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Abstract: Quadrature amplitude modulation (QAM) constellation and Golay complementary se-
quences (GCSs) are usually applied in orthogonal frequency division multiplexing (OFDM) systems
to obtain a higher data rate and a lower peak-to-mean envelope power ratio (PMEPR). In this paper,
after a sufficient search of the literature, it was found that increasing the family size is an effective
way to improve the data rate, and the family size is mainly determined by the number of offsets in
the general structure of QAM GCSs. Under the guidance of this idea, we propose a new construction
for 4q-QAM GCSs through generalized Boolean functions (GBFs) based on a new description of
a 4q-QAM constellation, which aims to enlarge the family size of GCSs and obtain a low PMEPR.
Furthermore, a previous construction of 4q-QAM GCSs presented by Li has been proved to be a
special case of the new one, and the family size of new sequences is much larger than those previously
mentioned, which means that there was a great improvement in the data rate. On the other hand, a
previous construction of 16-QAM GCSs presented by Zeng is also a special case of the new one in this
paper, when q = 2. In the meantime, the proposed sequences have the same PMEPR upper bound as
the previously mentioned sequences presented by Li when applied in OFDM systems, which increase
the data rate without degrading the PMEPR performance. The theoretical analysis and simulation
results show that the proposed new sequences can achieve a higher data rate and a low PMEPR.

Keywords: orthogonal frequency division multiplexing (OFDM); Golay complementary sequences
(GCSs); quadrature amplitude modulation (QAM); generalized Boolean function (GBF); peak-to-mean
envelope power ratio (PMEPR)

1. Introduction

Orthogonal frequency division multiplexing (OFDM), as a high-performance physical
layer technology of wireless communication, has been widely used in wireless commu-
nication systems for its advantages of high spectrum utilization, high power utilization,
strong resistance to multipath delay expansion, and frequency-selective fading [1]. More
specifically, IEEE 802.11 uses OFDM in wireless local area network (LAN) applications, and
802.16 uses OFDM in wireless network applications.

High-order modulations such as quadrature phase shift keying (QPSK), 16-quadrature
amplitude modulation (QAM), 64-QAM, and so on, are generally applied in high-speed
communication systems in order to acquire a higher data rate [2]. When it comes to OFDM,
higher-order modulation will lead to a higher peak-to-mean envelope power ratio (PMEPR)
of transmitted OFDM signals because an OFDM signal consists of many independently
modulated subcarriers, which will cause a large PMEPR when coherently superimposed.
A large PMEPR can cause a series of negative effects, such as increasing the complexity of
analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) and reducing
the efficiency of radio frequency (RF) power amplifiers [3], which will lead to the serious
degradation of the bit error ratio (BER) performance [4]. In addition, a large PMEPR can
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cause out-of-band radiation, which leads to severe inter-channel interference (ICI) [5].
Therefore, reducing the PMEPR is an effective means to improve the transmission efficiency
and reduce the communication overhead of an OFDM system [6,7].

In order to obtain a lower PMEPR, Golay complementary sequences (GCSs) are usually
considered in OFDM modulation [8]. In the meantime, QAM is diffusely applied in high-
speed OFDM communication systems. Hence, QAM GCSs have been widely investigated in
communication and signal processing research. In 1999, Davis and Jedwab [9] constructed
a set of phase shift keying (PSK) Golay sequences using a direct non-recursive construction
of polyphase complementary sequences based on generalized Boolean functions. The
resulting Golay sequences were subsequently referred to as Golay–Davis–Jedwab (GDJ)
sequences. In 2001, Rößing and Tarokh [10] proposed a new construction of 16-QAM GCSs
by adding two QPSK GDJ sequences. They proved that the code rate of these sequences
was twice that of the PSK Golay sequence, at the cost of a slightly higher PMEPR. Since
then, many other constructions with a low PMEPR based on QAM constellations have been
proposed [11–16].

In 2003, Tarokh and Sadjadpour [17] proposed the construction of 22n-QAM sequences
by using n QPSK GCSs, which was the extension of Rößing and Tarokh’s results in [10].
When applied in an OFDM system, the set of sequences had the PMEPR upper bounds of
6(2n/2 − 1)2/(2n − 1). In the same year, Chong et al. [18] proposed a new construction of
16-QAM GCSs by combining two QPSK GDJ sequences with one offset and a pair difference,
which enlarged the family size to (14 + 12m)(m!/2)4m+1 and bounded the PMEPR to 3.6.
In 2006, Lee and Golomb [19] constructed new 64-QAM GCSs by combining three QPSK
GDJ sequences with two offsets, which had the PMEPR bounded by 4.66. In 2008, Li [20]
proposed some modifications and extensions for [18,19]. In 2009, Wang et al. [21] extended
the construction of 22n-QAM sequences with a new method and gave an upper bound
on the PMEPR. In 2010, Chang et al. [22] constructed new 64-QAM GCSs and proved the
conjecture presented in [19]. In addition, Li [23] proposed a new construction of 4q-QAM
GCSs by combining q QPSK GDJ sequences with q− 1 offsets and then calculated the family
size. The PMEPR upper bounds of the proposed sequences in [23] have been proven to
be 6(2q − 1)/(2q + 1), which approach six as the QAM constellation size increases. It can
be noted that all previous QAM GCSs are special cases of the construction in [23] and are
referred to as the generalized cases I-III. From the previous references, it can be seen that
the family size of this general structure is mainly determined by the number of offsets,
which implies one possible method of expanding the family size: expanding the number
of offsets.

In 2013, Liu et al. [24] proposed constructions of new cases based on the nonsymmet-
rical Gaussian integer pair, which were different from the cases in [23] and were referred
to as the generalized cases IV-V. Note that all the aforementioned constructions are based
on the standard QPSK GDJ GCSs. In 2014, Zeng et al. [25] proposed a new construction of
16-QAM GCSs based on non-standard QPSK GDJ GCSs. In 2018, Zeng et al. [26] developed
a new construction yielding 4q-QAM GCSs with a length of 2 m (integer m ≥ 2), which
included the known QAM GCSs with binary inputs as special cases and had the same
PMEPR upper bound when used in an OFDM system. In the same year, Budišin and
Spasojević [27] proposed a new recursive algorithm to generate a large number of standard
QAM GCSs based on unitary matrices, and whose 1-Qum (based on one unitary matrix)
case and 2-Qum (based on two unitary matrices) case could generate the QAM GCSs in
the generalized cases I-V [23,24]. In 2019, Zeng et al. [28] proposed new constructions of
16-QAM GCSs, which further increased the family size and had the same PMEPR upper
bound as the known sequences. In the same year, Zeng et al. [29] expanded their conclusion
to 4q-QAM GCSs with the same methods, and the new sequences had the same PMEPR
upper bounds as those mentioned above. In 2021, Wang et al. [30] provided a new method
of constructing complementary sequence sets (CSSs) and complete complementary codes
(CCCs) by using para-unitary (PU) matrices, which significantly increased the number of
the sequences with a low PMEPR. In 2022, Wang et al. [31] proposed two new constructions
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of 4q-QAM GCSs by providing new compatible offsets based on the factorization of the
integer q, which had the generalized cases I-V [23,24] as special cases. Since the family size
directly determines the data rate, expanding the family size of sequences is an effective
way to improve the data rate [32].

As the data rates and mobility supported by the OFDM system increase, the number
of subcarriers also increases, resulting in a high PMEPR. However, reducing the PMEPR
will increase the computational complexity. To solve this problem, many PMEPR reduction
schemes that reduce the computational complexity of OFDM systems have been proposed.
In 2013, Rahmatallah and Mohan [33] generated a taxonomy of the available solutions to
mitigate the high PMEPR problem in OFDM systems. They also provided complexity anal-
yses for several PMEPR reduction methods to demonstrate the differences in computational
complexity between different methods. In 2017, Zhao et al. [34] proposed an improved joint
optimization scheme, which combined the partial transmit sequence (PTS) and clipping
and filtering (CF) methods with great PMEPR reduction performance. In the same year,
Joo et al. [35] proposed two PTS schemes without side information (SI) for reducing the
PMEPR of OFDM signals, which did not reduce the BER performance as compared to the
conventional PTS with perfect SI. The above-mentioned PMEPR reduction schemes can
effectively solve the problem and improve the performance of OFDM systems.

Based on the above literature search, it was found that increasing the family size is
an effective way to improve the data rate, and the family size is mainly determined by
the number of offsets in the general structure of QAM GCSs. This is the source of the
research idea of this paper. The innovation points and main contributions of this paper are
summarized as follows:

1. A new description of a 4q-QAM constellation with q + 1 independent quaternary
variables is presented in this paper, which has one more variable than the previous
description and includes it as a special case;

2. On this basis, a new construction of 4q-QAM GCSs is proposed, which greatly in-
creases the family size and improves the data rate;

3. More specifically, the new construction of the QAM sequences includes the construc-
tion in [23] as a special case and has a larger family size, which means a higher
data rate;

4. At the same time, the construction of 16-QAM GCSs in [28] is also a special case in
this paper when q = 2;

5. Furthermore, the proposed sequences in this paper have the same PMEPR upper
bounds as the known ones, which increase the data rate without degrading the
PMEPR performance.

The rest of this paper is organized as follows. In Section 2, some background infor-
mation is provided, including the definitions of GCSs and generalized Boolean functions
(GBFs), the construction of QAM signals from the QPSK constellation, the PMEPR upper
bound of GCSs, and some related conclusions. In Section 3, a new description of a 4q-QAM
constellation is first presented. Based on this foundation, a new construction of 4q-QAM
GCSs is proposed, and an example of 64-QAM GCSs is given to verify this conclusion.
Then, the family size and the PMEPR upper bound of the new construction are described.
In Section 4, the main results are summarized, and the main conclusions are given.

2. Materials and Methods

In this section, we provide some necessary materials, including the definitions of GCSs
and GBFs, the construction of QAM signals from a QPSK constellation, and the PMEPR
upper bound of the GCSs as well as several related lemmas.
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2.1. Golay Complementary Sequences

Given two sequences of length N with complex elements, A = [A0, A1, · · · , AN−1]
and B = [B0, B1, · · · , BN−1], we define [36]

CA,B(τ) =

∑ N−1−τ
i=0 AiB∗i+τ 0 ≤ τ ≤ N − 1

∑ N−1+τ
i=0 Ai−τ B∗i 1− N ≤ τ < 0

0 |τ| ≥ N
(1)

to be an aperiodic correlation function (ACF) of A and B. More specifically, we say that
CA,A(τ) is an aperiodic autocorrelation function when A = B, which can be simplified as
CA(τ). If not, we call CA,B(τ) an aperiodic cross-correlation function when A 6= B [37].

For two sequences, A and B, if they satisfy [38]

CA(τ) + CB(τ) = 0 (∀τ 6= 0), (2)

we say that (A, B) forms a Golay complementary pair, and that A, B are both Golay
complementary sequences (GCSs).

2.2. Generalized Boolean Functions and Standard 2h-PSK GDJ GCSs

We define Z2h =
{

0, 1, 2, · · · , 2h − 1
}
(integer h ≥ 1), and then the functions [9]

f (x) = 2h−1 ∑ m−1
k=1 xπ(k)xπ(k+1) + ∑ m

k=1ckxk (3)

are referred to as standard GBFs, where π stands for a permutation of the symbol set
{1, 2, · · · , m}, vector x = (x1, x2, · · · , xm) ∈ Zm

2 , m is a positive integer that satisfies m ≥ 2,
and ck ∈ Z2h (1 ≤ k ≤ m).

If the m-dimensional vector x = (x1, x2, · · · , xm) is preset, we can get a Boolean
function value f (x) ∈ Z2h . It is obvious that the binary form of the integers from 0 to 2m − 1
can be denoted by the vector x when it ranges from (0, 0, · · · , 0) to (1, 1, · · · , 1), and as a
result, the 2m function values in Z2h can be produced [39].

On the basis of the standard GBFs, Davis and Jedwab discovered the connection
between 2h-PSK GCSs and the generalized Reed–Muller codes; this led to the construction
of a large class of PSK GCSs, which are well-known as the standard 2h-PSK GDJ GCSs [40].
Several related conclusions about these sequences are presented below.

Lemma 1 (Ref. [9], Corollary 4). The Golay sequences over Z2h of length 2m, determined by
Equation (3), in total have 2h(m+1)·m!/2.

Lemma 2 (Ref. [9], Corollary 5). Let

{
a(x) = f (x) + c
b(x) = f (x) + 2h−1xπ(1) + c′, (4)

where c, c′ ∈ Z2h , and then the resultant sequences a and b are called a Golay complementary pair
with length 2m over Z2h .

2.3. Construction of QAM Signals from a QPSK Constellation

The QPSK constellation can be described based on the quaternary symbols Z4 = {0, 1, 2, 3}
using the following set [11]:

ΩQPSK = {jv|v ∈ Z4}. (5)
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On the other hand, the 4q-QAM constellation (positive integer q ≥ 2) can be described
with the following set [29]:

Ω4q−QAM =
{

a + bj
∣∣∣−2q + 1 ≤ a, b ≤ 2q − 1, a, b odd, j2 = −1

}
. (6)

One of the methods to produce a 4q-QAM constellation is through the use of QPSK
symbols with the shift and rotation operations. Figure 1 shows the construction of a
64-QAM constellation by adding three QPSK symbols [23].
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With the same method, the general 4q-QAM constellation can be expressed as [17]:

Ω4q−QAM =
{
(1 + j)∑ q−1

p=02p jv
(p)
∣∣∣v(p) ∈ Z4

}
. (7)

When the q-dimensional vector
(

v(0), v(1), · · · , v(q−1)
)

varies from (0, 0, · · · , 0) to
(3, 3, · · · , 3), the above equation correspond exactly to the 4q-QAM constellation.

2.4. Family Size and Code Rate

The family size of sequences directly determines the data rate. More specifically, when
applied in OFDM systems, the family size affects the selection of the number of subcarriers.
In [18], the definition of the code rate is provided, which is introduced to guide the selection
of subcarriers. The following lemma gives the definition.

Lemma 3 (Ref. [18]). The code rate of a code C consisting of sequences of length N symbols is [18]

R(C) =
log2|C|

N
, (8)

where |C| stands for the family size of the code C.
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2.5. PMEPR Upper Bound of GCSs

Consider an OFDM system that has N subcarriers, f0 is the carrier frequency, and fi
is the frequency of the ith subcarrier, where fi = f0 + i∆ f (0 ≤ i ≤ N − 1), and ∆ f is the
bandwidth between each sub-channel; hence, the transmitted complex signal Sa(t), which
is encoded by the sequence a = (a0, a1, · · · , aN−1), is represented as follows [41]:

Sa(t) = ∑ N−1
i=0 aie2π j fit (9)

Let C represent the ensemble of all possible codewords (a ∈ C), and p(a) indicate
how likely the codeword a is to be transmitted. Thus, the average envelope power of the
transmitted signal is written as follows [13]:

Pav = ∑ a∈C|a|2 p(a) (10)

If the instantaneous envelope power of the transmitted OFDM signal is P(t) = |Sa(t)|2,
then we write the PMEPR of the codeword a as [13]

PMEPR(a) =
max(P(t))

Pav
. (11)

The following lemma holds if an OFDM signal is encoded by binary, quaternary, or
polyphase GCSs.

Lemma 4 (Ref. [9]). If a code C is made up of binary, quaternary, or polyphase GCSs, the PMEPR
upper bound of the code C satisfies [9]

PMEPR(C) ≤ 2. (12)

However, when it comes to 4q-QAM GCSs, which are proposed in [23], the following
lemma gives their PMEPR upper bound.

Lemma 5 (Ref. [23]). If a code C is made up of 4q -QAM GCSs constructed in [23], the PMEPR
upper bound of the code C satisfies [23]

PMEPR(C) ≤ 6(2q − 1)
2q + 1

. (13)

3. Results and Discussion

In this section, we first present a new description of a 4q-QAM constellation. On this
basis, we propose a new construction of 4q-QAM GCSs and give an example of 64-QAM
GCSs to verify this proposal. Then, we describe the family size and the PMEPR upper
bound of the new construction.

3.1. New Description of 4q-QAM Constellation

In the description of the 4q-QAM constellation in Equation (7), there are q independent
quaternary variables. Here is a new description of the 4q-QAM constellation presented by
this paper, which is given by the following theorem:

Theorem 1.

Ω4q−QAM =
{
(1 + j)

(
∑ q−2

p=02p jv(p)
+ 2q−2 ∑ q

p=q−1 jv(p)
)∣∣∣v(p) ∈ Z4

}
(14)

This new description has q + 1 independent quaternary variables, which is one more
than the description in Equation (7).
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Proof of Theorem 1 ([29]). We divide the proof into two parts: (1) each symbol in the set of
Equation (14) must be included in the 4q-QAM constellation Ω4q−QAM; (2) each 4q-QAM
symbol in Ω4q−QAM can be produced by the set in Equation (14).

(1) For ∀
(

v(0), v(1), · · · , v(q)
)
∈ Zq+1

4 , whose symbol distribution of q + 1 offsets are
represented as 

n0 =
∣∣∣{p

∣∣∣v(p) = 0, 0 ≤ p ≤ q
}∣∣∣

n1 =
∣∣∣{p

∣∣∣v(p) = 1, 0 ≤ p ≤ q
}∣∣∣

n2 =
∣∣∣{p

∣∣∣v(p) = 2, 0 ≤ p ≤ q
}∣∣∣

n3 =
∣∣∣{p

∣∣∣v(p) = 3, 0 ≤ p ≤ q
}∣∣∣,

(15)

the description of Equation (14) produces the following symbol:

S = (1 + j)
(

∑
q−2
p=02p jv(p)

+ 2q−2 ∑
q
p=q−1 jv

(p)
)

= (1 + j)[(n0 − n2) + j(n1 − n3)]
= (n0 − n1 − n2 + n3) + j(n0 + n1 − n2 − n3).

(16)

It is obvious that n0 + n1 + n2 + n3 = 2q − 1, which is an odd integer, so the values of
the four integers n0, n1, n2, and n3 only have two cases: “one odd and three evens” or “one
even and three odds”. Apparently, both cases have the same conclusion, which is that the
values of the integers n0 − n1 − n2 + n3 and n0 + n1 − n2 − n3 are both odd. Based on this
conclusion, we clearly have

−(2q − 1) ≤ n0 − n1 − n2 + n3, n0 + n1 − n2 − n3 ≤ 2q − 1. (17)

To sum up, we reach the following conclusion: S ∈ Ω4q−QAM.
(2) For ∀a + jb ∈ Ω4q−QAM, combined with Equation (14), we can obtain the following

equation:

∑ q−2
p=02p jv(p)

+ 2q−2 ∑ q
p=q−1 jv(p)

=
a + jb
1 + j

=
a + b

2
+ j

b− a
2

(18)

We then need to prove that there is at least one (q + 1)-dimensional vector (v(0), v(1),· · · ,
v(q))∈ Zq+1

4 that satisfies Equation (18). We chose the vector by using the following strategy.

Step 1: We discretionarily chose
∣∣∣ a+b

2

∣∣∣ “0s” or “2s” in this vector, depending on the

sign of a+b
2 .

Step 2: We discretionarily chose
∣∣∣ b−a

2

∣∣∣ “1s” or “3s” in the remaining items aside from

the chosen part in Step 1, depending on the sign of b−a
2 .

Step 3: We discretionarily chose “0 and 2” or “1 and 3” in pairs in the remaining items
aside from the chosen part in Steps 1 and 2, so that all the powers of j from these unused
items add up to zero.

From the above steps, we can draw the following conclusion. For each symbol in
Ω4q−QAM, we can find at least one (q + 1)-dimensional vector

(
v(0), v(1), · · · , v(q)

)
∈ Zq+1

4
to ensure this 4q-QAM symbol can be generated by Equation (18).

Thus, summarizing the above, Theorem 1 has been proved. �
More specifically, if we set{

v(p) = µ(p), 0 ≤ p ≤ q− 2
v(q−1) = v(q) = µ(q−1),

(19)
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then Equation (14) can be converted into

Ω4q−QAM =
{
(1 + j)

(
∑

q−2
p=02p jµ

(p)
+ 2q−2·2·jµ(q−1)

)∣∣∣µ(p) ∈ Z4

}
=
{
(1 + j)∑

q−1
p=02p jµ

(p)
∣∣∣µ(p) ∈ Z4

}
.

(20)

Obviously, Equation (20) is equivalent to Equation (7).
Therefore, Equation (7) is a special case of Theorem 1.

3.2. New Construction of 4q-QAM GCS
3.2.1. Construction of New QAM Sequences

Based on the description of Equation (14), we propose a new construction of 4q-QAM
GCSs in this section.

Theorem 2. If h = 2 in Equation (3), then the obtained functions f (x) are quaternary GBFs.
Hence, we let



a(0)(x) = f (x) + c
b(0)(x) = a(0)(x) + µ(x)
a(1)(x) = a(0)(x) + s(1)(x)
b(1)(x) = a(1)(x) + µ(x) = a(0)(x) + s(1)(x) + µ(x)

...
a(q)(x) = a(0)(x) + s(q)(x)
b(q)(x) = a(q)(x) + µ(x) = a(0)(x) + s(q)(x) + µ(x).

(21)

By means of Equation (14), the 4q-QAM sequences A = (A0, A1, · · · , AN−1) and B =
(B0, B1,· · · , BN−1) with length N = 2m can be constructed as follows:

Ai = (1 + j)
(

∑
q−2
p=02p ja(p)

i + 2q−2 ∑
q
p=q−1 ja(p)

i

)
Bi = (1 + j)

(
∑

q−2
p=02p jb(p)

i + 2q−2 ∑
q
p=q−1 jb(p)

i

)
,

(22)

where a(p)
i , b(p)

i ∈ Z4, 0 ≤ p ≤ q, 0 ≤ i ≤ 2m − 1. Then, the obtained 4q-QAM sequences A and
B are 4q-QAM GCSs when the offsets s(p)(x) (1 ≤ p ≤ q) and the corresponding pairing difference
µ(x) with d(p)

l ∈ Z4 (1 ≤ p ≤ q, 0 ≤ l ≤ 2) are as in one of the following cases:

Case I :

{
µ(x) = 2xπ(m)

s(p)(x) = d(p)
0 + d(p)

1 xπ(1) (1 ≤ p ≤ q)
(23)

Case I I :

{
µ(x) = 2xπ(1)

s(p)(x) = d(p)
0 + d(p)

1 xπ(m) (1 ≤ p ≤ q)
(24)

Case I I I :


µ(x) = 2xπ(1) or 2xπ(m)

s(p)(x) = d(p)
0 + d(p)

1 xπ(ω) + d(p)
2 xπ(ω+1)

with 2d(p)
0 + d(p)

1 + d(p)
2 = 0 (mod 4)

(1 ≤ p ≤ q, 1 ≤ ω ≤ m− 1).

(25)

Particularly, if s(q−1)(x) = s(q)(x), we haveAi = (1 + j)∑
q−1
p=02p ja(p)

i

Bi = (1 + j)∑
q−1
p=02p jb(p)

i ,
(26)
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which is the same as the construction of Theorem 2 in [23].
Therefore, the construction of Theorem 2 in [23] is a special case of the one constructed

by Theorem 2 in this paper. Figure 2 clearly depicts the process of how to construct the
QAM GCSs from the QAM constellation and shows the relationship between [23] and
this paper.
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Proof of Theorem 2. For ∀τ > 0, the aperiodic autocorrelation function of the sequence A
can be expressed as follows:

CA(τ) = ∑ N−1−τ
i=0 Ai A∗i+τ . (27)

Combined with Equation (22), we can calculate Equation (27) into

1
2 CA(τ) = ∑N−1−τ

i=0

[(∑
q−2
p=0 2p ja(p)

i + 2q−2 ∑
q
p=q−1 ja(p)

i )

·(∑q−2
p=0 2p ja(p)

i+τ + 2q−2 ∑
q
p=q−1 ja(p)

i+τ )∗]

= ∑
q−2
p=0 4pCa(p)(τ) + 4q−2 ∑

q
p=q−1 Ca(p)(τ)

+∑
q−2

p′, p′′ = 0
p′ 6= p′′

2p′+p′′
[
C

a(p′),a(p′′ )(τ) + C
a(p′′ ),a(p′)(τ)

]
+∑ 0 ≤ p′ ≤ q− 2

q− 1 ≤ p
′′ ≤ q

2p′+q−2
[
C

a(p′),a(p′′ )(τ) + C
a(p′′ ),a(p′)(τ)

]
+∑

q

p′, p′′ = q− 1
p′ 6= p′′

[
C

a(p′),a(p′′ )(τ) + C
a(p′′ ),a(p′)(τ)

]
(28)

For the sequence B in Equation (22), using the same method, we can get

1
2 CB(τ) = ∑

q−2
p=04pCb(p)(τ) + 4q−2 ∑

q
p=q−1Cb(p)(τ)

+
q−2
∑

p′ ,p′′=0
p′ 6=p′′

2p′+p′′
[
C

b(p′),b(p′′ )(τ) + C
b(p′′ ),b(p′)(τ)

]
+ ∑

0≤p′≤q−2
q−1≤p

′′≤q

2p′+q−2
[
C

b(p′),b(p′′ )(τ) + C
b(p′′ ),b(p′)(τ)

]

+
q
∑

p′ ,p′′=q−1
p′ 6=p′′

[
C

b(p′),b(p′′ )(τ) + C
b(p′′ ),b(p′)(τ)

]
(29)
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By employing Lemma 2, we can get that sequences a(p) and b(p) (0 ≤ p ≤ q) form
GCSs, and then we can obtain

Ca(p)(τ) + Cb(p)(τ) = 0 (∀τ > 0, 0 ≤ p ≤ q). (30)

Hence, in order to ensure that sequences A and B are GCSs, the following equation
would be a sufficient condition [41]:

C
a(p′),a(p′′ )(τ) + C

a(p′′ ),a(p′)(τ) + C
b(p′),b(p′′ )(τ) + C

b(p′′ ),b(p′)(τ) = 0
(∀τ > 0, 0 ≤ p′, p′′ ≤ q, p′ 6= p′′ ).

(31)

There are two QPSK GCS pairs involved in Equation (31), represented as (ap′ , bp′) and
(ap′′ , bp′′ ). Then, we have the following equation:

a(p′)(x) = f (x) + c
b(p′)(x) = a(p′)(x) + µ(x)
a(p′′ )(x) = a(p′)(x) + s(x)
b(p′′ )(x) = b(p′)(x) + s(x) = a(p′′ ) + µ(x).

(32)

Let i = (i1, i2, · · · , im) denote the binary representation of i, i.e., i = ∑m
k=1 ik2m−k.

Let fi, ai, bi, µi, and si denote the ith elements of the sequences generated from f (x),
a(x), b(x), µ(x), and s(x) over Z4. From Equation (32), we have

ai
(p′) = fi + c

bi
(p′) = ai

(p′) + µi
ai
(p′′ ) = ai

(p′) + si
bi
(p′′ ) = bi

(p′) + si = ai
(p′′ ) + µi.

(33)

Therefore,

C
a(p′),a(p′′ )(τ) + C

a(p′′ ),a(p′)(τ) + C
b(p′),b(p′′ )(τ) + C

b(p′′ ),b(p′)(τ)

= ∑N−1−τ
i=0

(
jai

(p′)−ai+τ
(p′′ )

+ jai
(p′′ )−ai+τ

(p′)
+ jbi

(p′)−bi+τ
(p′′ )

+ jbi
(p′′ )−bi+τ

(p′)
)

= ∑N−1−τ
i=0

[
jai

(p′)−ai+τ
(p′)

(j−si+τ + jsi ) + jbi
(p′)−bi+τ

(p′)
(j−si+τ + jsi )

]
= ∑N−1−τ

i=0

[
jai

(p′)−ai+τ
(p′)

(j−si+τ + jsi ) + jai
(p′)−ai+τ

(p′)
jµi−µi+τ (j−si+τ + jsi )

]
= ∑N−1−τ

i=0

[
jai

(p′)−ai+τ
(p′)

(j−si+τ + jsi )(1 + jµi−µi+τ )
]
.

(34)

The last summation in Equation (34) was verified to equal its own negation in [23], so
Equation (34) must be zero. From this conclusion, it can be concluded that Equation (31)
is valid.

Because Equation (31) was proved to be true, we can get

CA(τ) + CB(τ) = 0 (∀τ > 0), (35)

which can prove that sequences A and B are GCSs, and then the proof of Theorem 2
is complete. �

An example is given below to verify this conclusion and make it easier for readers
to understand.

In Theorem 1, let q = 3, then a construction of 64-QAM is given by

Ω64−QAM =
{
(1 + j)

(
jv(0) + 2jv(1) + 2jv(2) + 2jv(3)

)∣∣∣v(0), v(1), v(2), v(3) ∈ Z4

}
. (36)
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Then, the 64-QAM sequences A = (A0, A1, · · · , A15) and B = (B0, B1, · · · , B15) with
length N = 24 = 16 can be constructed as

Ai = (1 + j)
(

ja(0)i + 2ja(1)i + 2ja(2)i + 2ja(3)i

)
Bi = (1 + j)

(
jb(0)i + 2jb(1)i + 2jb

(2)
i + 2jb

(3)
i

)
.

(37)

In Theorem 2, by employing Case I, let x = (x1, x2, x3, x4), the standard GBF f (x) =
2(x1x2 + x2x3 + x3x4) + x1 + 3x3, the offsets s(1)(x) = 3, s(2)(x) = 1 + x1, s(3)(x) = 3x1,
and the pairing difference µ(x) = 2x4; then, we can get

a(0)(x) = 2(x1x2 + x2x3 + x3x4) + x1 + 3x3
b(0)(x) = a(0)(x) + 2x4
a(1)(x) = a(0)(x) + 3
b(1)(x) = a(1)(x) + 2x4
a(2)(x) = a(0)(x) + 1 + x1
b(2)(x) = a(2)(x) + 2x4
a(3)(x) = a(0)(x) + 3x1
b(3)(x) = a(3)(x) + 2x4.

(38)

Therefore, the proposed 64-QAM sequences with a length of 16 are represented as
A = (3 + 3j, 3 + 3j, 3− 3j,−3 + 3j, 3 + 3j, 3 + 3j,−3 + 3j, 3− 3j,

5 + 3j, 5 + 3j, 3− 5j,−3 + 5j,−5− 3j,−5− 3j, 3− 5j,−3 + 5j)
B = (3 + 3j,−3− 3j, 3− 3j, 3− 3j, 3 + 3j,−3− 3j,−3 + 3j,−3 + 3j,

5 + 3j,−5− 3j, 3− 5j, 3− 5j,−5− 3j, 5 + 3j, 3− 5j, 3− 5j).

(39)

Consequently, the sum of their autocorrelation function is

CA(τ) + CB(τ) = (832, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). (40)

Obviously, the results satisfy CA(τ) + CB(τ) = 0 (∀τ 6= 0), which means sequences A
and B are both 64-QAM GCSs.

Sequence A’s autocorrelation function CA(τ), sequence B’s autocorrelation function
CB(τ), and their sum CA(τ) + CB(τ) were calculated, and the results are depicted in
Figure 3.

3.2.2. Family Size of New QAM Sequences

Combined with Equation (21), we can convert Equation (22) into
Ai = (1 + j)

(
∑

q−2
p=02p ja(0)i +s(p)

i + 2q−2 ∑
q
p=q−1 ja(0)i +s(p)

i

)
Bi = (1 + j)

(
∑

q−2
p=02p ja(0)i +s(p)

i +µi + 2q−2 ∑
q
p=q−1 ja(0)i +s(p)

i +µi

)
.

(41)

Apparently, if the offset vector
(

s(1)(x), s(2)(x), · · · , s(q−1)(x), s(q)(x)
)

is resolved, then
the family size of the 4q-QAM GCSs pair (A, B) is determined. Notice two arbitrary offset
vectors

(
g(1)(x), g(2)(x), · · · , g(q−1)(x), g(q)(x)

)
and

(
h(1)(x), h(2)(x), · · · , h(q−1)(x), h(q)(x)

)
;

if they satisfy g(k)(x) = h(k)(x) (1 ≤ k ≤ q− 2), g(q−1)(x) = h(q)(x), and g(q)(x) = h(q−1)(x),
then these two offset vectors produce the same two 4q-QAM GCS pairs. To avoid the above
case of a repeated count, we considered the two cases below to calculate the family size.

Case I: s(q−1)(x) = s(q)(x).
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In this case, our construction was just the same as the one in [23]. According to the
conclusion of Corollary 3 in [23], we can obtain from (m + 1)·42(q−1) − (m + 1)·4q−1 + 2q−1

different offset vectors.
Case II: s(q−1)(x) 6= s(q)(x).
In this case, we divided the offset vector

(
s(1)(x), s(2)(x), · · · , s(q−1)(x), s(q)(x)

)
into

two parts. Part 1 is the front q− 2 elements forming the (q− 2)-dimensional offset vector(
s(1)(x), s(2)(x), · · · , s(q−2)(x)

)
, and Part 2 is the offset pair

(
s(q−1)(x), s(q)(x)

)
consisting

of the last two elements. Then, we calculated these two parts respectively and multiplied
the results.

Part 1: Consider the offset vector (s(1)(x), s(2)(x), · · · , s(q−2)(x)) (s(p)(x) ∈ Z4, 1 ≤ p ≤
q− 2). When this (q− 2)-dimensional vector ranges from (0, 0, · · · , 0) to (1, 1, · · · , 1), 4q−2

distinct offset vectors can be produced.
Part 2: Consider the offset pair

(
s(q−1)(x), s(q)(x)

) (
s(p)(x) ∈ Z4, q− 1 ≤ p ≤ q

)
. By

using the same method in [18], we can group the possible offsets into five groups, which
satisfy the empty pairwise intersections, as below. It is known that the permutations of
the offset coefficients

(
d(p)

0 , d(p)
1 , d(p)

2

)
satisfy 2d(p)

0 + d(p)
1 + d(p)

2 = 0 (mod 4), as listed in
Table 1 [23], and we can get

S1 = {d0|d0 = 0, 1, 2, 3}
S2 =

{
d0 + d1xπ(1)

∣∣∣d0, d1 ∈ Z4, d1 6= 0
}

S3 =
{

d0 + d1xπ(m)

∣∣∣d0, d1 ∈ Z4, d1 6= 0
}

S4 = {d0 + d1xπ(ω)

∣∣∣(d0, d1

)
= (1, 2), (3, 2)} (2 ≤ ω ≤ m− 1)

S5 = {d0 + d1xπ(ω) + d2xπ(ω+1)

∣∣∣(d0, d1, d2

)
= (0, 1, 3), (0, 2, 2),

(0, 3, 1), (1, 1, 1), (1, 3, 3), (2, 1, 3), (2, 2, 2), (2, 3, 1),
(3, 1, 1), (3, 3, 3)} (1 ≤ ω ≤ m− 1).

(42)
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𝑏𝑏(0)(𝒙𝒙) = 𝑎𝑎(0)(𝒙𝒙) + 2𝑥𝑥4
𝑎𝑎(1)(𝒙𝒙) = 𝑎𝑎(0)(𝒙𝒙) + 3
𝑏𝑏(1)(𝒙𝒙) = 𝑎𝑎(1)(𝒙𝒙) + 2𝑥𝑥4
𝑎𝑎(2)(𝒙𝒙) = 𝑎𝑎(0)(𝒙𝒙) + 1 + 𝑥𝑥1
𝑏𝑏(2)(𝒙𝒙) = 𝑎𝑎(2)(𝒙𝒙) + 2𝑥𝑥4
𝑎𝑎(3)(𝒙𝒙) = 𝑎𝑎(0)(𝒙𝒙) + 3𝑥𝑥1
𝑏𝑏(3)(𝒙𝒙) = 𝑎𝑎(3)(𝒙𝒙) + 2𝑥𝑥4.

 (38) 

Therefore, the proposed 64-QAM sequences with a length of 16 are represented as 

⎩
⎨

⎧
𝑨𝑨 = (3 + 3𝑗𝑗, 3 + 3𝑗𝑗, 3 − 3𝑗𝑗,−3 + 3𝑗𝑗, 3 + 3𝑗𝑗, 3 + 3𝑗𝑗,−3 + 3𝑗𝑗, 3 − 3𝑗𝑗,

5 + 3𝑗𝑗, 5 + 3𝑗𝑗, 3 − 5𝑗𝑗,−3 + 5𝑗𝑗,−5 − 3𝑗𝑗,−5 − 3𝑗𝑗, 3 − 5𝑗𝑗,−3 + 5𝑗𝑗)
𝐁𝐁 = (3 + 3𝑗𝑗,−3 − 3𝑗𝑗, 3 − 3𝑗𝑗, 3 − 3𝑗𝑗,3 + 3𝑗𝑗,−3 − 3𝑗𝑗,−3 + 3𝑗𝑗,−3 + 3𝑗𝑗,

5 + 3𝑗𝑗,−5 − 3𝑗𝑗, 3 − 5𝑗𝑗, 3 − 5𝑗𝑗,−5 − 3𝑗𝑗, 5 + 3𝑗𝑗, 3 − 5𝑗𝑗, 3 − 5𝑗𝑗).

 (39) 
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Obviously, the results satisfy 𝐶𝐶𝑨𝑨(𝜏𝜏) + 𝐶𝐶𝑩𝑩(𝜏𝜏) = 0 (∀𝜏𝜏 ≠ 0), which means sequences A 
and B are both 64-QAM GCSs. 
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Figure 3. The autocorrelation functions of the proposed 64-QAM GCSs in (39): (a) Real part of A’s
autocorrelation function CA(τ); (b) imaginary part of A’s autocorrelation function CA(τ); (c) real
part of B’s autocorrelation function CB(τ); (d) imaginary part of B’s autocorrelation function CB(τ);
(e) real part of the sum of A and B’s autocorrelation functions CA(τ) + CB(τ); (f) imaginary part of
the sum of A and B’s autocorrelation functions CA(τ) + CB(τ).
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Table 1. Offset coefficients that satisfy 2d(p)
0 + d(p)

1 + d(p)
2 = 0 (mod 4).

NO.
(

d(p)0 ,d(p)1 ,d(p)2

)
NO.

(
d(p)0 ,d(p)1 ,d(p)2

)
NO.

(
d(p)0 ,d(p)1 ,d(p)2

)
NO.

(
d(p)0 ,d(p)1 ,d(p)2

)
1 (0, 0, 0) 5 (1, 0, 2) 9 (2, 0, 0) 13 (3, 0, 2)
2 (0, 1, 3) 6 (1, 1, 1) 10 (2, 1, 3) 14 (3, 1, 1)
3 (0, 2, 2) 7 (1, 2, 0) 11 (2, 2, 2) 15 (3, 2, 0)
4 (0, 3, 1) 8 (1, 3, 3) 12 (2, 3, 1) 16 (3, 3, 3)

In order to receive different offset pairs
(

s(q−1)(x), s(q)(x)
)

, we used the selection
strategy presented in [29] to select the offset pairs in Si (1 ≤ i ≤ 5). Step 1: Arbitrarily
select an offset (expressed as Ψ1) in Si as s(q−1)(x), then arbitrarily select an offset in Si −Ψ1
as s(q)(x). Apparently, we can obtain |Si| − 1 possible offset pairs in this step. Step 2:
Arbitrarily select an offset (expressed as Ψ2) in Si −Ψ1 as s(q−1)(x), then arbitrarily select
an offset in Si −Ψ1 −Ψ2 as s(q)(x), which can produce |Si| − 2 possible offset pairs. Then,
the above steps are repeated until we get |Si −Ψ1 −Ψ2 − · · ·| ≤ 1. Summarizing the
results of the above steps, we can obtain (|Si| − 1) + (|Si| − 2) + · · · + 1 possible offset
pairs in total.

Employing the above strategy, (a) for S1, we calculated the possible offset pairs with
3 + 2 + 1 = 6; (b) for S2, we calculated the possible offset pairs with 11 + 10 + · · ·+ 1 = 66;
(c) for S3, this used the same situation as the previous one; (d) for S4, there existed only
one offset pair. Furthermore, the parameter ω can vary from 2 to m− 1, so the number of
possible offset pairs is m− 2 in total; (e) for S5, we calculated the possible offset pairs with
9 + 8 + · · ·+ 1 = 45. In addition, the parameter ω can vary from 1 to m− 1 in each offset
pair. Hence, there are a total of 45(m− 1) possible offset pairs in this case. By adding up (a)
to (e), we can obtain 46m + 91 possible offset pairs in total.

Combining Part 1 and Part 2, Case II has a total of (46m + 91)·4q−2 possible offset pairs.
By summing all the possible offset pairs in Case I and Case II, the results show that

there are (46m + 91)·4q−2 + (m + 1)·42(q−1) − (m + 1)·4q−1 + 2q−1 different offset pairs in
total. Thus, by employing Lemma 1, the theorem below gives the family size of the new
QAM sequences.

Theorem 3. Consider the 4q -QAM GCSs of length 2m constructed by Theorem 1. Thus, the
number of the sequences is

[
(46m + 91)·4q−2 + (m + 1)·42(q−1) − (m + 1)·4q−1 + 2q−1

]
·(m!/2)4m+1 (m ≥ 2, q ≥ 2).

(43)

More specifically, let q = 2 in Equation (43), and we can obtain that the number of
16-QAM GCSs is

(58m + 105)·(m!/2)4m+1 (m ≥ 2), (44)

which is exactly the result of Theorem 6 in [28]. Hence, the conclusion of [28] is a special
case in this paper when q = 2.

Figure 4 depicts the comparison of the family sizes of 16-QAM GCSs when q = 2
between [23] and this paper; it can be seen that the number of sequences increased signif-
icantly. Table 2 shows the comparison of the code rates and family sizes between [23,28]
and this paper, providing a visual representation of the data rate improvement.
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Table 2. Comparison of the code rates and family sizes of 16-QAM GCSs when q = 2.

Reference [23] [28] This Paper

Family Size (12m + 14)·(m!/2)4m+1 (58m + 105)·(m!/2)4m+1 (58m + 105)·(m!/2)4m+1

Code Rate loga|C|/2m loga|C|/2m loga|C|/2m

m = 2 2.812 3.446 3.446
m = 3 1.904 2.213 2.213
m = 4 1.221 1.400 1.400
m = 5 0.754 0.829 0.829

3.2.3. PMEPR Upper Bound of New QAM Sequences

The PMEPR upper bound of the new 4q-QAM GCSs are represented by the following theorem.

Theorem 4. Consider a code C whose codewords are made up of 4q -QAM GCSs constructed by
Theorem 2, then the PMEPR upper bound of the code C satisfies

PMEPR(C) ≤ 6(2q − 1)
2q + 1

. (45)

Proof of Theorem 4. For ∀A ∈ C, let A be a 4q-QAM GCSs with length N constructed
by Theorem 2, then the peak envelope power (PEP) of sequence A satisfies PEP(A) ≤
2 ∑ N−1

i=0 |Ai|2 due to Equation (26) in [23]. Combined with Equation (22), and in order to
ensure that the average squared magnitude is equal to one, we have

∣∣∣∣ 1√
(4q−1)/3

Ai

∣∣∣∣2 =

∣∣∣∣ 1+j√
(4q−1)/3

(
∑

q−2
p=02pja

(p)
i + 2q−2 ∑ p=q−1

qja
(p)
i

)∣∣∣∣2
≤ (2q−1)2

(4q−1)/3 = 3(2q−1)
2q+1 .

(46)
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Then, we can get

PMEPR(A) =
PEP(A)

N ≤ 2 ∑N−1
i=0 |Ai |2

N
≤ 2N

N ·
3(2q−1)

2q+1 = 6(2q−1)
2q+1 ,

(47)

and the proof is complete. �
The PMEPR upper bound is equal to 3.6 when q = 2 (16-QAM), equal to 4.667 when

q = 3 (64-QAM), and equal to 5.294 when q = 4 (256-QAM), and it approaches 6 as the
constellation order increases [42]. Figure 5 clearly depicts this tendency.
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As a result, the new QAM GCSs in this paper have the same PMEPR upper bound as the
sequences in [23], which means that there was no degradation in the PMEPR performance.

4. Conclusions

In this paper, a new description of a 4q-QAM constellation has been presented.
Based on this foundation, we proposed a new construction of 4q-QAM GCSs of length
2m using GBFs, which resulted in the enlargement of the family size of GCSs and al-
lowed us to obtain a low PMEPR. A previous construction of 4q-QAM GCSs presented
by Li and another previous construction of 16-QAM GCSs presented by Zeng were
proven to be special cases of ours. The family size of the new sequences was calculated
to be

[
(46m + 91)·4q−2 + (m + 1)·42(q−1) − (m + 1)·4q−1 + 2q−1

]
·(m!/2)4m+1. This result

shows that the new sequences have a larger family size, which means that there was a
great improvement in the data rate. When applied in OFDM systems, the new sequences
have the same PMEPR upper bound of 6(2q − 1)/(2q + 1) as the sequences presented by
Li, which means we increased the data rate without degrading the PMEPR performance.
Our next research directions will be to propose the PMEPR reduction schemes by reducing
the computational complexity of OFDM systems, and to focus on the future challenges
of a lower PMEPR by improving or reducing the computational complexity of OFDM
MIMO systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Aperiodic Correlation Function
ADC Analog-to-Digital Converter
BER Bit Error Ratio
CCC Complete Complementary Code
CF Clipping and Filtering
CSS Complementary Sequence Set
DAC Digital-to-Analog Converter
GBF Generalized Boolean function
GCS Golay Complementary Sequence
GDJ Golay–Davis–Jedwab
ICI Inter-Channel Interference
LAN Local Area Network
OFDM Orthogonal Frequency Division Multiplexing
PMEPR Peak-to-Mean Envelope Power Ratio
PSK Phase Shift Keying
PTS Partial Transmit Sequence
PU Para-Unitary
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
SI Side Information
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