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Abstract: The 3rd Generation Partnership Project (3GPP) narrowband Internet of Things (NB-IoT)
over non-terrestrial networks (NTN) is the most promising candidate technology supporting 5G
massive machine-type communication. Compared to geostationary earth orbit, low earth orbit
(LEO) satellite communication has the advantage of low propagation loss, but suffers from high
Doppler shift. The 3GPP proposes Doppler shift pre-compensation for each beam region of the
satellite. However, user equipment farther from the beam center has significant residual Doppler
shifts even after pre-compensation, which degrades link performance. This study proposes residual
Doppler shift compensation by adding demodulation reference signal symbols and reducing satellite
beam coverage. The block error rate (BLER) data are obtained using link-level simulation with the
proposed technique. Since the communication time provided by a single LEO satellite moving fast
is short, many LEO satellites are necessary for seamless 24-hour communication. Therefore, with
the BLER data, we analyze the link budget for actual three-dimensional orbits with a maximum
of 162 LEO satellites. We finally investigate the effect of the proposed technique on performance
metrics such as the per-day total service time and maximum persistent service time, considering the
number of satellites and the satellite spacing. The results show that a more prolonged and continuous
communication service is possible with significantly fewer satellites using the proposed technique.

Keywords: wireless communications; Internet of Things; non-terrestrial networks; doppler shift;
NB-IoT; LEO satellite

1. Introduction
1.1. Research Background

The Internet of Things (IoT) market is expected to grow at an average annual rate
of 30% [1]. In particular, the narrowband Internet of Things (NB-IoT) has excellent po-
tential for development as a 5G IoT standard technology. The NB-IoT currently connects
100,000 devices and must improve its performance to meet the requirement for 5G commu-
nication [2,3]. Improvements in satellite communications are currently attracting attention.
Satellites offer extensive coverage and are not affected by terrain obstacles [4]. The 3rd
Generation Partnership Project (3GPP) is considering new radio (NR)-based non-terrestrial
networks (NTN) for 5G activation and expansion. The 3GPP conducted a study on this
topic in Release 15 [5], and a further study regarding IoT and enhanced machine type
communication (eMTC) support for NTN was conducted in Release 17 [6,7]. The satellites
discussed by the 3GPP include geostationary earth orbit (GEO) and low earth orbit (LEO)
satellites. Satellites in LEO have the advantage of a shorter propagation delay than those in
GEO; therefore, research on LEO satellites is being conducted actively. In particular, interest
in LEO satellites has increased with the advent of Falcon 9, a reusable space launcher
developed by SpaceX [8,9]. In conventional satellite communications, ground stations use
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parabolic antennas. However, since a parabolic antenna has a large volume, research on
beamforming through a phased array antenna is being conducted [10–12].

Two problems must be addressed for LEO satellites to communicate with the NB-IoT.
The first is a high Doppler shift. Unlike GEO satellites, LEO satellites orbit the Earth at
high speeds when viewed from the Earth, causing high Doppler shifts to occur when
communicating with them. This increases the carrier frequency offset, making it difficult
for the receiver’s channel estimation [13–15]. Traditional LEO satellite communications
involve a single communication link with the gateway. The global navigation satellite
system (GNSS) determines the satellite’s position and calculates the Doppler shift, making
compensation possible [16–18].

However, it is not easy to apply these methods to NB-IoT uplinks that use single carrier
frequency division multiple access (SC-FDMA) [15,19]. SC-FDMA is a technology that
bundles multiple carriers together. Because the bundled carrier has a single frequency but
combines signals with different Doppler shifts, compensating for the individual Doppler
shifts is challenging.

The second problem in data rate reduction is due to the long round-trip time (RTT).
Among current NTN target performance scenarios, IoT connectivity requires a data rate
of 10 kbps or more [20]. Still, it is challenging to meet the requirement because of the
current long RTT. In 3GPP Release 17 [7], there is no consensus on a solution to improve
throughput due to the battery life problem caused by GNSS. Therefore, this study shows
the achievable throughput in the scenarios specified.

1.2. Related Work

The 3GPP considers common Doppler shift pre-compensation to solve the high
Doppler shift [21]. This method offsets the same frequency for the received signal from all
devices within the satellite beam coverage. Here, the frequency is estimated using the signal
from the coverage center. Thus, the user equipment (UE) at the coverage edge suffers from
a large residual Doppler shift even after the common Doppler shift compensation. The re-
ceiver must compensate for this to enable communication in the beam coverage. Currently,
the residual Doppler shift compensation for NB-IoT uplinks ranges up to approximately
950 Hz [22,23].

The 3GPP proposes residual Doppler shift values for each satellite altitude and beam
diameter. Table 1 summarizes the maximum Doppler shift and the residual Doppler shift
after pre-compensation when an LEO satellite is at an altitude of 600 km [21]. The smallest
residual Doppler shift they specify is 1.05 ppm for a beam diameter of 50 km, which
amounts to 2100 Hz for the center frequency of 2 GHz. Therefore, additional solutions are
needed to counterbalance the residual Doppler shift in NB-IoT receivers.

Table 1. Maximum Doppler shift and the residual Doppler shift after pre-compensation.

Parameter Value

Frequency band S-band (2 GHz)
Satellite altitude 600 [km]

Maximum Doppler shift 24 [ppm]
Residual Doppler shift 1.05 [ppm] for 50 km beam diameter

after 1.88 [ppm] for 90 km beam diameter
pre-compensation 15.82 [ppm] for 1000 km beam diameter

Two approaches have been studied for residual Doppler shift compensation mainly.
The first approach is reducing the beam coverage of an LEO satellite. The authors of [24,25]
solved the issue of Doppler shift compensation using the first approach. Kodheli et al. [24]
addressed the maximum residual Doppler shift of LEO satellites with resource allocation.
The system model assumes that an LEO satellite is at an altitude of 1000 km and has a
beam diameter of 200 km. The beam coverage is divided into ten areas to satisfy the
950 Hz compensation range of the NB-IoT receiver. As a result, the maximum residual
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Doppler shift in one region decreases, making it possible to compensate for. Conti et al. [25]
described the residual Doppler shift as an equation after compensating for the common
Doppler shift. After that, the maximum beam coverage size of the satellite is proposed for
each altitude of the satellite.

The second approach is increasing the compensation range for the Doppler shift of the
NB-IoT receiver. There are two methods to accomplish this in OFDM-based communication
systems [5,15,21]. The first method is to increase the subcarrier spacing (SCS). Currently,
the maximum SCS for NB-IoT is 15 kHz. The Doppler shift compensation ranges are
up to approximately 950 Hz, obtained by multiplying the SCS and frequency offset [13].
Although SCS expansion increases the compensation range [22,23], it also increases the
bandwidth. It is not suitable for an NB-IoT receiver with a narrow bandwidth.

The second method involves adding the channel estimation symbols. In the NB-IoT
standard, these are called the demodulation reference signal (DMRS) symbols. They are
arranged at regular symbol intervals, with the property that the narrower the gap, the more
accurate the channel estimation becomes. In the NB-IoT, one DMRS symbol is placed per
slot. Therefore, placing two or three DMRS symbols per slot results in a narrower spacing
and, thus, more accurate channel estimation [13].

DMRS symbol addition is also used in vehicle-to-everything (V2X) research. For
vehicles, because of their high speed, a Doppler shift occurs. A DMRS symbol is added
to solve this, which increases the receiver’s Doppler shift compensation range [26]. In
addition, [27] analyzed the performance according to the number of DMRS symbols in the
NR physical uplink control channel (PUCCH). When the UE speed is 500 km/h, adding
DMRS symbols shows a better block error rate (BLER). In my previous study, which
solved the Doppler shift by adding DMRS symbols, only BLER performance analysis was
performed according to the number of iterations [28].

In previous studies, beam coverage size reduction is a proposed method to solve the
residual Doppler shift problem. However, it does not address link performance degradation
issues. This study proposes a minimum beam coverage size that can compensate for the
residual Doppler shift calculated through 3D satellite orbits. In addition, link performance
is improved by adding DMRS symbols, and the results are analyzed by defining various
performance indicators.

1.3. Contributions and Organization

Figure 1 lists the problems and proposed resolutions for the NB-IoT uplink in LEO
satellite communication. In this paper, we apply the underlined solution in Figure 1.
Beam coverage reduction is proposed to address the residual Doppler shift. This study
defines the relationship between the beam coverage size and the residual Doppler shift.
Afterward, the maximum beam coverage size that the NB-IoT receiver can compensate for
is calculated through 3D satellite orbit simulation. Even with the proposed beam coverage
size, a residual Doppler shift exists, which degrades the link performance. In this study, we
suggest adding DMRS symbols to improve link performance. To the best of our knowledge,
previous studies have not implemented simulations using actual satellite orbits in the
NB-IoT NTN scenario.

This study improved link performance by adding DMRS symbols to reduce the
minimum number of satellites required to service NB-IoT NTN. Because LEO satellites are
fast-moving, the time to communicate with NB-IoT is short. Therefore, it is necessary to
increase communication time by deploying many satellites. However, as the number of
satellites increases, the service cost increases, so information on the minimum number of
satellites is required. In this study, STARLINK satellites are implemented through MATLAB
to find the minimum number of satellites. Satellite orbits are implemented with two-line
element (TLE) files [29]. The performance of DMRS symbol addition is verified through
link-level simulation and link budget analysis. Link-level simulations show signal-to-noise
ratio (SNR) and throughput results that satisfy BLER ≤ 0.1 [30]. Link budget analysis
analyzes the results in four metrics by calculating the link margin during the day. The
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proposed multiple DMRS symbol shows that the same performance can be achieved using
fewer satellites than a single DMRS symbol. This performance analysis method can be
utilized as technical data for designing the LEO satellite communication system.

Figure 1. Problems and solutions for the NB-IoT uplink in NTN.

The remainder of this paper is organized as follows. Section 2 describes the system
model. The NTN architecture and NB-IoT uplink transmission method are explained, and
the channel model is described. Section 3 describes the residual Doppler shift problem
and the link performance problem. A solution to the residual Doppler shift problem is
presented in Section 4 . Section 5 describes the evaluation metrics for performance analysis.
Section 6 provides link-level and link budget simulation implementation and the numerical
results. In Section 7 , the conclusion and future work directions are presented.

2. System Model
2.1. NTN Architecture

Figure 2 shows the architecture of the NB-IoT NTN with service and feeder links. In
this study, we apply the LEO-based Earth fixed cell scenario, where NTN provides a fixed
service cell for a specific location on Earth for a particular amount of time. In addition to
the LEO-based Earth-fixed cell scenario, 3GPP has presented an LEO-based Earth-mobile
cell scenario, in which NTN provides a cell moving in satellite orbit [21]. The reasons
for applying the LEO-based Earth fixed cell scenario in this study are as follows. (i) The
Earth-fixed cell scenario is more straightforward than the Earth-moving cell scenario, which
requires frequent handovers; (ii) NB-IoT communication would be required at a specific
time, such as a notification message transfer. Therefore, rather than finding a new satellite
that can communicate each time, we decided that an LEO-based Earth-fixed cell scenario
that can communicate with the same satellite every time is better.

In this study, the reference position is latitude 36.35080◦ N, longitude 127.30122◦ E.
The satellite orbits are implemented through 3D satellite simulation. The orbit can be
determined through the TLE file and in this study, the Starlink satellite TLE file is used [29].
In real Starlink satellites, the Ka- and Ku-bands are used [8]. We utilized only orbital
information from the Starlink satellite’s TLE file because 3GPP NB-IoT NTN in the S-band
is currently under research and has not yet been commercialized. Therefore, the study
was conducted using the parameters presented in the 3GPP document, not the Starlink
parameters [21]. We also adopted Starlink satellite orbits because they are currently the
most known satellites and have a relatively large number of satellites and orbits compared
to other commercial satellites, allowing us to experiment with various orbits. Satellite and
UE parameters are summarized in Tables 2 and 3.
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Figure 2. Architecture of the NB-IoT NTN.

Table 2. LEO satellite parameters.

Parameter Value

Satellite altitude 552 [km]
Satellite effective isotropic

radiated power (EIRP) 34 [dBW/MHz]
Satellite antenna gain 30 [dBi]

Equivalent satellite antenna aperture 2 [m]
Antenna gain-to-noise-temperature (G/T) 1.1 [dB/K]

Table 3. UE parameters.

Parameter Value

Frequency band ( fc) S-band (2 GHz)
Antenna type and

configuration
(1,1,2) with omnidirectional

antenna element
Polarization Linear: +/− 45◦X− pol

Antenna temperature 290 [K]
Noise figure 7 [dB]

Transmit power 200 [mW]
Antenna gain 0 [dBi]

We consider the following assumptions regarding the architecture of the NB-IoT NTN.
(i) The target UE is located within the spot beam; (ii) the satellite can steer beams towards
fixed points on earth using beamforming techniques; (iii) assuming that the feeder and
the inter-satellite link are ideal, the service link performance is analyzed; (vi) a minimum
elevation angle of 10 degrees is considered for the UE and the satellite.

2.2. NB-IoT Uplink Transmission Scheme

In 3GPP Release 13, a cellular-based NB-IoT standard to support low-cost, low-power
UE is confirmed. NB-IoT is a long-distance IoT communication technology that uses
the long-term evolution (LTE) licensed band. LTE architecture is heavily reused in NB-
IoT, including the numerologies, downlink orthogonal frequency-division multiple access
(OFDMA), uplink single-carrier frequency-division multiple access (SC-FDMA), and other
features. NB-IoT uplink channels include a narrowband physical uplink shared channel
(NPUSCH) and a narrowband physical random access channel (NPRACH) [19]. This
system model considers only the NPUSCH.
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The NB-IoT SCS supports frequencies of 15 kHz and 3.75 kHz, setting bandwidths up
to 180 kHz. The NB-IoT adds a resource unit (RU) concept to manage resources efficiently.
One RU is the transport block size (TBS), which is defined by setting the number of tones
and slots. Figure 3 shows a configurable transport block (TB) in an NPUSCH. In this study,
the TBS is set by defining 12 tones and two slots as one RU. Figure 4 depicts the NB-IoT
resource grid: an enlarged view of a TB configured with one DMRS symbol per slot. The
NPUSCH format determines the number of DMRS symbols. Two NPUSCH formats are
defined in [19,31]. Format 1 is used for general NB-IoT data transmission and has one
DMRS symbol per slot. Format 2 uses a single tone and specifies three DMRS symbols per
slot. In this study, NPUSCH Format 1 is selected.

Figure 3. NB-IoT uplink frame structure (NPUSCH format 1).

Figure 4. NB-IoT resource grid (1 slot = 0.5 ms, 1 tone = 15 kHz).

HARQ is a hybrid type of error control method for forward error correction (FEC) and
automatic repeat request (ARQ) methods [31,32]. FEC is an error correction technique that
transmits a message by adding a redundancy bit and corrects an error when the data is lost.
ARQ sends an acknowledgment (ACK) if there is no error when receiving data. The receiver
sends a negative acknowledgment (NACK) if an error occurs to request retransmission.

HARQ is a hybrid method that combines the advantages of both methods. Incremental
redundancy HARQ (IR-HARQ), currently used in NB-IoT, checks for errors every time one
TB is transmitted. If an error occurs, a retransmission is requested by sending a NACK [33].
IR-HARQ transmits new information that includes an updated redundancy version (RV)
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value each time for retransmission. RV can be viewed as basic information, and additional
bits are transmitted to estimate the data.

In LTE, the RV is divided into {0, 2, 3, 1}, allowing four repetitions. The RV is di-
vided and sent because the receiver stores the received data in a buffer before sending
the NACK and compares it with the retransmitted data to correct the error. Unlike LTE,
NB-IoT is divided into {0, 2}. Instead, it corrects data errors by allowing an increased
NRep. In the NB-IoT uplink, data transmission is possible by increasing NRep up to 128 [34].
However, because NTN has a long RTT, the data rate decreases as NRep increases. There-
fore, in this study, the maximum analyzed value of NRep is 2. NRep is the number of
retransmissions, including the first transmission. For example, if NRep is 2, it is a value of
one-time retransmission.

The HARQ process is a technique used in a system using HARQ, and increasing
the number of HARQ processes improves the throughput of a system with a long RTT.
The RTT of the satellite set in this study is about 25.77 ms. Currently, in the 3GPP, the
maximum number of HARQ processes of the NB-IoT NTN is proposed to be two [7,34,35].
Figure 5 illustrates the effect of varying the number of HARQ processes. Figure 5a is a
communication method with 1 HARQ process. When the number of HARQ processes is
one, 1 TB (1 ms) is transmitted during RTT and not sent for 24.77 ms. Therefore, there
is a delay until the subsequent TB is transmitted. Figure 5b is a communication method
with 2 HARQ processes. If the number of HARQ processes is two, 2 TBS are transmitted
in 25.77 ms and the throughput is doubled compared to using a single HARQ process.
Increasing the number of HARQ processes raises the problem of growing memory buffer
size and decreasing battery life. Therefore, the increase in HARQ processes is not considered
in the current NB-IoT NTN system [7]. This study analyzes the throughput results by
implementing a simulation including long RTT.

(a)

(b)

Figure 5. Comparison of the number of HARQ processes. (a) One HARQ process, (b) Two HARQ processes.

2.3. Channel Model

The theoretical free-space path loss is given by

PLFS = 32.45 + 20 log10 fc + 20 log10 d, (1)
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where fc is the center frequency in MHz and d is the distance in km. The distance between
the satellite and the UE is shown in Figure 6, and d is expressed as follows [5]:

d =
√

R2
E sin α2 + h2

0 + 2h0RE − RE sin α, (2)

where RE (6371 km) is the Earth’s radius, α (>10◦) is the elevation angle, and h0 is the
altitude of an LEO satellite. This study calculates the distance between the satellite and the
UE in one day with a sample time of 30 s. Table 4 summarizes the available communication
time in the set system model. Figure 7 shows the free space path loss for an elevation angle
of more than 10 degrees.

Figure 6. Slanted range d between a satellite and UE determined by RE, h0, and α.

Figure 7. Free space path loss between the reference position (latitude 36.35080◦ N, longitude
127.30122◦ E) and a satellite receiver over simulation time based on the actual satellite orbit data on
22 February 2022.
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Table 4. Communication available time with STARLINK-1698 on 22 February 2022.

Source Target Start Time End Time Duration [s]

Reference
Position STARLINK-1698 05:01:30 05:09:00 450

Reference
Position STARLINK-1698 06:42:30 06:47:30 300

Reference
Position STARLINK-1698 11:44:30 11:51:00 390

Reference
Position STARLINK-1698 13:24:00 13:30:30 390

The path loss can be calculated as follows:

PL = PLFS + PLA + PLSM + PLSL + PLAD, (3)

where PLFS is the free space path loss, PLA is atmospheric loss, PLSM is the shadowing
margin, PLSL is scintillation loss, and PLAD is additional loss [21].

As an LEO satellite link is affected by a high Doppler shift, it must also be considered
in the channel model. The Doppler shift at the LEO satellite receiver can be calculated as
follows [15]:

fd = fc ×
v cos α

c
, f (1)d,max = fc ×

v
c

, (4)

where v is the receiver speed, c is the light speed, and α is the angle between the transmitter
and receiver. The maximum Doppler shift of the LEO satellites considered in this study
is calculated through simulation. Figure 8 shows a time-varying Doppler shift between
the reference position and a satellite receiver moving along with the actual orbit data.
NB-IoT uplink communication is possible only by the satellite receiver compensating for
the simulated Doppler shift. The 3GPP proposes pre-compensation to compensate for
Doppler shift with the UEs deployed within a satellite beam coverage. The maximum
residual Doppler shift with the UEs after pre-compensation is calculated by

fresidual [Hz] = fre f erence − fedge, (5)

where fre f erence is the common Doppler shift that is equal to the Doppler shift with the
reference position and fedge is the Doppler shift with the UE at the edge of beam coverage.
Therefore, the residual Doppler shift of all the UEs are less than or equal to fresidual . From
Equation (5), we can find that the maximum residual Doppler shift depends on the beam
size. This is also observed in Table 1, where the Doppler shift is presented with a unit of
ppm that can be converted to Hz by

fd[Hz] =
fd[ppm]× fc

106 . (6)

In addition to the path loss and Doppler shift model, we present the fading channel
model for NB-IoT uplink NTN. The 3GPP studied fading channel models ranging from
0.5 to 100 GHz in TR 38.901 [36]. Among the fading channel models, the tapped delay line
(TDL)-D model in an outdoor environment with a line of sight is applied to this study.
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Figure 8. Doppler shift between the reference position (latitude 36.35080◦ N, longitude 127.30122◦ E)
and a satellite receiver over a simulation time based on the actual satellite orbit data on
22 February 2022.

3. Problem Statement
3.1. Residual Doppler Shift

In LEO satellite communications, the problem of residual Doppler shift compensation
must be addressed. In 3GPP, residual Doppler shift values after pre-compensation are
tabulated. The parameters required for this study are given in Table 1, and we try to
compensate for the residual Doppler shift value of 1.05 ppm [21]. Currently, the maximum
Doppler shift an NB-IoT receiver can compensate for is around 950 Hz [22,23]. In this
section, we formulate the residual Doppler shift compensation problem of NB-IoT NTN by
calculating the Doppler shift compensation range through the formula.

The range of the Doppler shift compensation depends on the frequency offset, which
is calculated as follows [13]:

ε̂ =
NFFT × θ̂

2π × L
, (7)

where NFFT is the fast Fourier transform (FFT) size (128) and θ̂ is the phase difference
between channel estimation symbols. L is the number of time samples between channel
estimation symbols. Here, the channel estimation symbol is expressed as a DMRS symbol
in the NB-IoT. L is calculated as follows [13]:

L =
n

∑
i=1

(Lcp(i) + NFFT), (8)

where n is the number of symbols between the DMRS symbols and Lcp(i) is the number
of cyclic prefix (CP) time samples of the i-th symbol. CP is a guard interval that removes
interference between previous symbols [37]. In the NB-IoT, there are 10 CP time samples in
the first symbol and 9 in the rest. As a result, L for the NB-IoT is 960-time samples.

The NB-IoT uplink modulation technique is quadrature phase shift keying (QPSK).
Therefore, the maximum phase difference between DMRS symbols is π. Using Equation (7),
ε̂ is 1/15. The maximum Doppler shift for which the NB-IoT receiver can compensate is
calculated as follows [13]:

f (2)d,max = SCS× ε̂, (9)

where SCS is 15 kHz. The value of f (2)d,max is 1 kHz based on Equation (9). This value is the
theoretical maximum possible Doppler shift compensation. Considering this, 3GPP uses
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Equation (4) to say that compensation is possible up to about 950 Hz when v is 500 km/h.
The residual Doppler shift to be compensated for is about 2100 Hz using Equation (6).
As a result, current NB-IoT receivers cannot compensate for the residual Doppler shift
of 2100 Hz. Therefore, additional solutions are needed to compensate for the residual
Doppler shift.

3.2. Link Performance

NB-IoT is a low-power system with a small EIRP [38]. Therefore, link performance is
essential for communicating with LEO satellites farther than the base station. LEO satellites
have a Doppler shift, which further degrades the link performance of NB-IoT. Terrestrial
NB-IoT improves link performance through retransmission using HARQ [39]. However,
NB-IoT NTN has difficulty tolerating many retransmissions due to the long RTT of LEO
satellites. In particular, for LEO satellites, the communication time varies depending on
the orbit and the communication time is short and variable. Therefore, service providers
are trying to establish links through multiple LEO satellites to solve the LEO satellite
communication problem. Although an analysis of the minimum number of satellites is
required to establish a link, there are not many studies for NB-IoT NTN [40,41]. Therefore,
a new method to improve the link performance in NB-IoT NTN is required, and an analysis
of the number of satellites, applying satellite orbit, is required. In addition, since NB-IoT
periodically transmits data such as notification messages, it is also necessary to analyze the
communication time for varying numbers of LEO satellites.

4. Proposed Solution
4.1. Reduction in Beam Coverage

Section 3.1 calculated the NB-IoT receiver range. Currently, this study’s residual
Doppler shift that needs to be compensated for is 2100 Hz [21]. This study proposes
methods for solving the problem. The proposed method sets the beam diameter to be
smaller than the beam diameter suggested by 3GPP. Although this method is simple, the
benefits of satellites are lost as the coverage size becomes smaller. Therefore, proper size
is essential. This study expresses the relationship between beam coverage and residual
Doppler shift as an equation. In addition, beam coverage that satisfies 950 Hz or lower is
calculated through satellite orbit simulation.

Equation (5) described in Section 2.3 is expressed in detail as follows:

fresidual = fre f erence − fedge

= fc ×
v
c
× |(cos θ1 − cos θ2)|, (10)

where θ1 is the angle between the satellite and the reference position. θ2 is the angle between
the satellite and the target UE. The maximum residual Doppler shift occurs when the angle
formed with the reference position is 90 degrees. The equation for calculating the beam
coverage is as follows:

fmax ≥ fc ×
v
c
× |(− cos θ2)|, θ1 = 90◦

≥ fc ×
v
c
× R√

R2 + h2
0

R ≤
√√√√ h2

0
v× fc

c× fmax

2
− 1

, (11)

where R is the radius of the beam coverage, h0 is the satellite’s altitude, and fmax is the
maximum residual Doppler shift. Equation (11) is calculated assuming that the Earth and
the satellite are in two parallel lines.
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This paper calculates the maximum coverage size the NB-IoT receiver can compensate
for through simulation. Figure 9 shows the simulation results. Figure 9a shows the results
of the residual Doppler shift in each target UE. During the simulation time, the residual
Doppler shift is satisfied [0.95 −0.95], and the beam diameter is 30 km. Figure 1b shows
the target position applied in Figure 9a.

(a)

(b)

Figure 9. Doppler shift and maximum coverage size compensable by NB−IoT receivers. (a) Residual
Doppler shift, (b) Target position

4.2. Addition of the DMRS Symbol

By reducing the beam diameter, the residual Doppler shift of 2100 Hz is reduced to
950 Hz. However, this method also has its problems. The required SNR increases because
residual Doppler shift is still present, resulting in lower link performance than without the
Doppler shift. Cellular NB-IoT improves link performance through excessive repetition.
However, if the NB-IoT is repeated excessively, the time delay increases and the data rate
decreases. Therefore, we try to solve this problem by adding more DMRS symbols instead
of increasing the number of repetitions. The DMRS symbol addition per slot suppresses
link performance degradation even with residual Doppler shifts.

We suggest increasing the number of DMRS symbols (Ndmrs) per slot to two or three.
Figure 10a shows the NB-IoT resource grid with two DMRS symbols per slot, where the
DMRS symbols are arranged in the fourth and seventh symbols. This arrangement is
because the CP length of the first symbol is longer than that of the other symbols. Therefore,
placing the DMRS symbol on the seventh symbol gives better results in terms of link
performance. Figure 10b shows a resource grid of three DMRS symbols per slot. Adding
this shows that the performance is suitable only when the number of DMRS symbols is
appropriately increased.
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(a) (b)

Figure 10. Proposed NB-IoT resource grid. (a) Two DMRS symbols per slot, (b) Three DMRS symbols
per slot.

5. Performance Analysis

In this section, evaluation metrics used for performance analysis are presented. In
link-level simulation, BLER and throughput are used. Furthermore, link margin, impossible
communication time, and total communication available time are defined for link budget
calculation and analysis.

5.1. Block Error Rate (BLER)

BLER, used for link-level performance evaluation, is calculated as follows:

BLER =
f ailure TBS
total TBS

, (12)

where total TBS is the total number of TBS sent and failure TBS is the number of TBS that
failed to transfer. This study denotes an SNR that satisfies BLER ≤ 0.1 as SNRrequired [30].

5.2. Throughput

Throughput, considering RTT of LEO satellites, is calculated as follows:

Throughput(bps) =
TBS

RTT + TTI
, (13)

where RTT is the time taken for the signal sent by the UE to arrive at the gateway via the
satellite, assuming 25.77 ms [21]. The transmission time interval (TTI) depends on the
number of RUs, a unit for NPUSCH scheduling. TBS is the total number of transmitted bits
and is calculated as follows:

TBS(bits) = (TRE − DMRSRE)× NBIT , (14)

where TRE is the total number of resource elements (REs), DMRSRE is the total number of
REs in the DMRS symbols, and NBIT is the number of bits per RE.

5.3. Link Margin

The link budget is typically calculated as follows [42,43]:

SNRreceived(dB) = EIRP− (PLFSL + PLA + PLSM + PLSL) +
G
T
− k− B, (15)

where SNRreceived denotes the received SNR in dB for a receiver, EIRP is the effective
isotropic radiated power, G

T is the antenna-gain-to-noise-temperature, and k is the Boltz-
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mann constant, which is −228.6. B is the bandwidth. Units are dBW for EIRP, dB/K for G
T ,

dBW/K/Hz for k, and dBHz for B. Therefore, the link margin is calculated as follows:

LMi = SNRreceived − SNRrequired. (16)

This study calculates LMi every i-th sample time of 30 s through satellite orbit simula-
tion for 24 h. Let us define an indicator function 1{LMi<0} = 1 if LMi < 0 and zero otherwise.
We assume a communication outage for the i-th sample time of 30 s corresponding to
LMi < 0. We define the per-day outage time ratio as follows:

POTR(%) =
30 sec× Σi1{LMi<0}

24× 3600 sec
× 100. (17)

Next, we define the per-day total service time in h with an indicator function 1{LMi≥0} = 1
if LMi ≥ 0, and zero otherwise as follows:

TS =
30 sec× Σi1{LMi≥0}

3600
. (18)

We define the maximum persistent service time (MPST) in h as follows:

MPST =
30

3600
×max(i2 − i1) such that LMi ≥ 0 f or all i ∈ [i1, i2], (19)

where, i, i1, and i2 are the time indices of sampling the link margin data. With a similar
expression, we define the maximum persistent outage time (MPOT) in h as follows:

MPOT =
30

3600
×max(i2 − i1) such that LMi < 0 f or all i ∈ [i1, i2]. (20)

The metrics defined above are essential for IoT NTN. Furthermore, it is crucial to
estimate the minimum number of satellites needed to meet the target value of the metrics,
which are provided in the following section.

6. Numerical Results
6.1. Link-Level Simulation

This section provides simulation results of uplink NB-IoT performance in the LEO
satellite communication system. We implement a link-level simulator for an NB-IoT
NPUSCH. The 3GPP TDL-D channel model [36] is adopted and the maximum Doppler
shift is set to 950 Hz. The simulator outputs the BLER and throughput results with the
SNR. NRep is set to 2. The two slots comprise one TB with a transmission time of 1 ms.
The TBS is set to 120 bits [34]. The NB-IoT receiver checks for errors when it receives one
TB. If an error occurs, retransmission is requested; otherwise, new data is requested. The
simulation reports the BLER and throughput results when 5000 TBS have been transmitted.
The link-level simulation parameters are summarized in Table 5.

Figure 11a shows BLER curves for zero residual Doppler shift. One DMRS symbol
has the lowest required SNR for satisfying BLER ≤ 0.1 [30]. However, in Figure 11b, the
link performance deteriorates due to the residual Doppler shift of 950 Hz. The distance
between DMRS symbols determines the NB-IoT receiver Doppler shift compensation range;
the more significant the Doppler shift, the greater the influence of the DMRS symbols.
Therefore, in the residual Doppler shift calculated in this study, the performance is good at
two DMRS symbols. Terrestrial network NB-IoT has improved link performance through
many iterations. However, in NB-IoT NTN, many reiterations are impossible due to
time delays. Therefore, DMRS symbol addition can be a practical solution to improve
BLER performance.
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Table 5. Link-level simulation parameters.

Parameter Value

FFT size 128
SCS 15 [kHz]

Multiple access SC-FDMA
Modulation QPSK

Channel coding 1/3 Turbo code
TBS 120 bits

Fading channel model 3GPP TDL-D
Residual Doppler shift 0, 950 [Hz]

NRep 2
Bandwidth 180 [kHz]

(a) (b)

Figure 11. Uplink transmission BLER result for varying numbers of DMRS symbols. (a) Doppler shift
= 0 Hz, (b) Doppler shift = 950 Hz.

Figure 12 shows BELR performance results according to TBS, illustrating the advan-
tages and disadvantages of adding DMRS symbols instead of data symbols. In Figure 12a,
when Ndmrs = 1, a possible SNR satisfying BLER ≤ 0.1 cannot be obtained owing to an
excessively high Doppler shift [30]. On the contrary, DMRS symbol addition can obtain
a feasible SNR thanks to its improved Doppler compensation range. Despite increased
overhead, it achieves a much higher data rate than Ndmrs = 1. Figure 12b plots BLER curves
when more bits (TBS = 328 bits) are sent than the maximum number of bits that can be sent
with Ndmrs = 3. Here, Ndmrs = 3 yields the worst BLER because the overhead is too large
to convey the transport block; rather, Ndmrs = 2 shows the best BLER. In conclusion, the
appropriate number of DMRS symbols should be selected according to the Doppler shift
and TBS.
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(a) (b)

Figure 12. Uplink transmission BLER result according to TBS with various numbers of DMRS
symbols. Doppler shift = 950 Hz, (a) TBS = 296 bit, (b) TBS = 328 bit.

Figure 13 plots throughput curves of NB-IoT NTN with NRep = 2 for one and two
HARQ processes. Compared to the terrestrial NB-IoT link, the NTN uplink transmission
involves a much longer RTT of 25.77 ms. Therefore, in Figure 13a, the throughput of one
HARQ process is limited to 2.3 kbps. Figure 13b shows that the maximum throughput
doubles up to 4.6 kbps with the help of the two HARQ processes. Among current NTN
target performance scenarios, IoT connectivity requires a data rate of 10 kbps or more [20].
Although increasing the number of HARQ processes can satisfy the requirement, it is
not preferred due to the increase in the data buffer and the risk of shortening battery life.
Therefore, it is necessary to analyze this issue in future studies.

(a) (b)

Figure 13. Uplink throughput for different numbers of DMRS symbols per slot with one or two
HARQ processes. (a) One HARQ process, (b) Two HARQ processes

6.2. Link Budget Simulation

The link budget simulation shows the results for one day using Equation (16). SNRrequired
is the minimum SNR that satisfies BLER≤ 0.1 and SNRrequired depends on Ndmrs. Figure 11b
shows the minimum SNRrequired for different Ndmrs; 3.7 dB for Ndmrs = 1, 2 dB for Ndmrs = 2
and 2.3 dB for Ndmrs = 3. SNRreceived is calculated through Equation (15) and the parameters
used in the simulation are summarized in Table 6. The link budget simulation calculates
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LMi every 30 s through a 3D satellite orbit simulation implemented in MATLAB. The LEO
satellite used in this study is a STARLINK satellite and the STARLINK satellite orbit is
implemented using the TLE file. TLE references the North American Aerospace Defense
Command (NORAD) [29]. To see the effect of adding DMRS symbols, we set the number of
satellites and the number of satellite orbits as variables. The number of satellites is set from
1 to 27 per orbit, and simulations are performed in 1 and 6 orbits. This study assumes that
a maximum of 27 satellites can be deployed in one orbit by setting the minimum interval
for continuous communication of LEO satellites.

Table 6. Link budget simulation parameters.

Parameter Value

Transmit power −6.99 dBW 200 mW ->10log(0.2)
Transmit antenna gain 0 dBi Antenna gain

EIRP (effective isotropic
radiated power) −6.99 dBW Transmit power + antenna

gain
Atmospheric loss 0.07 dB [21]

Shadow fading margin 3.00 dB
Scintillation loss 2.20 dB
Polarization loss 0.00 dB
Additional losses 0.00 dB

Boltzmann’s constant [k] −228.6 dBW/K/Hz
Bandwidth [B] 52.55 dBHz

The inter-satellite spacing is set in two ways according to the arrangement method
of the LEO satellites. In the first method, called fixed-spacing, the inter-satellite spacing
does not change with the number of satellites. Inter-satellite spacing is set as the interval
when there are 27 satellites equally spaced in one orbit. The second method, called variable-
spacing, is that as the number of satellites increases, the spacing between satellites becomes
narrower, and the spacing is the same as in the first method when there are 27 satellites. In
other words, the satellites are uniformly filled around the perimeter of an orbit.

Figure 14 shows the implemented 3D satellite orbit. Figure 14a shows 27 satellites
“STARLINK-1671”. The spacing between each satellite is the same, and as the number of
satellites decreases, the spacing increases. Figure 14b shows 162 satellites “STARLINK-
1671”, “STARLINK-1298”, “STARLINK-2498”, “STARLINK-1625”, “STARLINK-2299”,
and “STARLINK-1139” [29]. The time set in the simulation is from 22 February 2022 to
23 February 2022, and all satellites have the same parameters.

(a) (b)

Figure 14. 3D satellite orbits implemented in MATLAB [44]. (a) one orbit (27 satellites), (b) six orbits
(162 satellites).
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Figure 15 shows the POTR result. The lower POTR can be achieved using fewer satellites
when using variable-spacing rather than fixed-spacing. Therefore, performance analysis is
focused on variable-spacing. Figure 15a presents the result of one orbit. In one orbit, the
simulation is implemented by adding three satellites each. Increasing the number of DMRS
symbols improves the performance of POTR by about 5%. However, in one orbit, even if the
number of satellites is increased, it is more than 70%, so it is difficult to give a significant
meaning. Therefore, in LEO satellite communication, the performance of one orbit is not
good. Figure 15b presents the result of six orbits. At six orbits, the number of satellites is
up to 162. The simulation is performed in increments of 12 total satellites (two satellites
per orbit). First of all, when Ndmrs = 1, the minimum POTR is 1.87% and more orbits are
needed to satisfy 0% POTR. On the other hand, at Ndmrs = 2, 3, the minimum POTR is 0%,
which shows good performance. The proposed method satisfies POTR of 1% or less when
using at least 102 satellites (17 satellites per orbit). The proposed DMRS symbol addition
shows lower POTR using fewer satellites.

(a) (b)

Figure 15. The per−day outage time ratio for different numbers of DMRS symbols per slot. (a) one
orbit, (b) six orbits.

Figure 16 shows the maximum persistent service time (MPST) for the different num-
bers of DMRS symbols per slot. The number of DMRS symbols has little effect on the MPST
performance of the fixed-spacing. However, it affects the MPST of the variable-spacing.
In Figure 16a, the result of one orbit, the maximum MPST is 2.5 h for Ndmrs = 1 and the
maximum MPST for Ndmrs = 2, 3 are more than 3 h. In one orbit, there is little effect of
adding DMRS symbols. Figure 16b shows the result of six orbits, which offers a large differ-
ence from one orbit. The maximum MPST is 12 h for Ndmrs = 1 and 24 h for Ndmrs = 2, 3.
In addition, the maximum MPST for Ndmrs = 2, 3 can be obtained using 114 satellites (19
satellites per orbit). On the other hand, the MPST for Ndmrs = 1 cannot exceed 12 h, even
for 162 satellites. As a result, the maximum MPST is obtained using fewer satellites.



Sensors 2022, 22, 7097 19 of 22

(a) (b)

Figure 16. The maximum persistent service time (MPST) for different numbers of DMRS symbols
per slot. (a) one orbit, (b) six orbits.

The MPST for Ndmrs = 2, 3 increases as the number of satellites increases, and 114 satel-
lites in operation achieve the maximum MPST. However, if the number of satellites in-
creases by more than 114, MPST will be reduced. Satellite intervals narrow when the
number of satellites increases, and if the spacing is too narrow, the performance decreases,
depending on the communication situation. Therefore, research on LEO satellite orbit is
required for more stable communication.

Figure 17 shows the maximum persistent outage time (MPOT). The MPOT analysis
is based on variable-spacing because the performance is better when applying variable-
spacing than fixed-spacing. In Figure 17a, the results of one orbit, the minimum MPOT is
10.12 h for Ndmrs = 1, and the minimum MPOT for Ndmrs = 2, 3 are less than 9.9 h. As a
result, in one orbit, it is difficult to see the performance difference of MPOT according to
the proposed method. Figure 17b shows the results in six orbits. Compared to Figure 17a,
MPOT shows better results. The minimum MPOT is 0.1 h for Ndmrs = 1 and the minimum
MPOT for Ndmrs = 2, 3 are zero h. Therefore, the proposed method obtains the minimum
(zero h) MPOT. There is also a difference between fixed-spacing and variable-spacing. The
variable-spacing allows using fewer satellites to achieve good performance. For example,
the number of satellites to meet less than 0.1 h is 90 Ndmrs = 2, 3 and 162 in Ndmrs = 1.
Although the performance difference is not significant in the MPOT, it is possible to achieve
similar performance using a smaller number of satellites.

Figure 18 presents the TS result. When applying variable-spacing, not fixed-spacing,
one can use fewer satellites. For example, in Figure 18a, when Ndmrs = 2, the number of
satellites that satisfy TS > 5 h is 12 in variable-spacing and 18 in fixed-spacing. Variable-
spacing can save about six satellites. Therefore, the performance according to Ndmrs is
analyzed in variable-spacing. In Figure 18a, the results of one orbit, the maximum TS is 5 h
for Ndmrs = 1 and the maximum TS for Ndmrs = 2, 3 are more than 6.5 h. Using the method
suggested, one can communicate for 1.5 h longer. The time of 6.5 h is 27% out of 24 h,
and 5 h is 20%, which is about a 7% improvement in performance. However, about 73%
of the time one is still unable to communicate, so the impact is insignificant in one orbit.
Figure 18b presents the TS result in six orbits. The maximum TS is 23.55 h for Ndmrs = 1,
and the maximum TS for Ndmrs = 2, 3 are 24 h. TS does not make a large difference, but the
proposed method performs better with fewer satellites. For example, when Ndmrs = 2, 3, the
maximum (24 h) TS is possible using 114 satellites, but when Ndmrs = 1, the maximum TS is
23.55 h using 162 satellites. By adding DMRS symbols, one can achieve good performance
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with 48 fewer satellites. As a result of the analysis in this study, the addition of DMRS
symbols shows that it can satisfy existing performance standards by using fewer satellites.

(a) (b)

Figure 17. The maximum persistent outage time (MPOT) for different numbers of DMRS symbols
per slot. (a) one orbit, (b) six orbits.

(a) (b)

Figure 18. The per−day total service time for different numbers of DMRS symbols per slot. (a) one
orbit, (b) six orbits.

7. Conclusions

In this study, to improve NB-IoT coverage, we considered the NB-IoT NTN structure,
which assumes that the LEO satellite is transparent. We formulated the residual Doppler
shift compensation problem in LEO satellite communications. The residual Doppler shift
is calculated by realizing the actual STARLINK satellite in 3D. We calculated the residual
Doppler shift related to the beam coverage size. We proposed a beam diameter that fits
the NB-IoT receiver compensation range. Since the NB-IoT device has a small EIRP, DMRS
symbol addition is proposed to improve link performance. The proposed DMRS symbol
addition avoids the degradation of link performance even in the presence of Doppler
shift. These results are presented through link-level simulation, and then link performance
results are analyzed through link budget analysis. A 3D satellite simulation is implemented
through real satellite orbits. In this study, we analyzed results such as POTR, TS, MPST, and
MPOT. We observe that just one DMRS symbol addition remarkably saves 72 satellites to
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achieve 23.55 h of service time per day. The results can offer an interesting perspective for
implementing cost-effective NB-IoT NTN. In future research, we could find ways to increase
throughput, such as the HARQ process, which is not currently considered in NB-IoT.
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