering problem and proposed a two-stage algorithm to
determine the JT clusters and routing paths. Yu et al. [24] proposed a heuristic algorithm to
determine a JT cluster for each UE to minimize the backhaul data traffic.

In this article, we investigate the JT grouping problem considering caches in cells. The
objective is to minimize the backhaul bandwidth consumption under quality-of-service
(QoS) requirements and radio resource constraints. The contributions of this article are
summarized as follows.

• We propose a genetic algorithm using a solution of the heuristic algorithm proposed
in [24] as an initial state to reduce the time required for convergence and improve the
algorithm’s performance. The value of this work can reduce the backhaul traffic when
using CoMP-JT in specifications [2] and industries [25].

• The simulation results show that, compared with the JT grouping algorithm that
considers caches [24] and the JT grouping algorithm that does not consider caches [15],
the proposed genetic algorithm significantly reduces backhaul data traffic.

The remainder of this article is organized as follows: Section 2 describes the system
model and formulates the problem. Section 3 explains the proposed algorithm. Section 4
presents the simulation results. Finally, Section 5 concludes the article.

2. System Model and Problem Formulation

In Section 2.1, we describe our considered system model. In Section 2.2, we formulate
our target problem and define the notations.

2.1. System Model

The 5G networks should provide high video resolutions for UEs. To ensure QoS,
UEs with bad channel conditions at cell edges require more radio resource blocks (RBs)
than those at cell centers. Notably, an RB is a basic allocable unit. To overcome this issue,
CoMP-JT is used to improve the SNR for UEs at cell edges. In CoMP-JT, we can select
some cells clustered together in a JT group to deliver a video file using the same RBs for a
UE. If a JT group uses some RBs, then the same RBs cannot be used by other JT groups to
avoid interference.

However, each cell in the JT group must have the same video file. We assumed that
each cell stores some video files. Therefore, a cell can obtain a video file either from a service
provider through the network backhaul or directly from storage without using the network
backhaul. The latter can reduce the backhaul data traffic. However, if we always select the
cells that store the requested data by UEs to form a JT group, then the radio resources of
the cells are quickly exhausted; on the other hand, if we select more cells without storing
the requested data in a JT group, then it becomes necessary to transmit more data through
the network backhaul. Therefore, the JT grouping problem has a trade-off between the
consumption of RBs and backhaul bandwidth.
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In addition, when a JT group has more cells, the SNR of a UE can generally be
improved so that the number of RBs required to meet QoS can be saved. Different cells
grouped into a JT cluster consume a different number of RBs to fulfill QoS. In the target
problem, we must determine which and how many cells should join a JT group for serving
a UE.

2.2. Problem Formulation

In this article, we investigate the JT grouping problem for using CoMP-JT in cellular
systems, considering caches at cells. This problem is to minimize the total backhaul traffic
under the data-rate requirement and limited RB constraints.

There is a set of UEs (denoted as U) in a network, and each UE u ∈ U requests one
video file fu ∈ F, where F is the set of selectable files. D fu is the data-rate requirement of
video file fu. The set of cells deployed to serve the UEs is represented as C with R number
of RBs. Each UE u is covered by a set of cells, denoted by Cu. Each UE u is restricted to
connect with the cells in set Cu. The set of video files stored by cell c ∈ C is Fc. To transmit
the required video file for each UE, we must determine a JT group (denoted as Ju) for each
UE. In other words, Ju is the set of cells used to serve UE u, Ju ⊆ Cu. The cells in set Ju
jointly transmit a file to UE u. The received SNR of UE u from cell group Ju is written as:

SNRu =
∑c∈Ju pc,u × hc,u

σ
(1)

where hc,u is the channel gain of UE u from cell c, pc,u is the transmission power of cell c
to UE u, and σ is the noise spectral density. Notably, we consider equal power allocation
which can be replaced by any power allocation algorithm. Some studies investigated
adaptive feedback schemes in neural networks [26–28].

The data rate provided by an RB transmitted by JT group Ju for UE u can be calculated
using the Shannon capacity formula [29,30] as shown in Equation (2):

Su = W × log2(1 + SNRu), (2)

where W is the RB bandwidth. The number of RBs required to satisfy UE u with its data-rate
requirement (denoted as Ru) is given by

Ru =
D fu

Su
. (3)

If a cell has cached files requested by the UEs, the cell can transmit the file without
consuming the backhaul bandwidth. We consider that the files cached by each cell are
given. The backhaul traffic of each cell c can be calculated by:

Tc,u = Xc,u × D fu , (4)

where Xc,u is an indicator function equal to 1 when cell c transmits data without caching file
fu to UE u. In other words, when Xc,u = 1, cell u generates backhaul traffic D fu ; otherwise,
Xc,u is 0.

In this article, we aim to minimize the total backhaul data traffic by finding a JT group
Ju to serve each UE u. The objective function is represented as follows:

min
Ju

∑
u∈U

∑
c∈Ju

Tc,u (5)

subject to : Su × Ru ≥ D fu , ∀u, and (6)

∑
u∈U

I(c, Iu)× Ru ≤ R, ∀c ∈ C (7)
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where

I(c, Iu) ≤
{

1, if c ∈ Iu ∪ Ju
0, otherwise

In the above formula, constraint (6) ensures that the data requirement of each UE u can
be satisfied, and constraint (7) ensures that the RBs of each cell c assigned for UEs and
interfered by other JT groups cannot surpass the total available RBs. Iu is the set of cells
that will be interfered by JT group Ju transmitting data to UE u. The variables used in this
problem are summarized in Nomenclature.

3. Methodology

In Section 3.1, we introduce the settings of the proposed genetic algorithm. In
Section 3.2, we describe the proposed genetic approach to determine a JT group for each UE.

3.1. Settings of the Proposed Genetic Algorithm

A genetic algorithm is a method inspired by the concept of survival of the fittest in
the biological evolution process [31]. The algorithm mimics natural selections by selecting
better individuals for an environment and creating good offspring. By repeating the
reproduction and natural selection processes, these individuals continuously evolve, and
nearly optimal solutions may be obtained.

A typical genetic algorithm includes population initialization, evaluation, selection,
crossover, and mutation [31]. The population initialization function is to create initial
solutions, called individuals, and each individual is encoded as a chromosome to represent
the solution. Figure 1 shows example of a two-dimensional chromosome matrix used to
represent a solution of the JT grouping problem. In this example, the JT group of UE 1
consists of cells 1 and 2, and the JT group of UE 2 consists of cell 3.

UE 1

Cell 1 Cell 2 Cell 3

UE 1 UE 2

1 1 0
0 0 1

Cell
1     2    3

UE 2

Cell Cell

Figure 1. Example of chromosome representation for JT grouping.

The evaluation function evaluates an individual’s fitness, which is calculated according
to the objective function that measures the quality of a solution. After the evaluation, the
individuals are appropriately selected as parents used for the following crossover and
mutation. The selection operation stochastically selects individuals by the roulette-wheel
selection based on fitness [32]. The individuals with higher fitness values are more likely to
be chosen.

In the crossover operation, two parents exchange randomly chosen subsequences of
their chromosomes to create a new pair of offspring. Multiple pairs of parents are selected
to create multiple pairs of offspring chromosomes. Figure 2 is an example of crossover,
where the area enclosed by the dashed line is a randomly selected subsequence. The two
offspring chromosomes are a mixture of the parent chromosomes. The crossover operation
is used to exploit better solutions to improve the performance of the algorithm.
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1 1 0
0 0 1

Parent chromosome

Parent 1

1 0 1
1 0 1

Parent 2

1 1 1
0 0 1
Offspring 2

1 0 0
1 0 1
Offspring 1

Offspring chromosome

Crossover 

Figure 2. Example of crossover.

A genetic algorithm that uses only the crossover mechanism can generate local opti-
mum solutions. Mutation is an exploratory mechanism that helps discover global optimal
solutions in genetic algorithms. The mutation operation randomly alters the partial gene
values of a chromosome to randomly search different areas. Finally, a terminate function
determines when a genetic algorithm stops: if the predefined termination condition is
satisfied, the genetic algorithm stops; otherwise, the next generation repeats the above
operations of evaluation, selection, crossover, and mutation.

3.2. Proposed Genetic Algorithm

In this section, we propose a genetic algorithm for our JT grouping problem. The
concept of the proposed algorithm is described as follows. The proposed genetic algorithm
uses the solution of the cache-enabled CoMP (CEC) algorithm proposed by Yu et al. [24] as
the initial solution to reduce the algorithm’s execution time for convergence. Based on the
initial solution, the designed Initial-Population() function attempts different probabilities
to randomly interrupt the connection between a base station and a UE to generate multiple
solutions. Then, the proposed genetic algorithm applies the crossover and mutation
operations to generate solutions. After multiple solutions are created, we design the
Evaluation() function to correct infeasible to feasible solutions and evaluate the backhaul
traffic of each solution. An infeasible solution means that constraint (6) or (7) is not satisfied.
After predefined generations are achieved, the algorithm selects the best solution with the
minimum backhaul data traffic. Our proposed algorithm adopts the snapshot channel
quality of each UE to determine a JT group for each UE. When the channel quality of a UE
is severely changed, the proposed algorithm can be triggered to redetermine a JT group for
the UE.

The pseudo-code for the proposed genetic algorithm is presented in Algorithm 1. In
Line 1, we call the Initial-Population() function to generate our initial individuals (i.e.,
solutions). The inputs of the function are JCEC

u and K. JCEC
u is the solution of the CEC

algorithm, and K is the predefined individual number (population size). Thus, we will
generate K solutions. In Line 2, variable g is the generation index of the genetic algorithm.
In Lines 3–16, we run G generations for our genetic algorithm. Determining the number
of G generations involves a trade-off between the performance and execution time of the
algorithm. In each generation (i.e., g = g + 1 in Line 4), we call the Evaluation() function to
correct infeasible to feasible solutions and evaluate the backhaul traffic of each solution in
population set P. Variable B represents the set of backhaul traffic values corresponding to
the set of solutions in the population set P. Variable N is the set of children and initialized
as an empty set in each generation (Line 6).
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Algorithm 1: Genetic Algorithm for JT Grouping.

Input: JCEC
u , U, C, Cu, Fc, D fu , R

1 P = Initial-Population(JCEC
u , K) //Solution set

2 g = 0 // g-th Generation
3 while g ≤ G do
4 g = g + 1
5 B = Evaluation(P) // Backhaul Traffic set
6 N = ∅ // Children set
7 while |N| < |P| × Pc do
8 (Parent1, Parent2) = Select two individuals from population set P
9 (Child1, Child2) = Crossover(Parent1, Parent2)

10 Mutation(Child1)
11 Mutation(Child2)
12 N = N

⋃{Child1, Child2}
13 P = P

⋃
N

14 B = Evaluation(P)
15 Sort individuals in population set P by the total backhaul traffic in ascending

order
16 Trim the individuals with higher backhaul data traffic in population set P to a

predefined maximum individual number

17 Ju, ∀u, is set according to the individual with the smallest backhaul data traffic in
population set P

18 return Ju, ∀u

In Lines 7–12, we create |P| × Pc children using the crossover operation, where Pc
is the crossover probability to control the number of generated children. In Line 8, we
select two solutions as two parents using the roulette-wheel selection policy. The solutions
with lower backhaul traffic values are selected with higher probabilities. In Line 9, the
Crossover() function is used to generate two children from the selected parents. In the
Crossover() function, the two selected parents have the probability of Pc to swap their
subsequences of chromosomes by the one-point crossover operation to create two children,
as shown in Figure 2. If the two parents do not execute crossover, we directly copy the two
chromosomes of the two parents as the chromosomes of the two children.

In Lines 10 and 11, we execute the Mutation() function for each child separately. In
the Mutation() function, each bit in the child’s chromosome matrix has a probability Pm of
being changed. If a bit value is altered from 0 to 1, it means that the base station represented
by the bit joins the JT group of the UE; on the contrary, if a bit value is changed from 1 to 0,
the corresponding base station leaves the JT group of the UE. Because each UE u can only
connect with cell c ∈ Cu, we only mutated these elements in the chromosome matrix. After
executing the mutation operation, the children generated by the crossover and mutation
operations are added to the children set N (Line 12). When the while loop is completed, the
generated children are added to the population set (Line 13). Then, we use the Evaluation()
function to revise infeasible solutions, caused by the crossover and mutation operations, to
feasible solutions and evaluate the backhaul data traffic of each solution in the population
set P (Line 14). In Line 15, we sort the solutions in the population set P by the total backhaul
traffic in ascending order. We then trim the solutions with higher backhaul data traffic
in the population set to maintain a population size of K (Line 16). After generations, we
select and return the solution with the fewest backhaul data traffic in the population set
(Lines 17–18).

The Initial-Population() function (Algorithm 2) takes JCEC
u , U, C, and K as inputs. JCEC

u
is a solution generated by the CEC algorithm [24] and K is the number of solutions. This
function is used to create multiple solutions from initial solution JCEC

u . We use different
disconnection probabilities Pd to disconnect a cell c from the JT group JCEC

u of UE u.
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Whenever a solution is generated, the disconnection probability Pd is increased in steps
of 100%

K . After generating K solutions, we evaluate the performance of each solution and
find the best solution corresponding to the best probability P∗d . Then, we adopt the best
disconnection probability P∗d to regenerate K solutions.

Algorithm 2: Initial-Population() Function.

1 Function Initial-Population(JCEC
u , U, C, K):

2 J0 = JCEC
u

3 P = J0

4 for k = 1 to K do
5 Jk

u = JCEC
u , ∀u

6 Pd = 100%
K × k

7 foreach u ∈ U do
8 foreach c ∈ Jk

u do
9 Cell c leaves JT group Jk

u with probability Pd

10 P = P
⋃

Jk

11 B = Evaluation(P)
12 Find the k∗-th JT grouping solution Jk∗ ∈ P with the minimum backhaul data

traffic bk∗ ∈ B
13 if k∗ = 0 then
14 P∗d = 0

15 else
16 P∗d = 100%

K × k∗

17 for k = 0 to K do
18 Jk

u = JCEC
u , ∀u

19 foreach u ∈ U do
20 foreach c ∈ Jk

u do
21 Cell c leaves JT group Jk

u with probability P∗d

22 return P = {J0, J2, ..., JK}

In Lines 2–3, we set our first solution J0 as JCEC
u , where Jk is denoted as the k-th solution,

and the first solution is added to the solution set P. In Lines 4–10, we generate another
set of K solutions. We use JCEC

u as the initialization of the k-th solution Jk
u (Line 5). We set

the disconnection probability Pd as 100%
K × k to generate the k-th solution. In Lines 7–9, for

each UE u, each cell c leaves the JT group Jk
u of UE u with probability Pd. In other words,

when the value of k is larger, the disconnection probability is higher. Then, the generated
k-th solution is added to the solution set P (Line 10).

After we create the K solutions, we call the Evaluation() function to evaluate the total
backhaul traffic bk ∈ B of each solution Jk ∈ P (Line 11), where B is the set of total backhaul
traffic values corresponding to the solution set P. Then, we find the k∗-th solution with
the minimum backhaul data traffic (Line 12). If k∗ = 0, the solution is the initial solution
(i.e., JCEC

u ) so that the best disconnection probability P∗d = 0 (Lines 13–14); otherwise, the
best disconnection probability P∗d is set to 100%

K × k∗ (Lines 15–16). Next, we use the best
disconnection probability to renew each solution in solution set P (Lines 17–21). Finally,
this function returns P (Line 22).

The Evaluation() function (Algorithm 3) is used to adjust each infeasible solution to its
corresponding feasible solution and to calculate the total backhaul consumption of each
solution in P. The backhaul traffic set B is initialized as an empty set (Line 2). For the k-th
solution, we check the JT group of each UE u (Lines 3–4). If the UE’s JT group is empty, its
data requirement cannot be satisfied, and we firstly find a cell c∗ to cache the requested file
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fu with the highest SNR for UE u, where c∗ ∈ Cu and fu ∈ Fc∗ . We add this cell to the JT
group of UE u (that is, Jk

u = Jk
u
⋃

c∗) in Lines 5–7. Then, if the number of Ru RBs consumed
by JT group Jk

u for serving UE u is larger than the remaining βc RBs of a cell c, ∃c ∈ Iu ∪ Jk
u,

we should add more cells in the JT group to reduce Ru, where βc is the remaining RBs of
cell c (Lines 8–9).

Algorithm 3: Evaluation() Function.

1 Function Evaluation(P, K, U, C, Cu, R, F, Fc, fu, D fu):
2 B = ∅
3 for k = 0 to K do
4 foreach u ∈ U do
5 if Jk

u = ∅ then
6 Find cell c∗ caching fu with the highest SNR for UE u, c∗ ∈ Cu and

fu ∈ Fc∗

7 Jk
u = Jk

u
⋃

c∗

8 while Ru > βc, ∃c ∈ Iu ∪ Jk
u do

9 Find cell c∗ with the highest SNR for UE u, c∗ ∈ Cu and c∗ /∈ Jk
u

Jk
u = Jk

u
⋃

c∗

10 if Jk
u = Cu then

11 Break the while loop

12 βc = βc − Ru, ∀c ∈ Iu ∪ Jk
u

13 if Jk is feasible then
14 Calculate total backhaul traffic bk of the k-th JT grouping solution Jk

15 else
16 bk = ∞

17 B = B
⋃

bk

18 return B = {b0, b1, ..., bK}

If all the cells covering UE u join to the JT group, it is impossible to reduce Ru further,
and we break the while loop (Lines 10–11). Each cell in the JT group and interfered by
the JT group should reduce the consumed RBs (Ru) to serve UE u (Line 12). If the k-th
solution is feasible after the adjustment, we calculate the total backhaul traffic bk of the k-th
JT grouping solution; otherwise, bk is set to ∞ to indicate that it is not a feasible solution
(Lines 13–16). Next, the traffic value bk of the k-th solution is added to backhaul traffic set B
(Line 17). After each solution is evaluated, we return B (Line 18).

3.3. Property of the Proposed Algorithm

Theorem 1. The time complexity of Algorithm 1 is O(|P||U| Îγ) for a generation, where
Î = max

∀ u,k
|Iu ∪ Jk

u|.

Proof. We analyze the time complexity of Algorithm 1 for a generation. In the Evaluation()
function, we evaluate the backhaul traffic of |P| solutions. For a solution, there are |U|
UEs. For a UE, if the RBs of a cell are insufficient, we find cells to join the JT group of
the UE, where we should check at most Î cells. Assume the checking time is γ; therefore,
the Evaluation() function takes O(|P||U| Îγ) time. Then, we should create |N| children.
For generating two children, we call one Crossover() and two Mutation() functions. Let
λ and ψ be the time complexity of the Crossover() and Mutation() function, respectively.
Creating |N| children takes O(|N|(λ + 2ψ)) time. The time complexity of Algorithm 1 is
O(|P||U| Îγ + |N|(λ + 2ψ)) for a generation. In addition, |P| is larger than |N|; |U| is a
larger number than the other parameters, and the checking time is larger than the crossover
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and mutation functions. Thus, O(|P||U| Îγ) dominates O(|N|(λ + 2ψ)). Thus, the time
complexity of Algorithm 1 is O(|P||U| Îγ).

4. Performance Evaluation

In Section 4.1, we introduce the compared baselines and the simulation setups. In
Section 4.2, we explain our simulation results under different parameter settings.

4.1. Simulation Setups

In this section, we evaluate the performance of the proposed genetic algorithm to
determine a JT group for each UE to minimize the total backhaul traffic. Our proposed
genetic algorithm is namely the genetic JT grouping algorithm (GJGA). We compare the
proposed genetic algorithm with the two baselines. The first baseline is the CEC algorithm
proposed by Yu et al. [24]. The CEC algorithm is an iterative algorithm that gradually
increases the size of each JT group. The size refers to the number of cells in a JT group. For
a UE, the CEC algorithm firstly adds all the cells caching the requested file into the JT group
because these cells do not consume the backhaul bandwidth. Then, if the RBs of some cells
are insufficient, the algorithm adds more cells to the JT group until the number of cells is
equal to the size. When the algorithm cannot find a feasible solution, the size is increased
by one after each iteration. The second baseline is called backhaul traffic minimization
(BTM), designed by Zhang et al. [15], without considering caches at the cells. The BTM
algorithm selects cells with a higher SNR and adds them into each JT group until the data
traffic requirement of each UE is satisfied. The BTM algorithm attempts to minimize the
number of cells in each JT group to minimize the backhaul bandwidth consumption.

We developed our simulation via C programming language. Our simulation param-
eters are set in accordance with the study of [24]. We simulate a network environment
with 132 base stations in a 2× 0.85 km2 area. The diameter of each cell ranges from 400
to 800 m [33]. Under a 20 MHz bandwidth, the total number of RBs for each base station
is set to 100. The cache size of each cell is set from 1000 to 4000. In other words, each cell
can cache 1000 to 4000 files. The total number of selectable video files ranges from 8000 to
10,000. Each cell randomly stores the files in its storage, and each UE randomly selects one
file. The data-rate requirement of a UE for watching a video is randomly selected from 599
to 735 kbps, measured from YouTube [24].

The number of the cell-edge UE is set from 100 to 600. Each UE is randomly located
in a simulated environment. The SNR of each UE can be derived using Equation (1),
where we consider that the path loss model is 35.2 + 35 log10(θ) in our channel model [34]
and θ is in meters. Then, the data rate provided by an RB can be calculated according to
Equation (2). Notably, we consider equal power allocation in this article. For our proposed
genetic algorithm, we set the mutation and crossover probabilities to 0.05 and 50% (that is,
Pm = 0.05% and Pc = 50%), respectively. The number of solutions in our solution set is set
as 30 (i.e., K = 30).

4.2. Simulation Results

We summarize the aim of the results in this section as follows. Based on the results of
Figure 3, we set the crossover probability to 50% and the mutation probability to 0.05%.
According to Figure 4, we suggest that our proposed genetic algorithm sets the number
to 400 generations. Figures 5–7 evaluate the cache size, the number of UEs, and the
number of selectable files for the total backhaul traffic. The results show that our proposed
algorithm can significantly reduce the backhaul traffic compared with the two baselines.
The performance improvement is more evident when the selectable files are fewer or the
cache size is larger.
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Figure 3. Effects of different crossover and mutation probabilities on the total backhaul traffic under
600 UEs, cache size of 4000, 8000 files, and 1000 generations. (a) Crossover under the mutation
probability of 0.05%. (b) Mutation under the crossover probability of 50%.

Figure 3 shows the effects of the different crossover and mutation probabilities on
the total backhaul traffic under the proposed genetic algorithm. As shown in Figure 3a,
different crossover probabilities slightly affect the total backhaul traffic, approximately
between 37.8 and 41.2 Mbps, when the number of generations is 1000. Based on our
simulation results, we set the crossover probability to 50%. As shown in Figure 3b, when
the mutation probability is 0.05%, the proposed algorithm exhibits the best performance.
Therefore, we set the mutation probability to 0.05%.
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Figure 4. Effects of generations on the total backhaul traffic under 600 UEs, cache size of 4000, and
8000 files.

Figure 4 evaluates the performance of the proposed algorithm for each generation.
Because we adopt the solution of the CEC algorithm to generate our initial solutions, we can
see that the CEC and GJGA algorithms have a similar performance in the first generation.
As the number of generations increases, the total backhaul traffic decreases under the
GJGA because our proposed algorithm finds better solutions in each iteration. When the
number of generations is higher than 265, the backhaul traffic is lower than 100 Mbps,
and the GJGA can reduce the backhaul traffic about 45.3% compared with the CEC. After
400 generations, the performance improvement ratio of our proposed genetic algorithm is
lower than 0.1% at every generation. There is a trade-off between the execution time and
the algorithm’s performance.
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Figure 5. Effects of the cache size on the total backhaul traffic under 600 UEs and 8000 video files.

Figure 5 shows the effects of the cache size on the total backhaul traffic. When the cache
size increases, the total backhaul traffic under the three algorithms is reduced because more
files can be stored in the cells and be transmitted by cells without consuming the backhaul
bandwidth. Our proposed GJGA algorithm can significantly reduce the total backhaul
traffic consumed by the cells because it iteratively finds a suitable JT group for each UE
to use the files caching in each cell efficiently. Therefore, when the cache size is larger, the
performance improvement of the proposed algorithm is more evident. Although the BTM
algorithm does not consider caches at cells, the backhaul traffic can still be decreased. This
is because a requested file is more likely to be hit in the caches when the cache size is larger.
Our proposed algorithm can reduce the backhaul traffic by up to 91 and 77% compared to
the BTM and CEC, respectively.
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Figure 6. Effects of the UE number on the total backhaul traffic under the cache size of 4000 and 8000
video files.

Figure 6 investigates the number of UEs in the total backhaul traffic. As the number
of UEs increases, the total backhaul traffic increases under the three algorithms. This is
because more JT groups should serve more UE requests to generate more backhaul data
traffic. Compared with the two baselines, the proposed algorithm significantly reduces
the backhaul traffic to alleviate the burden of the network backhaul. The proposed genetic
algorithm relies on our designed crossover, mutation, and evaluation functions to create
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multiple solutions and maintain better solutions for each generation. Therefore, the GJGA
can iteratively adjust a suitable JT group for each UE to minimize the backhaul bandwidth
consumption. Compared with the CEC algorithm considering caches, the proposed GJGA
algorithm can reduce backhaul traffic by up to 71%. This result justifies our motivation that
the JT grouping problem considering caches is vital for reducing the backhaul traffic.

8000 8200 8400 8600 8800 9000 9200 9400 9600 9800 10,000

Number of selectable files

0

100

200

300

400

500

600

700

800
B

ac
kh

au
l t

ra
ffi

c 
(M

bp
s)

BTM
CEC
GJGA

Figure 7. Effects of the number of selectable files on the total backhaul traffic under 600 UEs and the
cache size of 4000.

Figure 7 shows the number of selectable files for the total backhaul traffic. When the
number of selectable files increases, the total backhaul traffic increases under the three
algorithms. When the cache size is given, more selectable files mean that lower ratios of
files can be cached at each cell so that fewer files requested by UEs can be transmitted from
the caches of the cells. The simulation result shows that the proposed algorithm still has the
best performance with the minimum backhaul traffic because the GJGA can efficiently use
the cells’ caches to reduce the backhaul burden under the limited RBs, even when some files
may be rarely cached at a few cells. The proposed genetic algorithm considering caches
finds a JT group for each UE to minimize the backhaul traffic. Our proposed algorithm
can reduce the backhaul traffic by up to 92 and 79%, compared to the BTM and CEC,
respectively. The performance improvement of the proposed genetic algorithm is more
evident with fewer selectable files.

5. Conclusions

In cellular networks, the CoMP-JT is an important technology for improving network
throughput. However, forming a JT group for a UE without considering caches at cells
results in a network backhaul burden. This article investigates the JT grouping problem
to minimize the backhaul traffic in cellular networks. We consider caches at cells in the JT
group problem subject to the data requirement of each UE and the RBs of each cell. Then,
we propose a genetic algorithm to solve this problem. To improve the execution time, the
proposed genetic algorithm uses a solution of a heuristic algorithm (CEC) as our initial
solution. The simulation results show that, compared with the two baselines, the proposed
genetic algorithm obviously decreases the backhaul traffic and justifies that considering
caches is vital for decreasing the backhaul traffic in the JT grouping problem. The limitation
of this work is that we only consider single-layered video technologies. In future works,
we will consider layered video technologies for the JT grouping problem.
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Nomenclature

Symbol Depiction
U Set of UEs
C Set of cells
Cu Set of cells that cover UE u
Fc Set of video files cached by cell c
F Set of all selectable video files
fu Video file requested by UE u
D fu Data rate of the video file fu requested by UE u
R Total RBs of each cell
Ju Set of cells serves UE u
Iu Set of cells that will be interfered when JT group Ju serves UE u
Ru Number of RBs consumed by JT group Ju for serving UE u
Su Data rate provided by an RB when JT group Ju jointly transmits data to UE u
Tc,u Backhaul traffic consumed by cell c for serving UE u
Xc,u An indicator function which is 1 if cell c consumes backhaul bandwidth for serving UE u;

otherwise, it is 0.

Abbreviations
The following abbreviations are used in this manuscript:

UE User equipment
SNR Signal-to-noise ratio
CoMP Coordinated multipoint
JT Joint transmission
CS/CB Coordinated scheduling/beamforming
QoS Quality of service
RB Resource block
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