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Abstract: In order to effectively separate and extract bearing composite faults, in view of the non-
linearity, strong interference and unknown number of fault source signals of the measured fault
signals, a composite fault-diagnosis blind extraction method based on improved morphological
filtering of sin C function (SMF), density peak clustering (DPC) and orthogonal matching pursuit
(OMP) is proposed. In this method, the sin C function is used as the structural element of the
morphological filter for the first time to improve the traditional morphological filter. After the
observation signal is processed by the improved morphological filter, the impact characteristics of
the signal are improved, and the signal meets the sparsity. Then, on the premise that the number
of clustering is unknown, the density peak algorithm is used to cluster sparse signals to obtain the
clustering center, which is equivalent to the hybrid matrix. Finally, the hybrid matrix is transformed
into a sensing matrix, and the signal is transformed into the frequency domain to complete the
compressive sensing and reconstruction of the signal in the frequency domain. Both simulation and
measured signal results show that this algorithm can effectively complete the blind separation of
rolling bearing faults when the number of fault sources is unknown, and the time cost can be reduced
by about 75%.

Keywords: morphological filtering; density peak clustering; orthogonal matching pursuit; sinC
function; sparse component analysis

1. Introduction

As rolling bearings are usually installed in the key position of rotating machinery,
mechanical failures are often caused by lubrication, manufacturing errors and unreasonable
forces [1,2]. In actual operation, bearing faults such as cracks, pits and spalling [3] often
occur simultaneously or in succession, which will produce group faults or multi-point
composite faults. This means that in the actual industrial manufacturing site, what is
collected by the sensor is often not a single vibration source, but the coupling of multiple
signals [4]. The above phenomena make troubleshooting very difficult. Therefore, in order
to solve this problem and improve the accuracy of modern equipment fault detection and
diagnosis, the most critical step is to separate the fault signal from the mixed signal.

Scholars generally prefer to study composite faults from the perspective of the analysis
model and signal processing, respectively. The former studied the vibration response of the
fault excitation from the mechanism and established the dynamic model to simulate the
composite fault. For example, Wu et al. [5] completed the robust diagnosis of stator/rotor
winding early faults by establishing the dynamic model of a squirrel caged induction motor.
Patel et al. [6] studied the vibration response characteristics of bearing inner and outer ring
surfaces with single and multiple faults. Wang et al. [7]. studied the dynamic characteristics
of deep groove ball-bearing composite faults through model analysis, and the results show
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that the vibration response of composite faults is the result of the coupling effect of the
vibration response of inner and outer ring faults.

The signal processing method is mainly to analyze the information collected by the
sensor. In the actual working condition, the signal picked up by the sensor is the result of
the coupling of multiple faults. Blind source separation (BSS) [8] technology can separate
multiple signal sources from mixed signals when the transmission channel is unknown.
In recent years, the continuous development of fault diagnosis technology based on blind
signal processing provided new ideas and means for solving this problem. Generally
speaking, there are two methods to solve BSS by a signal processing method, which are in-
dependent component analysis (ICA) [9,10] and sparse component analysis (SCA) [11].The
former decomposes the collected observation signals into multi-channel modal signals and
constructs the input matrix of ICA through these modal signals. Related algorithms are en-
semble empirical mode decomposition (EEMD) [12–14] or variational mode decomposition
(VMD) [15–17]. The latter mainly probed into the mixing matrix between the signal source
and the observed signal. With the development of modern sparse methods, if the sparsity
of observation signals is sufficient, the BSS problem can be regarded as the estimation
problem of the mixed matrix [18].

The premise of the ICA algorithm is that the source signals are statistically independent,
and each independent component must conform to a non-Gaussian distribution [19].
However, it is difficult for modern machinery and equipment to meet the hypothesis
of statistical independence [20–22]. In contrast, the sparsity assumption of SCA is relatively
effortless to satisfy. In a comprehensive comparison, SCA is more suitable as a method to
solve BSS.

In the research of SCA algorithm, the selection of the mixing matrix, that is, the
estimation of the number of sources, is an intractable problem. The clustering method is
the preferred solution to this problem. For example, Wang et al. [23] proposed an effective
two-stage clustering algorithm, thereby improving the estimation accuracy of the hybrid
matrix. He et al. [24] proposed an algorithm based on the improved K-means clustering
algorithm and Laplace potential function to estimate the mixing matrix. However, the
potential function method is sensitive to the division interval, and the anti-interference
ability to noise is not strong enough. In 2014, Rodriguez et al. [25] proposed a density
peak clustering algorithm. This algorithm can intuitively obtain the number of sources,
and it is easy to find outliers with single parameters and good robustness. There is a
certain potential in dealing with the estimation of the number of vibration sources. For
example, Lu et al. [26] combined synchronous compression transformation with density
peak clustering to achieve blind source separation with an unknown number of sources. Li
et al. [27] proposed a new hybrid matrix estimation method based on single-source point
detection and density peak clustering. Hu et al. [28] used density peak clustering to achieve
effective mode estimation without knowing the number of effective modes.

The research of the SCA algorithm also includes the recovery of source signal. The
mainstream methods of source signal recovery can be divided into two categories. One is
to recover the source signal by optimizing the function approximating the L0 norm. For
example, the smooth continuous function is used to approximate the L0 norm, which is
called the smooth L0 norm method [29,30]. Zhang et al. [31] approximated the L0 norm
with compound trigonometric functions. However, when the incoming direction of the
source signal is closer, the recovery accuracy will decrease. Another method is to use the
compressed sensing method [32], which uses L1 norm optimization instead of L0 norm
optimization to restore the source signal, avoiding the L0 norm optimization NP-hard prob-
lem. In 2007, Tropop et al. [33] proposed the orthogonal matching pursuit algorithm (OMP),
which plays an important role in the research of reconstruction algorithms. Pala et al. [34]
adopted OMP to reduce the performance complexity of devices such as analog-to-digital
converters. Zhang et al. [35] proposed an OMP algorithm based on improved singular value
decomposition, which effectively reduced the correlation between the measured values.
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Combined with the above research content, this paper presents a blind source sep-
aration method for bearing compound faults, which combines modified morphological
filtering based on sin C structural elements (SMF), density peak clustering (DPC) [25] and
orthogonal matching pursuit (OMP) algorithm, called SMF-DPC-OMP. It is mainly em-
ployed to realize blind separation of compound faults when the number of fault sources
is unknown, which has certain reference significance for fault extraction in practical pro-
duction. Firstly, the modified morphological filter is used to de-noise the observed signal.
While promoting the signal-to-noise ratio, the impact component of the signal is high-
lighted. Secondly, the filtered signal is processed by density peak clustering to obtain the
clustering center, which also is the sensor matrix. Finally, the filtered signals are converted
to the frequency domain to meet the sparsity requirements, and the source signals are
reconstructed using OMP algorithm to estimate the source signals of bearing compound
faults. In addition to improving computing speed and adaptability, it realizes fault feature
extraction. The validity and accuracy of the proposed algorithm are verified by simula-
tion and actual vibration signal extraction of rolling bearing complex faults. The main
contributions of this work are as follows:

(1) A blind extraction method for complex fault diagnosis based on sinC function im-
proved morphological filtering (SMF), density peak clustering (DPC) and orthogonal
matching pursuit (OMP) was proposed;

(2) In terms of morphological filtering, a new structural element based on sinC func-
tion is proposed, and its performance is higher than that of the traditional linear
structural element;

(3) The DPC algorithm is used to overcome the problem that the number of fault signal
sources is difficult to determine in actual fault diagnosis. The parameters of the
algorithm will not change with the change of signal ratio, so it has a certain robustness;

(4) By replacing linear programming with OMP algorithm, the time cost of the algorithm
is greatly reduced while the sparsity of the signal is improved;

(5) Compared with the traditional blind source separation algorithm and modern signal
decomposition method, the proposed method can efficiently complete blind source
separation of complex faults, and the spectral clarity is also improved to some extent.

The overall narrative structure of this paper is as follows. The theories and concepts
of BSS and morphological filtering (MF) are introduced in Sections 2 and 3, respectively.
Section 4 explains SMF−DPC−OMP proposed in this paper. Section 4.1 mainly describes
the parameter selection of structural elements of the improved morphological filter, and the
idea and process of density peak clustering algorithm is stated in Section 4.2. Section 4.3
demonstrates how to carry out frequency domain compressed sensing and reconstruction
by OMP, and Section 4.4 reveals the overall process of the SMF−DPC−OMP algorithm.
The simulation experiment in Section 5 verifies the feasibility of the algorithm. In Section 6,
the actual vibration signals of rolling bearings are analyzed. Section 6.1 compares the
algorithm in this paper with other algorithms to analyze its advantages. Section 6.2 tests
the performance of the proposed algorithm under different SNR. There is a brief summary
of the advantages and disadvantages of this method in Section 7. Section 8 is the conclusion
of the whole paper.

2. Mathematical Model of Blind Source Separation

The blind source separation of the technique of recovering and estimating the source
signal using only the observed signal when the signal transmission channel and source
signal are unknown [36,37]. The mathematical model of SCA method containing noise is:

Xm×t = Am×nSn×t + Vm×t (1)

where X is the observation matrix, namely the actual signal value collected by the sensor;
A is the mixed matrix, which needs to be solved by algorithm; S is sparsely distributed
unknown source signal; V is noise or other random interference components; m is the
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number of observation signals picked up by the sensor, n is the number of unknown source
signals, and m < n is underdetermined; t is the observation time.

3. Morphological Filtering

MF is a nonlinear filtering method based on ensemble theory, which can approximate
some noise to zero while retaining the main characteristics of the signal. To a certain extent,
it satisfies the requirement of sparsity in the mixing matrix phase of sparse component
analysis estimation. The current way of applying mathematical morphology to fault feature
extraction is mainly to construct morphological filters, which are used to extract and
highlight the impact components in the signal. The feature extraction of the signal is carried
out in the time domain by this method. Compared with the traditional filtering method,
the algorithm is simpler, the calculation speed is faster, and has the advantages of easy
hardware implementation.

The quality of MF mainly depends on the selected structural elements and morpho-
logical transformation operations. The selection of structural elements includes elements
such as the shape, length, and height of structural elements (the amplitude of structural ele-
ments). The shapes of structural elements generally include linear, triangular, semicircular,
sine and so on. The basic operations of morphological transformation in contain corrosion,
expansion, morphological open operation and morphological closed operation.

In one-dimensional signal processing, mathematical morphology mainly includes mor-
phological corrosion, morphological expansion, morphological open and morphological
closed operators. Θ, ⊕, ◦ and • are the operators of corrosion, expansion, open and closed
operations, respectively. The definition is as follows:

Suppose the original signal f (n) and the structural element g(m) are discrete functions
on F(1, 2, . . . N − 1) and G = (1, 2, . . . M− 1) respectively, N ≥ M, then the expansion and
corrosion of f (n) with respect to g(m) are defined as [38]:

( f ⊕ g)(n) = max[ f (n−m) + g(m)] (2)

( f Θg)(n) = min[ f (n + m)− g(m)] (3)

Open and close operations are defined respectively:

( f ◦ g) (n) = ( f Θg⊕ g)(n) (4)

( f •g) (n) = ( f ⊕ gΘg)(n) (5)

The cascade form of morphological open and morphological closed is usually used to
remove the positive and negative noises in the signal. The structural elements of the same
size are uses to define close-open (CO) and open-close (OC) filters:

CO ( f (n)) = ( f •g ◦ g)(n) (6)

OC ( f (n)) = ( f ◦ g•g)(n) (7)

In order to suppress statistical bias, the morphological CO operator and OC operator
are usually combined to form the average combined filter [38]:

y(n) = [OC( f (n) + CO( f (n)]/2 (8)

4. Blind Extraction of Compound Faults Based on SMF−DPC−OMP

Combining the advantages of the above analysis and research, this paper adopts an
improved morphological filter, density peak clustering and frequency-domain compressive
sensing reconstruction algorithm to blindly extract bearing composite fault sources. The
basic process is shown in Figure 1. For the three pivotal links of the process, Section 4.1
describes how to create a morphological filter based on sin C function; Section 4.2 introduces
how to use the clustering method to estimate the mixture matrix; Section 4.3 demonstrates
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how to reconstruct and recover source signals through compressed sensing, and blind
separation equivalence relation is introduced in detail, and Section 4.4 is a description of
the overall algorithm of this paper.
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4.1. MF Based on sinC Structural Elements

The sin C function, also known as the Singer function, is represented by sin C(x). This
function is defined as follows:

sin C(x) =
sin(πx)

πx
(9)

In this chapter, the sin C function is used as the structural element of MF to construct
an average combined filter, and a new MF method is proposed. In addition, two parameters
are mainly defined when sin C is used as a structural element, namely, the length L and the
main lobe ratio P. Length refers to the length of the entire sin C image, and the main lobe
ratio refers to the percentage of the entire image taken from the middle to the sides. For
instance, Figure 2 shows a sin C graph with L at 20 and P at 50%.
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(1) In order to obtain the influence of sin C structural element parameters on filtering
effect, the failure test bench was used to collect the data of the inner and outer ring failures.
The results of the new filter are shown in Figure 3.

(2) So as to verify the advantages of the proposed new structural element, the filtering
effect of the traditional linear structural element under optimal parameter selection is
compared (Li et al. verified that when the length of linear structural element is 10, the
performance is the highest [39]).

It is not difficult to find from Figure 3 that the overall filtering performance of sin C is
better than linear filtering. The main parameter affecting the filtering effect is the main-lobe
ratio, while the length has little influence, which can be easily found in Figure 3. It is worth
noting that the ratio range of the main lobe is 5% to 80%, because when parameters are
selected outside this range, serious distortion will occur to the filtered signal. It should
not be forgotten that even if the main lobe ratio is selected within the range, distortion
cannot be completely avoided. To sum up, sin C functions with length of 90 and main lobe
ratio of 20% are selected as structural elements after several experiments, and the average
combined filter is constructed according to this structural element and Section 2.

4.2. The Theory of Density Peaks Clustering

The DPC algorithm mainly follows two assumptions: (1) The density of the cluster
center itself is greater than that of its neighbors, that is, the cluster center is surrounded by
low-density points; (2) The distance between the cluster center and the sample point with
higher density is relatively large.

There is a data set X = {x1, x2, · · · xN}, xi =
(
xi1, xi2, · · · xip

)T , i = 1, 2, · · ·N, and xij
represents the j dimension attribute value of the i data point.

The DPC algorithm consists of three steps: (1) calculating the local density of the
sample point, (2) calculating the distance between the point and the nearest neighbor with
higher density as the cluster center, and (3) clustering.

Since this algorithm only needs clustering centers, the first two steps are required merely.

4.2.1. Calculate Local Density ρ

For each data point xi, i = 1, 2, · · · , N, the local density ρi can be calculated as follows:

ρi = ∑
j,j 6=i

χ
(
dij − dc

)
(10)
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where χ is an indicative function, dij < dc is 1, and vice versa 0. dij = dist
(

xi, xj
)

represents
distance between two data points, usually the Euclidean distance. dc is called truncation
distance. Local density ρi can be thought of as equivalent to the number of points xi that
are less distant dc from a point. Truncation distance dc is the only variable in the algorithm.
In the original algorithm, the determination method is as follows:

dc = dNd∗p (11)

where Nd = C2
N represents the number of sample pairs, dNd∗p ∈ D

[
d1, d2, · · · dNd

]
. D is the

set of distances between two samples, in ascending order, N represents the sample size,
dNd∗p represents the distance dNd∗p in the set D, p is 1–2% of the total sample points.

4.2.2. Cluster Center Selection Based on Nearest Neighbor Distance δ

The nearest neighbor distance of a point is defined as:

δi =


min

(
dij
)

j:pj>pi

, ρi < max(ρ)

max
(
dij
)

j
, ρi = max(ρ)

(12)

That is, for the non-maximum density sample points, the distance between the point
i and the nearest neighbor of higher density is calculated. For the highest density point,
calculate the distance between the point i and the farthest point.

When the clustering object is bearing fault signal, most of the calculated results of
Equation (12) are 0. To ensure that the correct clustering centers are not omitted, the data
points calculated in Equation (12) that are more than twice the mean value are determined
as clustering centers.

4.3. Frequency Domain Compressed Sensing (CS) Reconstruction Algorithm

The sparsity of the signal, the design of the sensor matrix, and the signal reconstruction
are the basic components of compressed sensing theory. Signal sparsity reflects the degree
of energy concentration of the signal itself or under a certain basis and is often measured by
sparsity. The speed and precision of signal reconstruction are closely related to the sparsity
of the signal, and the sparse representation of the signal is the premise of the application
of compressed sensing. In this paper, FFT transform is used to transform the signal into
frequency domain to meet the sparsity requirement.

By establishing the equivalence relation between compressed sensing and blind source
separation, the OMP algorithm of the compressed sensing reconstruction algorithm is used
to reconstruct the source signal. For the compressed sensing model, one-dimensional mixed
signals are firstly constructed. Then m observation signals with length t can be transformed
into y = (y11, y12, · · · y1t, · · · , ym1, ym2, · · · ymt)

T .
The estimation matrix of density peak clustering is used to construct the sensor matrix

W. According to the compressed sensing model, when mixed signals y = (mt× 1), its
sensing matrix is W = (mt× nt). Using Fourier transform orthogonal matrix Et×t to expand
the elements of the estimation matrix A. The transformation relation is Bij = Et×tAij. The
specific transformation is shown in Equation (13):

y =


B11 B12 · · · B1n
B21 B22 · · · B2n

...
...

...
...

Bm1 Bm2 · · · Bmn

x (13)

The dimension of x = (x11, x12, · · · , x1t, · · · , xn1, xn2, · · · , xnt)
T is (nt × 1).
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Until now, the reconstruction model of blind source separation has been
completely established.

The OMP algorithm flow is a commonly used reconstruction algorithm for compressed
sensing. The OMP algorithm first performs Schmidt orthogonalization on all selected
atoms in each iteration process to ensure that the result of each cycle is the best solution.
Constructing the frequency domain sensing matrix is the core idea of using the OMP
algorithm for reconstruction here. The core algorithm steps are as follows:

(1) Initialization parameters, initial residuals r0, number of iterations, Fourier or-
thogonal transformation matrix Et×t is calculated, the sensor matrix W = (mt × nt) is
constructed according to the formula Bij = Et×tAij, and the signal is transferred to the
frequency domain for operation;

(2) The inner product method is used to calculate the projection coefficient of the
column vector and residual of the sensor matrix, and the corresponding position βi of the
maximum projection coefficient is recorded;

(3) The least square method is used to calculate the estimated value xi = (βi
T•βi)−1•βi

T•ri
of reconstructed signal for this iteration;

(4) Update the residuals ri+1 = ri − xi and repeat step (2) until the end of the iteration.
(5) Using Et×t inverse Fourier transform reconstruction to obtain the dimension

(nt× 1) of time domain signal x.

4.4. General Flow of SMF-DPC-OMP Algorithm

(1) Signal preprocessing: morphological filtering processes the observation signal,
extracts the impact signal of bearing characteristics and suppresses noise. Before filtering,
the structural element is constructed as described in Section 4.1 and then the filter is
constructed as described in Section 3;

(2) Estimate the mixture matrix: the DPC algorithm described in Section 4.2 is used to
solve the hybrid matrix;

(3) Source signal reconstruction: the hybrid matrix of step (2) is employed to con-
struct the sensor matrix, and the source signal was reconstructed in the frequency domain
according to the OMP algorithm described in Section 4.3;

(4) Fault identification: Perform FFT on the reconstructed source signal, so as to identify
the fault according to the frequency in the amplitude spectrum of the separated signal.

5. The Simulation Analysis

The availability of the proposed algorithm (SMF−DPC−OMP) is verified by simu-
lation signals. Simulation signals simulate the compound faults signal of bearing inner
and outer rings. Random noise signals with positive and negative amplitudes of 1 and 3
are added to the experiment, respectively. The source signal 1 is a shock pulse generated
by the Formula (15) cyclically, and every 128 points cycles to generate a shock pulse, and
the source signal 2 is a simple sinusoidal signal generated by the Formula (16). The shock
pulse frequency of source signal 1 is 100 Hz, and the sinusoidal signal frequency of source
signal 2 is 45 Hz, and the amplitude is 1. The SNR of source signal 1 is −4 dB, and that of
source signal 2 is −3.45 dB.

s1(t) = e−αt sin(2π f t) (14)

s2(t) = sin(2π f t) (15)

The time-domain waveform of the simulation signals simulating the fault of the inner
and outer ring of the bearing are shown in Figures 4 and 5 shows its amplitude spectrum.
Sampling frequency f s = 1042 Hz, sampling points n = 4096. A hybrid matrix is 2 × 3
matrix randomly generated by the computer. Figure 6 is the time waveform after adding
noise and mixing by mixing matrix. Figure 7 is the result of the signal in Figure 6 passing
through FFT. Through Figure 6 we can intuitively discover that the two signals have been
mixed together. Both components in Figure 7 have frequencies of sinusoidal signals and
impact signals, and the two signals are completely mixed with each other. If you notice the
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difference in amplitude, you will find that the first signal actually contains components of
both signals in Figure 7.
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The separated signals recovered by the SMF−DPC−OMP algorithm are shown in
Figures 8 and 9, showing its time-domain waveform and amplitude spectrum, respectively.
Whether from the time waveform or the amplitude spectrum, it can be immediately found
that the source signal is very well separated. The first component diagram tersely shows
the 45 Hz spectral line, which conforms to the frequency characteristics of source signal 2.
The second component in Figure 9 has a side spectral line with an interval of 8 Hz near
96 Hz and 104 Hz, which conforms to the characteristic frequency of source signal 1. It
can be seen from the analysis results that the algorithm can separate better and restore
source signals well. As is known to all, blind separation has the problem of amplitude and
order uncertainty, which makes the amplitude and order of source simulation signals and
separated signals different but does not affect the characteristic frequency analysis and the
effectiveness of the algorithm.
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6. Experiment Verification
6.1. The Comparison Experiment of Different Algorithms under the Condition of Constant SNR

There is a lot of background noise in the down-to-earth environment, so the availability
of the proposed algorithm is verified by the measured composite fault signals of rolling
bearing. The vibration and fault simulation test platform of QPZZ−II rotary machinery is
used to simulate the fault of rolling bearings. Relevant parameters of NU205 fault rolling
bearing are shown in Table 1.

Table 1. Parameters of example toroidal drive system.

Name Values Units

Inner diameter-d 25 mm
Outside diameter-D 52 mm
Inner ring width-B 15 mm

Pitch circle diameter-d′ 39 mm
Diameter of rolling body-D1 7.5 mm
Number of rolling bodies-Z 12 /

The contact angle-α 0 x◦

Motor speed-n 800 r/min
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According to the bearing parameters of Table 1, we calculate each fault defect frequency.
When the speed of the motor is 800 r/min, that is, the frequency of fr is 13.33 Hz, The
characteristic frequency of bearing inner ring fault is 95.38 Hz, the outer ring fault defect
frequency is 64.61 Hz.

The acquisition system consists of the NI Signal Express acquisition module and
the NI-9234 four-channel acquisition card. The sampling frequency is set to 8192 Hz
and the sampling points is 8192. Frequency interval ∆ f = f s/N = 1 Hz. Two pairs of
acceleration sensors are vertically installed on the bearing seat in horizontal and vertical
directions to obtain bearing vibration signals. The physical layout of the test bench and
acceleration sensor is shown in Figure 10. The experimental analysis data come from
sensors 1 and 2 identified in Figure 10. The fault type in this experiment is a compound
fault of inner and outer ring. At the same time, to acquire a better sense of the shape,
location and size of the bearing compound fault, the physical diagram of the faulty bearing
is shown in Figure 11. The bearing fault is processed by wire cutting, and the size of
the fault is 15 mm × 0.5 mm × 0.5 mm. In terms of parameter setting, due to the large
difference in the number of horizontal and vertical coordinates of the vibration signal, after
some tests, it is more appropriate to take the truncation error of 0.375. The OMP algorithm
can complete the reconstruction task when the number of cycles is 40 times.
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Figure 11. Physical type of rolling gear failure.

Figure 12 shows the time-domain waveform diagram of compound faults of bearing
inner and outer rings. The envelope spectrum can be seen in Figure 13. It is apparent from
the envelope spectrum that the characteristic frequency components of the inner and outer
ring composite faults are completely mixed together, making it difficult to judge the faults.
The comparison before and after filtering with the improved filter is shown in Figure 14.
The advantage of the improved filter over the straight line has been described in Section 4.1
and will not be repeated here.
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The analysis results of SMF−DPC−OMP are shown in Figure 15, in which it can be
seen that the composite faults have been successfully separated. Compared with Figure 16,
the side frequency components are less, and the most pregnant thing is that there is no
thin spectrum line in Figure 15. The first separation signal in Figure 15 clearly and cleanly
displays 65 Hz, 130 Hz, 195 Hz and other spectral lines, and the results are consistent
with the calculated outer ring fault defect frequency (64.61 Hz) or its frequency double.
In addition, the second separated signal in Figure 15 contains key spectral lines of 13 Hz,
95 Hz, and 190 Hz. The bearing rotation frequency is 13 Hz. There are side frequency
components with a rotation frequency of 13 Hz on both sides of 95 Hz and 190 Hz. On
balance, the results are in line with the calculated inner ring failure frequency (95.38 Hz), in
accordance with the inner ring fault characteristics.
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In order to verify the effectiveness of the proposed method, two methods are chosen
here as comparison to reflect the advantages of the proposed algorithm. Firstly, a novel
blind separation algorithm based on the combination of MCKD and EEMD [40] is used
for comparison. The spectrum of composite fault signals separated by MCKD−EEMD
algorithm is shown in Figure 16. From the observation of Figure 16, it is not difficult to find
that blind separation of composite faults cannot be effectively realized by this algorithm.
Then the algorithm of Fuzzy C−means clustering and linear programming (FCM−LP) [39]
is selected, which is the common algorithm of traditional blind source separation. The
spectrum of composite fault signals separated by FCM−LP algorithm is shown in Figure 17,
although it can basically realize the separation of bearing inner and outer ring faults, but
there are still a lot of side frequencies and thin lines.
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6.2. The Validation Experiment of the Algorithm in this Paper under Different SNR Conditions

Taking into account the actual production, the noise in the environment cannot be
as small as the noise in the laboratory, and the noise component of the experimentally
collected signal in Section 6.1 is low. By adding different levels of noise to the collected
signal, the signal containing different levels of noise can be obtained. These signals are
used to test the feasibility of the proposed algorithm in this paper. In this section, the noise
added to the signal ranges from 6 dB to −6 dB. Since the operation of adding noise from 6
dB to 0 dB has little influence on data, it will not be discussed in this chapter. The range of
noise attached to the signal is from 0 dB to −6 dB is as described below.

The signals in Figure 18 are two sets of signals spliced to form a set of signals, so that
readers can see the noise of signals more completely. Figure 18a shows the signal collected
directly from the simulated failures test stand without additional noise, and Figure 18b–h
are additional noises of different degrees. It is not difficult to see from Figure 18 that as
the noise component increases, the impact component of the signal gradually becomes
inconspicuous. The impact is not obvious, which is more in line with the fact that the noise
in the actual production environment has a relatively strong impact.



Sensors 2022, 22, 7093 16 of 20

Sensors 2022, 22, x FOR PEER REVIEW 16 of 20 
 

 

The signals in Figure 18 are two sets of signals spliced to form a set of signals, so that 

readers can see the noise of signals more completely. Figure 18a shows the signal collected 

directly from the simulated failures test stand without additional noise, and Figure 18b–

h are additional noises of different degrees. It is not difficult to see from Figure 18 that as 

the noise component increases, the impact component of the signal gradually becomes 

inconspicuous. The impact is not obvious, which is more in line with the fact that the noise 

in the actual production environment has a relatively strong impact. 

 

Figure 18. Experimental signals with different levels of noise, (a) is the case without adding noise, 

and (b–h) is the case with different levels of noise from 0dB to -6dB respectively. 

Figure 19a shows the result of direct signal acquisition on the test bed processed by 

the algorithm in this paper. Figure 19b–d and Figure 20a–d respectively show the pro-

cessing results separated by SMF−DPC−OMP when different levels of noise are added. 

After comprehensive analysis of Figures 18–20, the proposed algorithm can achieve fault 

separation even with different levels of noise. At the same time, first-class spectral line 

definition and low time cost are maintained in the frequency domain. Through experi-

ments, it is not difficult to find that the only parameter of the algorithm in this paper, 

namely the truncation error, does not change in the blind source separation of faults for 

signals with different noise levels, which reflects the anti-noise ability of the algorithm. 

Figure 18. Experimental signals with different levels of noise, (a) is the case without adding noise,
and (b–h) is the case with different levels of noise from 0 dB to −6 dB respectively.

Figure 19a shows the result of direct signal acquisition on the test bed processed by
the algorithm in this paper. Figures 19b–d and 20a–d respectively show the processing
results separated by SMF−DPC−OMP when different levels of noise are added.
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Figure 20. The signal is processed by SMF−DPC−OMP after additional noise, (a–d) is the case where
−3 dB, −4 dB, −5 and −6 dB of noise are added, respectively.

After comprehensive analysis of Figures 18–20, the proposed algorithm can achieve
fault separation even with different levels of noise. At the same time, first-class spectral line
definition and low time cost are maintained in the frequency domain. Through experiments,
it is not difficult to find that the only parameter of the algorithm in this paper, namely the
truncation error, does not change in the blind source separation of faults for signals with
different noise levels, which reflects the anti-noise ability of the algorithm.

7. Algorithm Analysis

The biggest innovation point of this paper is that BSS can be performed without prior
knowledge of the number of fault sources, which is more consistent with the actual situation
and has guiding significance for engineering applications. In addition, the algorithm has
certain robustness to truncation error selection for the only parameter in clustering and can
triumphantly complete blind source separation under the condition of improper parameter
selection. For instance, improper selection leads to the clustering of vibration signals of
two faults as multiple faults, as shown in Figure 21. Nevertheless, it can be seen from the
clustering result graph that the inner points of other classes are far smaller than those of
class 1 and 3, which can be excluded. Therefore, only cluster centers 1 and 3 can be selected.
It is not difficult to find from Section 6.2 that when the noise of the signal changes within a
certain range, it will not interfere with the selection of parameters.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 20 
 

 

signals of two faults as multiple faults, as shown in Figure 21. Nevertheless, it can be seen 

from the clustering result graph that the inner points of other classes are far smaller than 

those of class 1 and 3, which can be excluded. Therefore, only cluster centers 1 and 3 can 

be selected. It is not difficult to find from Section 6.2 that when the noise of the signal 

changes within a certain range, it will not interfere with the selection of parameters. 

 

Figure 21. Schematic diagram of clustering effect. 

Repeating 50 experiments for two fault signals and taking the average value, the time 

cost of FCM-LP is about 90.2 s, while that of SMF−DPC−OMP is 22.05 s. In comparison, 

the time cost is reduced by about 75%. 

The shortcomings of the algorithm are mainly reflected in: 

(1) Failure to apply to fault diagnosis under the condition of under-determination; 

(2) The selection of cycle times of OMP algorithm is not self-adaptive; 

(3) The selection of truncation error of DPC is obtained from many adjustments. 

8. Conclusions 

In complex mechanical structure and industrial environments, fault signals are often 

covered by various noises and the number of fault sources is unknown. In this paper, the 

improved morphological filtering algorithm is firstly proposed based on sinC  function, 

and compared with a linear filter, the results show that the improved filtering algorithm 

can distinctly improve the signal-to-noise ratio. Then, utilizing the strong point of density 

peak clustering algorithm, the complex fault diagnosis is realized when the number of 

sources is unknown, and this advantage has some practical implications. Finally, com-

pressed sensing and reconstruction are completed in the frequency domain to suppress 

fine side frequency and interference components while retaining the characteristic fre-

quency containing fault information. The results are concise and clear. The feasibility of 

the proposed algorithm is verified by the separation of the acceleration vibration signals 

of the two-channel rolling bearing from the experimental simulation and the actual acqui-

sition. Experimental results show that the time cost of the proposed method is about 75% 

higher than the FCM-LP algorithm. The future work of this paper will focus on fault ex-

traction under underdetermined conditions, or further extend the algorithm to be applied 

to fault diagnosis of rotating machinery acoustic signals. 

Author Contributions: Formal analysis, W.X.; Investigation, J.Z.; Project administration, T.L. All 

authors have read and agreed to the published version of the manuscript. 

Figure 21. Schematic diagram of clustering effect.



Sensors 2022, 22, 7093 18 of 20

Repeating 50 experiments for two fault signals and taking the average value, the time
cost of FCM-LP is about 90.2 s, while that of SMF−DPC−OMP is 22.05 s. In comparison,
the time cost is reduced by about 75%.

The shortcomings of the algorithm are mainly reflected in:

(1) Failure to apply to fault diagnosis under the condition of under-determination;
(2) The selection of cycle times of OMP algorithm is not self-adaptive;
(3) The selection of truncation error of DPC is obtained from many adjustments.

8. Conclusions

In complex mechanical structure and industrial environments, fault signals are often
covered by various noises and the number of fault sources is unknown. In this paper, the
improved morphological filtering algorithm is firstly proposed based on sin C function,
and compared with a linear filter, the results show that the improved filtering algorithm can
distinctly improve the signal-to-noise ratio. Then, utilizing the strong point of density peak
clustering algorithm, the complex fault diagnosis is realized when the number of sources is
unknown, and this advantage has some practical implications. Finally, compressed sensing
and reconstruction are completed in the frequency domain to suppress fine side frequency
and interference components while retaining the characteristic frequency containing fault
information. The results are concise and clear. The feasibility of the proposed algorithm is
verified by the separation of the acceleration vibration signals of the two-channel rolling
bearing from the experimental simulation and the actual acquisition. Experimental results
show that the time cost of the proposed method is about 75% higher than the FCM-LP
algorithm. The future work of this paper will focus on fault extraction under underde-
termined conditions, or further extend the algorithm to be applied to fault diagnosis of
rotating machinery acoustic signals.

Author Contributions: Formal analysis, W.X.; Investigation, J.Z.; Project administration, T.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the key Science and Technology Project of Yunnan Province: “Key
Technologies for Intelligent Integrated Application of CNC Machine Tools and Product Development
and Application Demonstration” (Grant Nos. 202102AC080002), and the Science and Technology
Program of Yunnan Province (Grant Nos. 202002AC080001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, J.; Wang, L.; Shi, Z. Dynamic modelling of the defect extension and appearance in a cylindrical roller bearing. Mech. Syst.

Signal Process. 2022, 173, 109040. [CrossRef]
2. Liu, J.; Xu, Z. A simulation investigation of lubricating characteristics for a cylindrical roller bearing of a high-power gearbox.

Tribol. Int. 2022, 167, 107373. [CrossRef]
3. Singh, S.; Howard, C.Q.; Hansen, C.H. An extensive review of vibration modelling of rolling element bearings with localised and

extended defects. J. Sound Vib. 2015, 357, 300–330. [CrossRef]
4. Liu, F.; Li, L.; Liu, Y.; Cao, Z.; Yang, H.; Lu, S. HKF-SVR Optimized by Krill Herd Algorithm for Coaxial Bearings Performance

Degradation Prediction. Sensors 2020, 20, 660. [CrossRef] [PubMed]
5. Wu, Y.; Jiang, B.; Wang, Y. Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH

trains. ISA Trans. 2020, 99, 488–495. [CrossRef]
6. Patel, V.N.; Tandon, N.; Pandey, R.K. Vibrations Generated by Rolling Element Bearings having Multiple Local Defects on Races.

Procedia Technol. 2014, 14, 312–319. [CrossRef]
7. Wang, K.; Yan, C.; Wang, F.; Chang, B.; Wu, L. Dynamic characteristics of compound fault in deep groove ball bearing. Harbin

Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2020, 52, 133–140. [CrossRef]
8. Hao, Y.; Song, L.; Ke, Y.; Wang, H.; Chen, P. Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component

Analysis. Sensors 2017, 17, 1307. [CrossRef]

http://doi.org/10.1016/j.ymssp.2022.109040
http://doi.org/10.1016/j.triboint.2021.107373
http://doi.org/10.1016/j.jsv.2015.04.037
http://doi.org/10.3390/s20030660
http://www.ncbi.nlm.nih.gov/pubmed/31991654
http://doi.org/10.1016/j.isatra.2019.09.020
http://doi.org/10.1016/j.protcy.2014.08.041
http://doi.org/10.11918/201809184
http://doi.org/10.3390/s17061307


Sensors 2022, 22, 7093 19 of 20

9. He, P.; She, T.; Li, W.; Yuan, W. Single channel blind source separation on the instantaneous mixed signal of multiple dynamic
sources. Mech. Syst. Signal Process. 2018, 113, 22–35. [CrossRef]

10. Cai, X.; Wang, X.; Huang, Z.; Wang, F. Single-Channel Blind Source Separation of Communication Signals Using Pseudo-MIMO
Observations. IEEE Commun. Lett. 2018, 22, 1616–1619. [CrossRef]

11. Hao, Y.; Song, L.; Ren, B.; Wang, H.; Cui, L. Step-by-Step Compound Faults Diagnosis Method for Equipment Based on
Majorization-Minimization and Constraint SCA. IEEE/ASME Trans. Mechatron. 2019, 24, 2477–2487. [CrossRef]

12. Sparse classification of rotating machinery faults based on compressive sensing strategy. Mechatronics 2015, 31, 60–67. [CrossRef]
13. Liu, D.; Xiao, Z.; Hu, X.; Zhang, C.; Malik, O.P. Feature extraction of rotor fault based on EEMD and curve code. Measurement

2019, 135, 712–724. [CrossRef]
14. Li, H.; Liu, T.; Wu, X.; Chen, Q. Application of EEMD and improved frequency band entropy in bearing fault feature extraction.

ISA Trans. 2019, 88, 170–185. [CrossRef]
15. Zosso, D.; Dragomiretskiy, K.; Bertozzi, A.L.; Weiss, P.S. Two-Dimensional Compact Variational Mode Decomposition. J. Math.

Imaging Vis. 2017, 58, 294–320. [CrossRef]
16. Tang, G.; Luo, G.; Zhang, W.; Yang, C.; Wang, H. Underdetermined Blind Source Separation with Variational Mode Decomposition

for Compound Roller Bearing Fault Signals. Sensors 2016, 16, 897. [CrossRef]
17. Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [CrossRef]
18. Li, G.; Tang, G.; Luo, G.; Wang, H. Underdetermined blind separation of bearing faults in hyperplane space with variational

mode decomposition. Mech. Syst. Signal Process. 2019, 120, 83–97. [CrossRef]
19. Feng, F.; Kowalski, M. Revisiting sparse ICA from a synthesis point of view: Blind Source Separation for over and underdeter-

mined mixtures. Signal Process. 2018, 152, 165–177. [CrossRef]
20. Zhou, X.F.; Yang, S.X.; Gan, C.B. Blind source separation of statistically correlated sources. J. Vib. Shock 2012, 31, 60–64.
21. Yong, X.; Ng, S.K.; Nguyen, V.K. Blind Separation of Mutually Correlated Sources Using Precoders. IEEE Trans. Neural Netw.

2009, 21, 82–90. [CrossRef] [PubMed]
22. Yu, G.; Zhou, Y.; Zhang, W. Blind source separation of correlated vibration sources. J. Vib. Shock 2016, 35, 216–221.
23. Wang, J.D.; Chen, X.; Zhao, H.Y.; Li, Y.Y.; Yu, D.L. An Effective Two-Stage Clustering Method for Mixing Matrix Estimation in

Instantaneous Underdetermined Blind Source Separation and Its Application in Fault Diagnosis. Ieee Access 2021, 9, 115256–115269.
[CrossRef]

24. Jun, H.; Chen, Y.; Zhang, Q.H.; Sun, G.; Hu, Q. Blind Source Separation Method for Bearing Vibration Signals. IEEE Access 2017, 6,
658–664. [CrossRef]

25. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef]
26. Lu, J.; Cheng, W.; He, D.; Zi, Y. A novel underdetermined blind source separation method with noise and unknown source

number. J. Sound Vib. 2019, 457, 67–91. [CrossRef]
27. Li, Y.; Wang, Y.; Dong, Q. A novel mixing matrix estimation algorithm in instantaneous underdetermined blind source separation.

Signal Image Video Processing 2020, 14, 1001–1008. [CrossRef]
28. Hu, Z.; Ma, H. Blind modal estimation using smoothed pseudo Wigner–Ville distribution and density peaks clustering. Meas. Sci.

Technol. 2020, 31, 105004. [CrossRef]
29. Bu, H.; Tao, R.; Bai, X.; Zhao, J. Regularized smoothed `0 norm algorithm and its application to CS-based radar imaging. Signal

Process. 2016, 122, 115–122. [CrossRef]
30. Paik, J.W.; Lee, J.-H.; Hong, W. An Enhanced Smoothed L0-Norm Direction of Arrival Estimation Method Using Covariance

Matrix. Sensors 2021, 21, 4403. [CrossRef]
31. Zhang, C.; Hao, D.; Hou, C.; Yin, X. A New Approach for Sparse Signal Recovery in Compressed Sensing Based on Minimizing

Composite Trigonometric Function. IEEE Access 2018, 6, 44894–44904. [CrossRef]
32. Kleinsteuber, M.; Shen, H. Blind Source Separation With Compressively Sensed Linear Mixtures. IEEE Signal Process. Lett. 2012,

19, 107–110. [CrossRef]
33. Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory

2007, 53, 4655–4666. [CrossRef]
34. Diana, P.D.K.; Pala, S.; Polepally, S.; Puli, K. Comparison of Image Reconstruction Algorithms using Compressive Sensing. In Pro-

ceedings of the 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic System(COMCAS),
Tel Aviv, Israel, 4–6 November 2019; pp. 1–6.

35. Zhang, C.-J. An Orthogonal Matching Pursuit Algorithm Based on Singular Value Decomposition. Circuits Syst. Signal Process.
2020, 39, 492–501. [CrossRef]

36. Ma, S.; Zhang, H.; Miao, Z. Blind source separation for the analysis sparse model. Neural Comput. Appl. 2021, 33, 8543–8553.
[CrossRef]

37. Ehsandoust, B.; Babaie-Zadeh, M.; Rivet, B.; Jutten, C. Blind Source Separation in Nonlinear Mixtures: Separability and a Basic
Algorithm. IEEE Trans. Signal Process. 2017, 65, 4339–4352. [CrossRef]

38. Lv, J.; Yu, J. Average combination difference morphological filters for fault feature extraction of bearing. Mech. Syst. Signal Process.
2018, 100, 827–845. [CrossRef]

http://doi.org/10.1016/j.ymssp.2017.04.004
http://doi.org/10.1109/LCOMM.2018.2832215
http://doi.org/10.1109/TMECH.2019.2951589
http://doi.org/10.1016/j.mechatronics.2015.04.006
http://doi.org/10.1016/j.measurement.2018.12.009
http://doi.org/10.1016/j.isatra.2018.12.002
http://doi.org/10.1007/s10851-017-0710-z
http://doi.org/10.3390/s16060897
http://doi.org/10.1109/TSP.2013.2288675
http://doi.org/10.1016/j.ymssp.2018.10.016
http://doi.org/10.1016/j.sigpro.2018.05.017
http://doi.org/10.1109/TNN.2009.2034518
http://www.ncbi.nlm.nih.gov/pubmed/19933013
http://doi.org/10.1109/ACCESS.2021.3105538
http://doi.org/10.1109/ACCESS.2017.2773665
http://doi.org/10.1126/science.1242072
http://doi.org/10.1016/j.jsv.2019.05.037
http://doi.org/10.1007/s11760-019-01632-z
http://doi.org/10.1088/1361-6501/ab8c6b
http://doi.org/10.1016/j.sigpro.2015.11.024
http://doi.org/10.3390/s21134403
http://doi.org/10.1109/ACCESS.2018.2855958
http://doi.org/10.1109/LSP.2011.2181945
http://doi.org/10.1109/TIT.2007.909108
http://doi.org/10.1007/s00034-019-01182-2
http://doi.org/10.1007/s00521-020-05606-y
http://doi.org/10.1109/TSP.2017.2708025
http://doi.org/10.1016/j.ymssp.2017.08.020


Sensors 2022, 22, 7093 20 of 20

39. Li, Y.; Wu, X.; Chi, Y.; Liu, C. Blind separation for rolling bearing faults based on morphological filtering and sparse component
analysis. J. Vib. Shock 2011, 30, 170–174.

40. Ren, X.P.; Wang, C.G.; Zhang, Y.H. Feature Extraction of Rolling Bearing’s Weak Fault Based on MCKD-EEMD. Mach. Des. Manuf.
2016, 8, 053.


	Introduction 
	Mathematical Model of Blind Source Separation 
	Morphological Filtering 
	Blind Extraction of Compound Faults Based on SMF-DPC-OMP 
	MF Based on sinC Structural Elements 
	The Theory of Density Peaks Clustering 
	Calculate Local Density   
	Cluster Center Selection Based on Nearest Neighbor Distance  

	Frequency Domain Compressed Sensing (CS) Reconstruction Algorithm 
	General Flow of SMF-DPC-OMP Algorithm 

	The Simulation Analysis 
	Experiment Verification 
	The Comparison Experiment of Different Algorithms under the Condition of Constant SNR 
	The Validation Experiment of the Algorithm in this Paper under Different SNR Conditions 

	Algorithm Analysis 
	Conclusions 
	References

