
Citation: Doshvarpassand, S.; Wang,

X. Sub-Surface Defect Depth

Approximation in Cold Infrared

Thermography. Sensors 2022, 22, 7098.

https://doi.org/10.3390/s22187098

Academic Editor: Ricardo Perera

Received: 22 July 2022

Accepted: 8 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sub-Surface Defect Depth Approximation in Cold
Infrared Thermography
Siavash Doshvarpassand 1,2 and Xiangyu Wang 1,3,*

1 Australasian Joint Research Centre for Building Information Modelling, Curtin University,
Bentley, WA 6102, Australia

2 WA School of Mines, Curtin University, Bentley, WA 6102, Australia
3 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
* Correspondence: xiangyu.wang@curtin.edu.au

Abstract: Detection and characterisation of hidden corrosion are considered challenging yet crucial
activities in many sensitive industrial plants where preventing the loss of containment or structural
reliability are paramount. In the last two decades, infrared (IR) thermography has proved to be a
reliable means for inspection of corrosion or other sub-surface anomalies in low to mid thickness
metallic mediums. The foundation of using IR thermography for defect detection and characterisation
is based on active thermography. In this method of inspection, an external excitation source is
deployed for the purpose of stimulating thermal evolutions inside objects. The presence of sub-
surface defects disrupts the evolution of electromagnetic pulse inside an object. The reflection of
altered pulse at the surface can be recorded through thermal camera in the form of temperature
anomalies. Through authors’ previous works, cold thermography has shown that it can be a viable
defect detection alternative to the most commonly used means of active thermography, known as
heating. In the current work, the characterisation of defect dimensions, i.e., depth and diameter,
has been explored. A simple analytical model for thermal contrast over defect is used in order to
approximate the defect depth and diameter. This is achieved by comparing the similarities of the
model and the experimental contrast time-series. A method of time-series similarity measurement
known as dynamic time wrapping (DTW) is used to score the similarity between a pair of model
and experiment time-series. The final outcome of the proposed experimental setup has revealed that
there is a good potential to predict the metal loss of up to 50% in mid-thickness substrate even by
deploying a less accurate nonradiometric thermal device and no advanced image processing.

Keywords: cold infrared thermography; non-destructive testing; metal loss defect characterisation;
defect depth prediction; structural health monitoring; vision-based sensors

1. Introduction

Detecting and characterising hidden corrosion are considered to be challenging tasks
in many sensitive industrial plants where preventing the loss of containment or structural
reliability are paramount. An unattended event, such as a prolonged corrosion, can impose
significant threat to projects’ reliability, economy and their subsequent operations [1–9].
General corrosion characterisation in the form of measuring the material loss forms a
dominant activity in corrosion control and risk-based inspections [10–19]. In the last two
decades, infrared (IR) thermography proved to be a reliable means for inspection of corro-
sion or other sub-surface anomalies in low to mid thickness metals. Infrared thermography,
thermal imaging or, in general, thermography is considered a non-destructive examination
process that allows observation of the heat patterns over an object surface [20].

Active thermography is a thermography technique in which an external excitation
source is deployed for the purpose of stimulating the thermal evolutions inside objects.
This energy source can be either physical (stimulating internal energy by causing internal
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vibration, e.g., microwave or electromagnetic eddy current), optical (e.g., pulse heating
using flash lamps, etc.) or, in general, by heat conduction means (heating or cooling
objects). Thermal camera records both the temporal and spatial evolutions of surface
temperature from the stimulation moment till stabilising to the ambient temperature. Active
thermography constitutes a considerable part of thermographic condition monitoring
activities accounting for hidden defect detection, i.e., disbonding/delamination defect
detection in composites or corrosion/metal loss/crack defect detection in metallic materials.
Management and mitigation of metal loss/corrosion defect across metallic components
and equipment require ongoing and in situ inspection and monitoring techniques to assure
the continuous record of equipment health status [1,21]. As previously noted, very few
reports of using cooling mechanisms instead of heating have been mentioned in the body
of literature [1,22,23].

The physical basis of defect detection by means of active thermography is based on the
thermal conduction (diffusion) phenomena in solids. Solving the thermal wave equation
known as Fourier equation for certain boundary conditions leads to estimation of important
trends, e.g., temporal temperature evolution. Considering uniform stimulation of a sample
surface, thermal propagation into the body of the sample has been classically modelled as
a one-dimensional heat-flow process [24–26]. 1D heat flow then is governed by simplifying
the Fourier equation as follows:

∂T
∂t

= α
∂2T
∂z2 (1)

where α = k/ρC is thermal diffusivity
(
m2/s

)
. k is thermal conductivity (W/mK); ρ is

density
(
kg/m3) and C is specific heat (J/kg K). Sub-surface defects will disrupt the

evolution of energy wave propagated inside objects. Consequently, defects will appear
in the form of anomalies with different temperature or colour intensities compared to the
surrounding sound (non-defective) areas in the infrared detector (see Figure 1).
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Figure 1. Schematic of thermal diffusion and response through a defective solid, retrieved from [1].

The solution of Equation (1) for a Dirac delta pulse (an intense unit-area pulse of so
short a duration that no measuring equipment is capable of differentiating it from a shorter
pulse [27,28]) from a plane source of strength J0/ρC launched from the surface (z = 0) of a
semi-infinite medium (z >> 0) was proposed as follows [24]:

Tsemi−in f (z, t) = T0 +
J0

e
√

πt
exp
(
−z2

4αt

)
(2)
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considering initial condition of:

T(z, t) = T0 |t=0 (3)

and boundary condition of:
∂T
∂z

= 0 |z=0 (4)

where Tsemi−in f corresponds to the temperature evolution in the semi-infinite body, T0 is
initial (ambient) temperature, J0 is the thermal energy density

(
J/m2) and e =

√
ρkC is

thermal effusivity
(

Ws1/2/m2k
)

. From Equation (2), the surface (z = 0) temperature of

semi-infinite homogenous and opaque medium decays with 1/
√

t. Any changes to this
characteristic result in variation in temperature evolution at the surface, which can reflect
regions containing sub-surface defects.

Through the literature, corrosion defect is generally modelled as a semi-infinite air
gap located beneath the surface of a single-layered solid by a distance L and in a plane
parallel to the surface. Therefore, the measurement of corrosion is reduced to measurement
of the local wall thickness, L [29,30]. The air gap is characterised with much less thermal
conductivity than the solid and it will reflect the most of the incident thermal energy,
received from a pulse, back to the surface [26]. The thermal reflection coefficient, Γ, of the
interface defect is equivalent to [29,31]:

Γ =
em − ed
em + ed

(5)

where em and ed are, respectively, the thermal effusivity of solid material and defect. In case
of corrosion defects modelled as air gap defect, Γ = 1 is a valid approximation considering
em � ed.

A representation of temperature excursion through a finite uniform thickness L sub-
mitted to a Dirac delta pulse was proposed as follows [24,26,32]:

Tf in(z, t)|z=0 = T0 +
J0

e
√

πt

[
1 + 2

∞

∑
n=1

Γn exp
(
−n2 L2

αt

)]
(6)

The summation appearing in the bracket accounts for the effective multiple internal
reflections, or reverberations, of the energy pulse between the air gap defect and the sample
surface [26]. It is important to stress, the crucial assumption here is the infinite extend, D, of
the defect along the lateral direction compared to its depth, d or D � d [33] (see Figure 2a).
In general, through IR thermographic NDT for corrosion detection, it has been mainly tried
to apply one-dimensional (1D) models assuming that transient thermal processes occur
independently in sound (non-defective) and defect areas [34]. It has been mentioned in the
literature that the lateral extension of disk-shaped defects in steel material, D, should be
about six times larger than the sample thickness, L, for the effective assumption of 1D heat
transition [35]. Moreover, as a general agreement between practitioners of thermal NDT for
sub-surface defect detection, the defect detectability of active thermography is generally
considered reliable when the defect aspect ratio D

d exceeds two [33].
The lateral extension of a real corrosion defect, however, can be finite. As result, the

incident heat front traveling above the defect will deviate laterally (see Figure 2b).
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Figure 2. Comparison of the effect of defect (a) infinite and (b) finite lateral extension on heat
diffusion, retrieved from [1].

As shown in Figure 2b, this lateral heat diffusion results in three-dimensional heat
transfer through medium, enhancing the diffusion over the defect (arrow 2) [26,36–38]. In
fact, compared to Equation (6), the lateral diffusion of heat incident towards defect edges
will result in less energy incident accumulation at the centre of the defect and, consequently,
less temperature record at the surface over the defect. An analytical model of heat diffusion
over defect, Tde f , was proposed in order to take into account the reduction in thermal
incident due to lateral thermal diffusion associated with defect finite lateral size, D [33];
see Equation (7). It is assumed that the defect edge acts as a heat sink transferring the
heat incident from localised high-temperature area above the centre of the defect towards
low-temperature area of defect underneath in order to establish the steady-state thermal
equilibrium (arrow 3). It is then assumed that the associated reduction in heat over the
defect is proportional to defect diffusion distant D

2 as follows:

Tde f (z, t) |z=0 = T0 +
J0

e
√

πt

[
1 + 2

∞

∑
n=1

Γn exp
(
−n2 d2

αt

)]1− exp

−
(

D
2

)2

4αt


 (7)

Defect detection by means of active pulse thermography (PT) experiments consists of
a specimen subject to a relatively short energy pulse, and then recording the temperature
evolution curves in transient mode (temporal). However, in practice, only producing
quasi-Dirac pulse is possible. As a result, the square pulse of width t and amplitude A
accounts for the most practiced waveform in PT applications [27,28]. However, the pulse
width can be varied from an approximate ~2 ms (quasi-Dirac pulse) to a couple of seconds
(long square pulse) [1].

The 1D classical heat conduction solutions, which describe square-pulse heating, Tsq,
of a plate with adiabatic boundary conditions, are as follows [30,39]:

During energy stimulation:

Tsq(z, t) |z=0 = T0 +
QL
k

[
FO +

1
3
− 2

π2

∞

∑
n=1

1
n2 exp

(
−n2π2FO

)]
(8)

After energy stimulation:

Tsq(z, t) |z=0 = T0 +
QL
k

[
FOh +

2
π2

∞

∑
n=1

1
n2 exp

(
−n2π2FO

)(
exp
(

n2π2FOh

)
− 1
)]

(9)
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where FO = αt
L2 and FOh = αth

L2 are the dimensionless Fourier numbers, respectively, for,
after and during stimulation. th is the energy pulse duration. Q is the absorbed energy
density

(
W/m2).

Calculation of temperature difference for spatial domain over temporal domain is
considered the most exercised IR NDT method in order to enhance subsurface defect
visibility. This enables quantitative extractions of information, such as defect depth, size
and thermal properties [26,31,40]. Careful consideration of a non-defective as the reference,
however, remains challenging as, in a real-life case of corrosion (metal loss), identifying a
non-defective or reference may not always be possible. Through some recent works [22,23],
authors tried to address this issue by introducing a method known as Dynamic Reference
Reconstruction (DRR). The motivation behind this method was the relative coexistence
of reference (non-defective) and defective areas in proximity of each other, meaning a
non-defective area can be considered as defective based on its contrast intensity level or,
in contrast, a defective area can be hidden in a non-defective surrounding due to high
similarity of their intensities. Accurate identification of defective and non-defective areas
of test surface is an essential prerequisite of defect depth and size characterisation. In the
current work, the aim has been to predict defects’ dimensions. Historically, this has been
conducted by using key features of thermal contrast evolution time-series over defects, e.g.,
the maximum contrast value and the time the contrast trend reaches its maximum. Here,
first, it was crucial to find an approximation model for cold-pulse active thermography.
Then, the model was used to compare the experimental contrasts and find the closest
similarity to their equivalent model.

2. Materials and Methods

As the use of cold stimulation instead of common heat sources is of interest here, a com-
mercial cooling medium known as freezing spray consisting of R134A-based propellant was
considered as the stimulation source. Unlike optical energy sources in which the thermal
camera field of view is unobstructed, the cooling method can be disadvantageous due to
the surface blocking effect of the cold stimulation while in operation. As result, a prototype
was designed and introduced through previous works [22,23]. In this experimental setting,
both the thermal camera and the cooling spray reservoir (can) are accommodated alongside
a carrier and separated by a barrier, which holds the camera and prevents escaping cold
burst (noise) to disrupt the camera view; see Figure 3. The components’ arrangement
has been configured in a way that spraying action can be manually performed above the
test surface while the carrier passes over the test piece surface, immediately exposing the
stimulated surface to the camera; see Figure 3e. The camera transfers the video signals to
a recording software. A test frame accommodates the test piece in a fixed position, while
incorporating a guide rail into the test frame ensures linear motion across the test specimen;
see Figure 3e. In order to prevent nonuniform cooling of the surface at its best, a modified
flat-fan jet-spray nozzle is used. Flat-fan jet nozzle sprays the cold burst from a very narrow
slot, creating a quasi-linear cross-section at the surface of test piece; see Figure 3d.

The thermal camera used for the purpose of this work is an uncooled long-wave
infrared (LWIR) FLIR TAU2 640 thermal camera characterised with 640 × 512 pixel output
resolution, 17 µm pixel size and the 7.5− 13.5 µm spectral operating band. This device
is equipped with a 19 mm wide field of view (WFOV) lens with 32

◦ × 28
◦
(h× v). A

19 mm lens is found to be optimal in terms of providing relatively wide coverage of the
surface with the minimum image distortion. The recording output specification for the
mentioned device includes recording video signals at 30 Hz nominal rate (29.97 Hz NTSC
and 25 Hz PAL) in 8-bit (analogue) colour level. Experiments are performed under ambient
temperature and pressure.
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Figure 3. (a) Carrier front view; (b) carrier side view; (c) carrier back view; (d) cooling medium spray
with customised flat-fan nozzle; (e) experimental setup showing carrier motion over the test piece.

The test piece considered for this research is manufactured from AS/NZS 1594—HA
250 structural mild carbon steel (see material properties in Table 1) of 500(L)× 150(W)×
8(t) mm dimensions. Four groups of sizes and depths of flat-bottom circular blind holes are
drilled across one side (hidden side) in order to replicate the metal loss defects; see Figure 4
and Table 2. As shown in Figure 4, the test piece surface is covered by low-sheen black
paint. This was carried out to reduce the possible external reflection from the surroundings.
However, we found that the cold stimulation using cooling medium is less prone to creating
reflections on a bare metal surface in comparison with heat pulse sources, e.g., flash lamps.
Moreover, the reason for the extended length of test sample is to allow sufficient distance
for the carrier and the cooling stimulation to be initiated before passing over the defects, as
well as sufficient distance after the defect to fully pass over the last row of defect. This will
ideally create a full field of view to capture the complete image sequence from the entire
defective area.

Table 1. HA 250 mild steel mechanical and thermal properties [41].

Chemical Composition Mechanical and Thermal Properties

Carbon, C 0.10–0.20% Density 7.83 × 103 (kg/m3)
Iron, Fe 98.81–99.26% Tensile Strength, Yield 350 (MPa)

Manganese, Mn 0.45–1% Thermal Conductivity 64 (W/m·K)
Phosphorous, P ≤0.040% Specific Heat 434 (J/kg·K)
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Table 2. The arrangement of depth and size of artificial defects.

Groups A B C D

D (mm) 22 18 14 10 22 18 14 10 22 18 14 10 22 18 14 10
d * (mm) 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

D: diameter; d: depth; * the depth is the distance measured from the test piece surface.

In this work, each experiment consists of manually releasing (spraying) cooling
medium during the transition of carrier from a non-defective area way behind the de-
fective region to a sufficiently distant area after defective region. This motion must allow
the camera to fully capture the first row of defects entering the field of view and the last
row of defects exiting the field of view. As result, the assurance of constant linear travel-
ling speed in order to guarantee the most uniform stimulation possible, as well as equal
exposure of test piece surface to the thermal camera, is paramount.

Multiple experiments were conducted, at which a full run of carrier passing over
the test piece, exposing defective region to camera, occurred. Histogram and Kernel
Distribution Estimation function (KDE) of carrier speed in unit of pixel per frame for each
test was estimated to select the most acceptable test conditions and results. The measure for
the most acceptable test conditions was considered to be the least skewed and the highest
positive kurtosis of test speed distributions. Skewness is the measure of dataset symmetry
or lack of symmetry, with skewness = 0 defining the normal (symmetrical) distribution.
Kurtosis is the measure of dataset sharpness, with positive kurtosis representing the
sharp (unique) distribution of a dataset, negative kurtosis representing the flat (uniform)
distribution of a dataset and the zero kurtosis corresponding to the normal distribution
(based on Fisher definition). Moreover, for each test, the speed distribution mean µ and
standard deviation stdv were calculated. The approximately similar test speed mean and
lower standard deviation were added to the selection criteria. Figure 5 shows an example of
a set of 12 experiments and their statistical parameters of travelling speed. In Figure 5a, the
histogram of pixels travelled per frame for each test has been presented. On the right axis,
the equivalent KDE is compared with the idea of normal distribution of each experiment in
order to highlight undesired distribution characteristics, such as skewness or bi-modality.
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Moreover, Figure 5b represents the estimated kurtosis and skewness for ach test. In this
case, tests number 2, 3, 6, 9 and 11 showed more consistency.
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3. Experimental Results and Discussion
3.1. Image Data Preprocessing

Information acquired using infrared cameras are generally converted into visible
images by assigning colour intensities to each infrared energy level corresponding to either
electromagnetic flux or the exact temperature (through radiometry). The result is called a
thermogram, in which each pixel represents the evolution of temperature or electromagnetic
flux in time [42]. In the current experimental setup, additional to the time transition, each
image includes pixels for which spatial (location) features vary in each frame due to the
camera motion. Therefore, each frame is required to be sorted in a raster-like array in which
pixels preserve their spatial parameters along the temporal direction. This was achieved by
stacking all frames in order to produce a 3D array of frames over exposure time. Image
averaging of multiple tests has been strongly recommended through the literature in order
to increase the signal-to-noise ratio [30]. Here, for various experimental configurations that
will be addressed in a later section, the image averaging was conducted.
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Figure 6 represents a preprocessing pipeline which includes three steps: 1—the data
acquired through thermal videos are preprocessed and decomposed to individual frames
based on camera native frame rate; 2—a 3D array containing pixels’ spatial information
over the time of experiment is reconstructed. Each pixel is characterised with a “reveal
time” equivalent to when that specific pixel enters the camera field of view and an “exit
time” when that pixel exits from the camera field of view. The difference between reveal
time and exit time is known as “test window”. Test window is inversely proportional to test
speed. Mentioned time characteristics for each pixel can be different due to the moving
experimental setup exposing a different segment of test surface (group of pixels in each
frame) at each point in time. As a result, in step 3, all pixels’ time transient evolutions
are referenced from time perspective to t0 = 0. The result is a sequence of images known
as “time-referenced images”, in which each pixel co-ordinate is fixed. The indices i and
j correspond to the co-ordinates of each point of interest (pixel) along time-referenced
thermograms. For each defect, a point over the centre of defect (pixel marked with a blue
+) and a set of sound (non-defective) points in the proximity of that defect are selected
(pixels marked with a red +) in order to further calculate the contrast trends.
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3.2. Temperature Evolution in Time

The analysis of IR thermographic corrosion detection has been mainly performed by
applying a one-dimensional (1D) solution of Fourier equation for different excitation wave
forms. Such analysis assumes that transient thermal evolutions occur independently in
non-defective and defective areas. In order to characterise the corrosion defects using cold
stimulation, first, an analytical model representing cooling wave form is required. The
1D analysis of corrosion detection by optical heating mainly involves using the classical
heat conduction solutions, which describe either flash (Dirac delta pulse approximation) or
square-pulse heating of a plate under adiabatic boundary conditions [30,34]. For the current
experimental design, which is the case of moving stimulation source, the approximation of
square pulse for the cooling stimulation was considered; see Equations (8) and (9). Then,
the consistencies with the classical 1D square-pulse model, as well as multiple analytical
and experimental simulations reported through the literature, has been investigated and,
finally, the shortcomings of the 1D solution are addressed. The important assumptions
here are:

(a) Heat diffusion in solid occurs on a pure conduction basis;
(b) The cold flux can be described as a square pulse characterised by the maximum

density of absorbed power density Q and the stimulation duration tstm;
(c) Adiabatic conditions can be accepted, meaning there is no energy exchange from both

front and rear surface;
(d) Boundaries between the host material and air-filled defects can be regarded as adia-

batic, meaning Γ ≈ 1;
(e) First internal reflections, or reverberation, of the energy pulse between the air gap

defect and the sample surface are considered to be the most dominant, meaning n = 1
in Equations (8) and (9).

It is important to stress here, the output of the thermal device being deployed in this
work is 8-bit analogue images in which temperature values for each pixel are translated
to colour intensity between 0 and 256 or 0 and 1 (normalised greyscale image). As result,
here, it is avoided comparing the experimental result with the 1D square-pulse model
from a temperature value point of view, as the temperature curves are simply colour
intensities adjusted based on surrounding intensities. Normalised or running contrast has
been commonly used for the purpose of non-destructive testing for defect detection in
thermography methods:

∆TRun =
(Td − Ts)

Ts
(10)

The index s is associated with a reference (sound or non-defective) area and index d is
associated with a pixel located on the centre of a defect at the surface. Such normalisation
is useful as, first, it removes the dependency to the absorbed energy value, which, in the
case of cooling spray, is difficult to measure and, second, working with contrast curves
compensates for intensity adjustment occurring in nonradiometric camera output images.

Figure 7 illustrates the 1D analytical solution of square-pulse stimulation (see
Equations (8) and (9)) considering the above-mentioned assumptions. Figure 7a,b show the
temperature and running contrast trends for various defect depths subjected to a square
pulse of duration tstm = 1 s. Figure 7c,d show the same trends for various tstm, while
the depth is unchanged. As shown, only the after-cooling processes in running contrasts
are considered due to the present experimental setup allowing only observation of the
specimen surface immediately after cooling. In order to present a more familiar heat-
ing contrast curve to the thermography community and, eventually, using more familiar
terms, such as contrast peak and decay, from here we multiply all experimental contrast
curves by −1 and use tstm instead of th in Equations (8) and (9), which is representative
of stimulation duration regardless of its heating or cooling mechanism. Some important
information from temperature and contrast evolution signal can be extracted, which is
addressed elsewhere [30,34,43]:
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(a) Based on a 1D square-pulse model, both maximum (end of stimulation) and minimum
(a long time after stimulation) temperatures depend on pulse duration, absorbed
energy of the pulse and defect depth; see Equation (11). However, the ratio between
maximum and minimum is strictly proportional to pulse duration and defect depth;
see Equation (12). In practice, the specimen temperature decreases slowly to the
ambient level, meaning the contrast curve decays to zero. This is due to 3D heat
diffusion.

(b) A shorter pulse tends to generate a greater ratio of maximum minimum temperature
due to the fact that, in short pulse, only the near-surface layer of medium is being
stimulated and the energy dissipates faster and stronger after a shorter pulse [30].
Table 3 shows some of the estimated temperature characteristics derived from 1D
square-pulse equation. It is known from Equations (11) and (12) that the ratio between
Tmax and Tmin in square pulse is mainly controlled by the pulse duration and it is
independent of Q. However, for deeper defects, not only the decrease in tstm, but also
increasing depth has an exponential effect on significant increase in ratio, m; see the
highlighted comparison in Table 3.

(c) Both maximum temperature and maximum temperature contrast (contrast peak)
occurrence time tend to be earlier for longer pulse durations compared to shorter
pulse [43].

Tmin =
(

QL
K

)
Fostm

Tmax =
(

QL
K

){
Fostm + 2

π2

∞
∑

n=1

1
n2

[
1− exp

(
−n2π2Fostm

)]}
|n = 1

(11)

m =
Tmax

Tmin
= 1 +

2
π2Fostm

∞

∑
n=1

1
n2

[
1− exp

(
−n2π2Fostm

)]
|n = 1 (12)

Table 3. Some temperature curve key characteristics calculated from 1D square-pulse model for
various defect depths and pulse durations. A deep defect (d = 4 mm) subjected to a short pulse
(tstm = 0.1 s) demonstrates much larger min–max temperature ratio compare to other combinations
of pulse duration and defect depth.

Groups tstm = 0.1 s tstm = 0.5 s tstm = 1 s tstm = 2 s

d 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Fostm 1.88 0.47 0.21 0.11 9.44 2.35 1.04 0.58 18.8 4.7 2.09 1.17 37.7 9.41 4.18 2.35
Tmax 0.32 0.19 0.18 0.16 1.5 0.79 0.58 0.48 2.97 1.53 1.07 0.85 5.91 3.00 2.05 1.59
Tmin 0.29 0.14 0.09 0.07 1.47 0.73 0.49 0.36 2.94 1.47 0.98 0.73 5.88 2.94 1.96 1.47
m 1.10 1.42 1.84 2.22 1.02 1.08 1.19 1.34 1.01 1.04 1.09 1.17 1.00 1.02 1.04 1.08

d: defect depth, FOstm = αtstm
d2 , α = k/ρC, k = 64 W/mK; ρ = 7830 kg/m3, C = 434 J/kg K, Q = 10 kW/m2.

In order to compare the experimental results with both 1D and 3D square-pulse
analytical and experimental results of the heating process and explore the consistencies
and differences, various test regimes are performed. Figure 8 represents average running
contrast of the experimental results under various test regimes. A polynomial fit of order
4 fitted to the data only for the purpose of visualisation. Figure 8a shows the average
running contrast of three tests for defect D = 22 mm , d = 1 mm under three different test
speed regimes. Three test speed regimes of “Fast”, “Normal” and “Slow”, respectively, equal
to 34 pixel/frame, 9 pixel/frame and 5 pixel/frame were applied. As shown in Figure 8a,
the contrast evolution observation window varies due to the test speed differences. The
purpose of applying different test speeds is to provide various stimulation times and
observe the effect of various stimulation times on key thermal contrast characteristics (i.e.,
contrast peak amplitude and contrast peak time).
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Figure 7. (a,b) 1D temperature and running temperature contrast defects with diameter D = 22 mm
and various depths, d, on an L = 8 mm thickness mild steel specimen subjected to a square-pulse
stimulation of duration tstm = 1 s. (c,d) 1D temperature and running temperature contrast of a defect
with diameter D = 22 mm and d = 1 mm on an L = 8 mm thickness mild steel sample subjected
to square-pulse stimulation of duration tstm = 0.5, 1 and 2 s. The pulse absorbed power density is
assumed Q = 10 kW/m2.

Figure 8b also shows the comparison of average running contrast of six tests for each
defect of D = 22 mm , d = 1 mm to d = 4 mm under two different test direction regimes.
Two test direction regimes include the “forward” tests where the shallowest defects (the
closest to the surface, i.e., d = 1 mm) are the first row being subjected to the cold pulse
and the “backward” tests where the first row of the defect subjected to the cold pulse are
the deepest (d = 4 mm). This is performed by simply rotating the test piece for different
sets of device operation. All tests in the mentioned test direction regimes are performed
at approximately 9 pixel/frame speed. This was carried out in order to, first, assure the
defect characterisation process independency of test direction and, second, study the cold-
pulse behaviour in a moving energy source scenario. For the mentioned two test direction
regimes, the available contrast observation window was estimated to be about 1 s.

Two important characteristics of various temperature contrasts are known to be con-
trast peak amplitude and contrast peak occurrence time.
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Figure 8. (a) Average running contrast of D = 22 mm, d = 1 mm defect for various test speeds;
(b) average running contrast of D = 22 mm defects with different depths under forward and
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3.2.1. Running Contrast Peak Time

The temperature and temperature contrast evolutions generally include, first, increase
in temperature over the defects due to reflection of energy, which is disrupted by defect,
and then dissipation or decay (increase in case of cooling) of temperature back to ambient
level due to 3D lateral heat diffusion. As shown in Figure 8a, contrast trends for a point
over defect D = 22 mm , d = 1 mm reaches its maximum slightly earlier for longer pulse
(slower test speed). For the fast speed setup in which the pulse is very short, no information
from contrast peak amplitude and its occurrence time is available due to limitation of the
surface observation window. It is, however, expected that short pulse reaches its maximum
at a later time compared to normal and slow configurations, according to Section 3.2.

In Figure 8b, contrast trends for similar defects sizes in either forward (d = 1 mm
defects are first to receive cooling pulse) and backward (d = 4 mm defects are first to
be exposed to the cold pulse) test direction regimes are not significantly different. The
contrast peak occurrence time is known to be proportional to pulse duration [30,35,43]. It
is important to mention, the current experimental setup does not guarantee that the time
that a pixel over a defect first appears to the camera is exactly equal to the end of cooling
time in the 1D square-pulse model. In fact, it can be said that the reveal time in which the
first pixel and its associated temperature/colour intensity is recorded by thermal camera or
treveal is always greater than analytical stimulation time or treveal > tstm.

3.2.2. Running Contrast Peak Amplitude

In the 1D square-pulse model, the contrast peak amplitude is inversely proportional to
defect depth, while it is directly correlated to absorbed energy density Q. In case of running
contrast, however, the dependency to Q is no longer relevant. It has been mentioned
elsewhere that the contrast peak amplitude is independent of pulse duration tstm [43].
In Figure 8a, the running contrast peak amplitudes happen to vary for various cooling
durations. It is expected that a longer duration of pulse generates higher intensities in
the contrast image, despite the fact that running contrast amplitude of constant depth
in the 1D model (see Figure 7d) is not dependent on cooling duration. In order to reject
the proportionality of experimental contrast peak amplitude to cooling duration, the ratio
of contrast peak amplitudes under various test regimes (speed and direction) can be
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compared. It is expected that the contrast peak ratio under different cooling durations for
similar defect depths remain unchanged and equal to one. For that reason, the comparison
of contrast peak amplitude ratios for slow against normal (test speed regimes) and forward
against backward (test direction regimes) for various defects was considered. Here, it is
assumed that, for defects with no visible contrast peak, the earliest value of contrast curve
is sufficiently close to its equivalent contrast peak value in the 1D model.

Figure 9 shows the ratio of defect contrast peak amplitude for two different testing
regimes. Figure 9a shows the contrast peak ratio comparison from the test direction point of
view and Figure 9b shows the same ratios for different test speeds (equivalent to different
stimulation time). In Figure 9a, the contrast peak ratio of group of similar diameter defects
and various depths are almost constant and close to unity yet deviate from constant ratio
when the defect aspect ratio D

d , decreases. This means that the test direction does not affect
the contrast peak amplitude (at least for the larger defect aspect ratio). In Figure 9b, the
ratios of running contrast peaks for similar diameter defects and various depths are also
almost constant but not equal to unity. Similarly, the ratio trends deviate from constant for
deep defects. These findings are important as they reinforce that, across both experiment
regimes, the first-order dependency of contrast peak on defect depth (at least in case of
shallow defects) is preserved.
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However, the contrast peak amplitude independency from stimulation duration de-
rived from the 1D model has not been satisfied in Figure 9b because the contrast peak ratios
for the group of same diameter defects are not equal to unity. Knowing all of the above-
mentioned conclusions is critical as, first, it demonstrates that contrast curves generated
from analogue image data with temperature values translated to colour intensities are still
reliable means for characterising defects. The key characteristics of contrast curve, e.g.,
relative amplitudes of peak contrasts for various defects and contrast peak occurrence time
are not affected by contrast enhancement. More importantly, it shows that the complex 3D
heat diffusion known as decay process as a result of defect-limited lateral extension can
contribute to change in contrast peak amplitude, as well as various stimulation durations.
The detailed discussion of such phenomena is out of the scope of the current work.

3.3. Proposed Analytical Model

Some important characteristics of defect temperature contrast derived from exper-
imental results demonstrate to be in good agreement with the 1D square-pulse model.
These include:

1. First-order effect of pulse duration on temporal characteristics (contrast peak occur-
rence time) of both temperature and contrast peak;

2. The first-order effect of depth on amplitude of contrast peak.
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However, the 1D square-pulse model is unable to describe the 3D (lateral) energy
diffusion as a result of defect finite lateral extension. This phenomenon can be observed in
the form of contrast decay following the contrast peak and the 1D model does not take this
characteristic into account.

Here, a simple analytical model is proposed. This analytical approximation model
complements 1D square pulse with an additional term representing the lateral energy
dissipation associated with the defects’ lateral extension (diameter) as an approximation
for cooling stimulation response. Such a model can then be used to predict the defect depth
and diameter by comparing it with experimental results. A simplified analytical term
representing 3D lateral heat diffusion was previously introduced for flash-pulse thermog-
raphy model [33]; see Equation (7). In this work, the mentioned term was multiplied to the
1D square-pulse running contrast with the assumption that the evolution of the thermal
contrast over the centre of a defect is limited by the rate of lateral diffusion of heat from
the centre to the defect edge; see Equation (13). For a circular defect of diameter D, the
diffusion distance is D

2 .

∆TRun3D =
(Td − Ts)

Ts
·

1− exp

−
(

D
2

)2

4αt


 (13)

Figure 10a shows the analytical model of running contrast for different defect diame-
ters and depth of d = 1 mm. The effect of defect lateral extension on both contrast peak
occurrence time and amplitude is consistent with abundance of analytical and experimental
results of pulsed thermography reported through the literature [26,33]. Figure 10b repre-
sents the effect of pulse duration on contrast evolution after stimulation. The dependency
of contrast peak occurrence time on pulse duration mentioned earlier (see Section 3.2) has
been satisfied with the longer the pulse, the earlier the contrast peak occurs. However, the
contrast peak amplitude is no longer independent from pulse duration (according to 1D
model) similar to what has been observed in experimental results; see Figure 8a.
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Figure 10. (a) Analytical (3D) running contrast defects for various diameter, D, on an L = 8 mm
thickness mild steel specimen subjected to a square-pulse stimulation of duration tstm = 1 s. (b) Ana-
lytical (3D) running contrast of a defect with diameter D = 22 mm and d = 1 mm on an L = 8 mm
thickness mild steel sample subjected to square-pulse stimulation of duration tstm = 0.5, 1 and 2 s.
The pulse-absorbed power density is assumed Q = 10 kW/m2.
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Figure 11 compares the ratio of contrast peak amplitude for various defect depths
and diameters subjected to various pulse durations extracted from the proposed model.
Comparing the results of Figures 11 and 9b, one can observe a good agreement between
analytical model and experimental results. The direct and first-order correlation of contrast
peak amplitude to defect depth is preserved, while the effect of pulse duration on ratio
of peak amplitude is insignificant (for larger defect aspect ratios). This means that, while,
according to Figures 8a and 10b, contrast peak amplitude is proportional to pulse duration
for individual depths, which is unaddressed by the 1D square-pulse model, the ratio of
contrast peak amplitude of consecutive defect depths for different pulse durations remains
unchanged. Further, it can be concluded that the most significant contributor to contrast
peak amplitude is still defect depth.
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In Figure 12, the experimental and model results are compared. The experimen-
tal results are extracted from average contrast trends of six tests with approximately
9 pixel/frame test speed. A polynomial degree of 4 fit represents each experimental result
trend. The time it takes the cooling burst to pass over one row of defects to another is
estimated to be around 0.5 s. The same pulse duration is used to estimate the model results.
For the purpose of consistency, both experimental and model results are scaled between 0
and 1. Important observations are as follows:

1. Except for the results of defects of depth 1 mm, there is an offset between experimental
and analytic contrast peak amplitudes. It was found that this is due to the contrast
adjustment process known as “Automatic Gain Correction” or “AGC” occurring in
the camera software. In linear AGC, 14-bit digital data are transformed based on a
linear transformation function to 8-bit colour intensities. The weakness of linear AGC
is, however, quite pronounced in scenes characterised with bi-modal histogram of
intensities in which some areas with very high or low intensities can be, respectively,
over-enhanced or under-enhanced (which is exactly the case for subsurface defect
detection) [22]. This can result in loss of important information, which, in case of a
dynamic scene similar to what has been configured in this work, can translate to loss
of key information from contrast evolution data. A detailed discussion of linear and
nonlinear contrast enhancement in subsurface defect detection using cold thermal
imaging has been addressed through authors’ previous works [22,23]. Here, the
automatic mode of AGC using nonlinear transformation function is used, in which
the entire intensity range available in 14-bit thermal data has been transformed to
8-bit colour intensity. The adjustment of contrast in each frame is heavily based on
the available range of intensities. In thermal images of subsurface defects, the range
of intensities is highly dependent on the presence of very dark (defect) and very light
(reference) intensities. As a result, we compared the ratio of contrast peak for the
model and experiments.
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Figure 13 shows that there is a quasi-linear proportionality through an identity func-
tion of contrast peak ratio to defect depth, which is almost consistent for various defect
diameters. The proportionality of contrast peak ratio to depth, however, deviates from
linear identity trend when the defect aspect ratio significantly decreases. Using the result
of this comparison, the experimental results are adjusted (scaled) to take into account the
contrast enhancement performed in the camera software; see Figure 14.

Sensors 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 13. The ratio of contrast peak amplitude for experiments against model. 

 
Figure 14. A comparison between experimental results, analytical model and adjusted model for 
defects of diameter 22 and 18 mm for various depths. 

2. For all experimental contrast evolutions, there is an offset in terms of contrast peak 
occurrence time in a way that the contrast peak occurs earlier than its equivalent 
model peak. This can be attributed to two phenomena: first, the fact mentioned pre-
viously addressing the latency of capturing experimental results as a result of current 
experimental setup or  𝑡 𝑡 ; second, the duration of complex cooling pro-
cesses over a defect, which is simplified to a square pulse, might not be accurately 
measurable. 

Figure 13. The ratio of contrast peak amplitude for experiments against model.



Sensors 2022, 22, 7098 18 of 23

Sensors 2022, 12, x FOR PEER REVIEW 19 of 24 
 

 
Figure 13. The ratio of contrast peak amplitude for experiments against model. 

 
Figure 14. A comparison between experimental results, analytical model and adjusted model for 
defects of diameter 22 and 18 mm for various depths. 

2. For all experimental contrast evolutions, there is an offset in terms of contrast peak 
occurrence time in a way that the contrast peak occurs earlier than its equivalent 
model peak. This can be attributed to two phenomena: first, the fact mentioned pre-
viously addressing the latency of capturing experimental results as a result of current 
experimental setup or  𝑡 𝑡 ; second, the duration of complex cooling pro-
cesses over a defect, which is simplified to a square pulse, might not be accurately 
measurable. 

Figure 14. A comparison between experimental results, analytical model and adjusted model for
defects of diameter 22 and 18 mm for various depths.

2. For all experimental contrast evolutions, there is an offset in terms of contrast peak
occurrence time in a way that the contrast peak occurs earlier than its equivalent
model peak. This can be attributed to two phenomena: first, the fact mentioned
previously addressing the latency of capturing experimental results as a result of
current experimental setup or treveal > tstm; second, the duration of complex cooling
processes over a defect, which is simplified to a square pulse, might not be accurately
measurable.

As shown in Figure 14, the first-order effect of defect depth on contrast peak amplitude
is fully visible. In the meantime, the first-order effect of cooling pulse duration on contrast
peak occurrence time is no longer significant compared to the effect of defect lateral
extension (diameter) on the mentioned temporal characteristic. It is visible that, by reducing
the defect diameter, the contrast peak occurs earlier, which is consistent with the multiple
experimental and analytical findings in the literature.

Considering the above observations, the problem of defect depth characterisation can
be reduced to measure the similarity between two offset time-series. One time-series repre-
sents the partially registered experimental contrast curve and the other one accounts for
the complete analytical adjusted contrast curve belonging to the after-cooling stimulation
period. In this work, a method of measuring time-series similarity known as “Dynamic
Time Wrapping” or “DTW” is exercised.

3.4. Dynamic Time Wrapping for Defect Depth Prediction

There are a variety of methods dealing with time-series similarity investigations.
Some methods, such as Euclidean distance metric or the mean absolute percentage error
(MAPE), are based on point-wise calculation of the difference between two time-series.
This enables such methods to be quite fast in computation; however, their applicability
can be limited when two time-series under investigation are characterised with temporal
or spatial offset or of different scales [44–46]. Dynamic time warping (DTW) is a well-
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known point-wise technique, which finds the temporal alignment that minimises Euclidean
distance between aligned series regardless of their offset or scale. Figure 15 illustrates
the fundamental differences between Euclidean and DTW in finding minimum distance
between two experimental and reference (adjusted model) running contrast time-series for
defect D = 22 mm , d = 1 mm.
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Figure 15. A comparison of Euclidean and DTW alignments of experimental and analytical model of
running contrast curve for defect D = 22 mm, d = 1 mm.

As shown in Figure 15, DTW shows to be significantly more intuitive in aligning key
points (connected via red dash lines) across two time-series. It is important to note here,
we refused to interpolate the experimental time-series in order to achieve the same length
as reference time-series. This is due to the fact that the experimental time-series has been
considered a segment of reference time-series. It has been mentioned elsewhere [47] that
scaling time-series to be in equal length does not add any benefit in the accuracy of DTW,
while it is essential in Euclidean.

Figure 16 represents the predicted depth and diameter values for each defect by
pairwise comparison of the experimental running contrast time-series with analytical
running contrast model. Each cell in the prediction matrix contains the similarity score
acquired from DTW calculation. Green cells highlight the 10% percentile minimum range of
similarity scores. Ideally, the values located at the matrix diagonal should be the minimum
for each defect (on the matrix header), meaning there is maximum similarity between defect
contrast evolution and its equivalent model (on the matrix index). However, as is shown in
Figure 16, by decreasing the defect aspect ratio, D

d , the prediction accuracy will decrease.
This can be as the result of increased signal-to-noise ratio, in which the detection of defect
becomes difficult and, consequently, an accurate characterisation unsuccessful. Moreover,
the simple linear relationship presented in Figure 13, accounting for contrast enhancement
performed by camera, is not valid when the defect aspect ratio decreases. Performing these
experiments with a radiometric thermal device and extracting the running contrast curve
from temperature data and not from contrast enhanced images may provide one with more
accurate results.

Table 4 summarises some of the seminal works in the literature performed in order to
detect and charactrise the metal loss defects in a metallic specimen. Note that the detection
and characterisation limits are mentioned here regardless of their accuracies. Comparing
the results of defect depth prediction acquired in this work with both classical heating
flash-pulse and square-pulse experiments reported in the literature, we found that cold
thermography can provide almost the same level of depth prediction as heating square-
pulse thermography. The analysis of both flash and square-pulse heating procedures has
historically shown that flash heating can be a more viable option to provide maximum
temperature contrasts over defects but may deliver not enough energy to produce noticeable
differential temperature signals, especially in thicker specimens.
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Figure 16. Defect depth and diameter prediction using DTW method for the forward and backward
test regimes. Green color reflects the 10% percentile minimum range of similarity scores and change
of colours towards red is equivalent to reduction of similarities (increasing similarity score) between
experimental contrast and analytical model contrast time-series.

Flash heating has shown a detecting capability of up to 10% material loss in steel
samples with the test piece thickness up to 3 mm, while, in thicker samples (up to 5 mm
thickness), the detection limit decline is up to 25%. In thicker metals, the phenomenon of
lateral heat diffusion is responsible for dissipation of thermal evolution at the surface. As a
result, it has been recommended that square-pulse heating can be a more suitable option in
order to inspect thicker materials beyond 5 mm thickness, as it can deliver a higher rate of
energy at a longer period of time. Based on multiple works found in the body of literature,
while the defect detection up to 20% metal loss (for defect sizes larger than 20 mm) in thick
specimens is overly achievable, a successful depth prediction of defect depth deeper than
50% of specimen thickness has been barely reported.
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Table 4. A summary of defect detection and characterisation limits in mild-steel specimens reported
in the literature.

Year Authors Sample Thickness
(mm)

Metal Loss
Detection Limit (%)

Metal Loss
Prediction Limit (%) Method Refrence

1996 Vavilov et al. 1.3 10% 25% Flash pulse [30]
1998 Grinzato et al. 4 20% 20% Flash pulse [48]
2010 Marinetti et al. 3 10% 10% Flash pulse [34]
2010 Marinetti et al. 10 20% 50% Square pulse [34]
2017 Almond et al. 6 20% 50% Long pulse [49]

4. Conclusions

In this work, the previously introduced experimental setup incorporating cooling
stimulation for the purpose of active thermography defect detection has been expanded in
order to approximate the defect depth. An analytical model of heat diffusion was proposed
based on the assumptions of cooling stimulation considered as square-pulse wave form and
three-dimensional heat diffusion in solids proportional to defect lateral extension. Running
contrast time-transient evolutions for each defect are extracted from sequences of thermal
images. A time-series similarity measurement method known as dynamic time wrapping
(DTW) is used to establish pairwise comparison between experimental and analytical
contrast time-series [45,46]. The results of defect depth prediction have shown to be very
promising and almost comparable with the result of heating square- and long-pulse defect
detection and characterisation.

Where a pulsed thermography or, in general, active thermography using heating
methods cannot be implemented, the cold thermography has shown that it can be a viable
alternative. The final outcome of the proposed experimental setup has revealed that
there is a good potential to predict the metal loss of up to 50%, even with using a less
accurate nonradiometric thermal device and no advanced image processing method. The
potential in situ application of cold active thermography in defect detection has been
previously addressed. In this work, a more quantitative defect characterisation process
has been explored and evaluated. It is, however, crucial to replicate such an experimental
setup while incorporating a radiometric thermal device in which the thermal image pixel
values can be translated to temperatures. The recent advances in the development of
smaller size thermal devices with radiometric capabilities will enable one to replicate the
cooling stimulation experimental setup without compromising the portability and in situ
characteristics of the prototype.
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