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Abstract: The combination of unmanned aerial vehicles (UAVs) and artificial intelligence is significant
and is a key topic in recent substation inspection applications; and meter reading is one of the
challenging tasks. This paper proposes a method based on the combination of YOLOv5s object
detection and Deeplabv3+ image segmentation to obtain meter readings through the post-processing
of segmented images. Firstly, YOLOv5s was introduced to detect the meter dial area and the
meter was classified. Following this, the detected and classified images were passed to the image
segmentation algorithm. The backbone network of the Deeplabv3+ algorithm was improved by
using the MobileNetv2 network, and the model size was reduced on the premise that the effective
extraction of tick marks and pointers was ensured. To account for the inaccurate reading of the meter,
the divided pointer and scale area were corroded first, and then the concentric circle sampling method
was used to flatten the circular dial area into a rectangular area. Several analog meter readings were
calculated by flattening the area scale distance. The experimental results show that the mean average
precision of 50 (mAP50) of the YOLOv5s model with this method in this data set reached 99.58%,
that the single detection speed reached 22.2 ms, and that the mean intersection over union (mIoU) of
the image segmentation model reached 78.92%, 76.15%, 79.12%, 81.17%, and 75.73%, respectively.
The single segmentation speed reached 35.1 ms. At the same time, the effects of various commonly
used detection and segmentation algorithms on the recognition of meter readings were compared.
The results show that the method in this paper significantly improved the accuracy and practicability
of substation meter reading detection in complex situations.

Keywords: object detection; image segmentation; YOLOv5s; Deeplabv3+; meter reading

1. Introduction

Meter reading is an extremely important task that is widely used in real life [1].
Many meter readings [2–4] require manual periodic inspection and recording of the meter
readings to reflect whether the device is operating safely. Due to the various shapes, scales,
pointers, and characters of the meter, and the existence of different equipment locations,
such as high-voltage equipment in substations, it is difficult for regular manual inspections
to be carried out.

At present, traditional meters with scales and pointers are still commonly used in the
substation environment. In the actual application environment, the traditional manual
counting not only involves many human factors, but also is easily disturbed by the environ-
ment and has the danger of an electric shock. With the gradual promotion of unattended
substations, inspection robots or UAVs equipped with automatic meter identification tech-
nology have been widely used. Therefore, the realization of intelligent reading of meters
by the computer vision method has become a research hotspot.

Sensors 2022, 22, 7090. https://doi.org/10.3390/s22187090 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22187090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8021-3943
https://doi.org/10.3390/s22187090
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22187090?type=check_update&version=3


Sensors 2022, 22, 7090 2 of 15

In recent years, the traditional meter reading methods have been mainly based on
Hough transform [5–8] and image registration [9,10]. Firstly, the method based on Hough
transform is to obtain the position of the pointer and the dial through Hough line detection
and arc detection, and also to obtain the deflection angle of the pointer and calculate the
reading of the meter. This method is susceptible to noise interference, resulting in inaccu-
rate readings. Secondly, some researchers also use the method based on image template
matching to identify the instrument. This method uses feature matching algorithms such
as SIFT [11] and SURF [12] to register the image to be recognized as a standard image to
read meter readings, and it is not conducive to dealing with multiple meter readings in
complex backgrounds.

With the continuous development of deep learning and convolutional neural networks,
many common object detection algorithms and semantic segmentation algorithms [13]
are used in meter reading detection, such as YOLO [14,15], SSD [16], Faster RCNN [17],
DeepLab [18], Unet [19], and Transformer [20], etc. In recent years, many researchers
have used deep learning methods to conduct research in this field. Xing et al. [21] used a
convolutional neural network to detect the area where the meter exists and post-process
the meter image through a Hough transform. However, the robustness of the algorithm is
not strong. Wan et al. [22] proposed a method based on a combination of object detection
and image segmentation algorithms and a perspective transformation method based on
image segmentation information to calibrate the image and finally obtain the meter reading.
However, this method requires a two-stage detection of the dial and hands, which increases
the calculation time. Tao et al. [23] used the SSD algorithm combined with the post-
processing method to achieve meter readings, but this method has a large error, and the
model size is also large and takes up a lot of memory.

Most of the above methods are not suitable for carrying on mobile terminals or
UAVs, and there is the problem of large errors. In order to solve the above problems,
this paper proposes a meter detection and recognition method based on UAV aerial images.
Specifically, it is to deploy UAV slots in substations, plan routes, and collect meter images in
different weather and time periods in substations. The meter area in the image is detected
by using the YOLOv5 object detection algorithm [24], and the image of the meter area is
intercepted. Then the intercepted meter area image is sent to the Deeplabv3+ [25] algorithm
segmentation model for segmentation, and finally the meter reading is obtained after
post-processing. The main contributions of this paper are as follows:

1. By combining UAV and deep learning vision technology, the problems of the low
efficiency and the high cost of traditional manual inspection or robot inspection are
solved;

2. The object detection algorithm YOLOv5s is introduced to improve the accuracy of
detection of meter dial area and classification;

3. Deeplabv3+ is used for image segmentation and this method improves the detection
accuracy of the pointer and the scale line;

4. Based on the image segmentation results, the concentric circle sampling method is
proposed to flatten the dial to realize the reading of the dial image.

This study is outlined as follows: Section 2 shows the YOLOv5 algorithm structure,
the Deeplabv3+ algorithm structure, and the post-processing method of the meter readings;
Section 3 introduces various comparative experiments and experimental results from the
same time and the experimental results are analyzed; Section 4 concludes the study; and
Section 5 puts forward an outlook for the future in view of the shortcomings of the research.

2. Methods
2.1. Meter Reading Recognition Based on Object Detection and Image Segmentation

According to the characteristics of the UAV aerial photography substation meter
image and the shortcomings of the traditional meter reading method, this paper adopted
the object detection algorithm and semantic segmentation technology based on deep
learning, which can accurately obtain the meter image and the meter corresponding to the
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image. The scale and pointer area realized the reading of the substation equipment. Object
detection technology was used to detect the meter area in the image, which generally refers
to the minimum outer-enclosing rectangular area of the closely surrounded meter target;
the image segmentation technology is used to further segment the meter pointer and scale
area target pixels in the meter image.

The idea of this paper was firstly to use the YOLOv5s object detection [26,27] tech-
nology to detect the area where the metered target is located in the UAV aerial image
and eliminate the interference of the non-target area in the image; secondly, to accurately
segment the intercepted meter image into the scale and pointer positions in the meter image
by Deeplabv3+ image segmentation technology; and finally, to obtain the meter reading by
post-processing. The processing flow of this paper is shown in Figure 1.
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2.2. The YOLO Model

YOLOv5 [28] is a single-stage object detection algorithm. According to the depth and
width of the network, YOLOv5 has four versions: YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. The depth of the network directly affects the detection accuracy and speed of
the detector. The detection object in this paper was the aerial meter data and the detection
object was small. On the premise of ensuring the detection accuracy, the detection model
was installed on the edge device, so the YOLOv5s version would be used.

The YOLOv5s network consists of three parts and its network structure is shown in
Figure 2. The backbone used mosaic data enhancement for splicing images through random
scaling, random cropping, and random arrangement. The input image was imported into
the Focus module for slicing operation and the sample slices with a scale of 640 × 640
× 3 were spliced into 320 × 320 × 12. At the same time, a Cross Stage Partial Networks
(CSP) [29] structure and Spatial Pyramid Pooling (SPP) [30] were introduced to realize
convolution and pooling down-sampling in order to extract the features. The next part
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was Neck, which was mainly the Feature Pyramid Networks (FPN) [31] and the Path
Aggregation Network (PAN) [32]. The FPN layer transfered and fused the high-level strong
semantic features through up-sampling from top to bottom. The PAN conveyed strong
localization features from the bottom up and aggregated features from different backbone
layers to different detection layers. The last part was the detection part, which took and
output the feature maps of three scales, which are 17 × 17, 20 × 20, and 23 × 23, respectively.
In the post-processing process, the model generated multiple anchor boxes based on the
object features and used non-maximum suppression (NMS) [33]. If the confidence of the
object being predicted as the object category was greater than the set threshold, it was
retained, thus completing the object detection process.
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Figure 2. The YOLOv5s network structure diagram.

YOLOv5s was used to detect the area where the meter was located within the image.
In order to improve the accuracy of the final meter reading, this paper firstly detected the
dial area of the image through the YOLOv5s network model. Using the labeling software,
LabelImg, to make meter datasets, five different kinds of labels (bj, bjA, bjB, bjH, and bjL)
in the meter images were defined. The type of meter represented by each label is shown in
Figure 3. The algorithm itself automatically imported the training set into the YOLOv5s
network model for training and generated the corresponding detection model weights.
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Figure 3. Five kinds of meters. (a) bj, which refers to oil level, (b) bjA, which refers to Sulfur
Hexafluoride Density Relay, (c) bjB, which refers to Discharge Counter With Current Meter For
Arrester, (d) bjH, which refers to Discharge Counter and (e) bjL, which also is Sulfur Hexafluoride
Density Relay.

2.3. Deeplabv3+ Split Tick Marks and Pointers

Deeplabv3+ is a well-polished state-of-the-art segmentation model, which has been
widely used in many areas, such as the remote sensing area and medical image processing.
This paper studied instrument segmentation detection. The proportion of the pointer and
the scale was small, and the segmentation requirements were relatively fine. Deeplabv3+
has a better segmentation effect on fine objects, therefore, this paper chose Deeplabv3+.

Deeplabv3+ adopts a spatial pyramid pooling model and an encoding-decoding struc-
ture for semantic segmentation, it outputs feature map information in the upper backbone
network, and it detects incoming features through a multi-rate and multi-effective field of
view, which filters or pools operations to encode multi-scale features. The context infor-
mation is enriched by encoding the semantic information and the decoder part gradually
recovers the sharp target boundary information. In the meter detection images, because
the pointer and the scale occupy a small proportion of the area where it is located, the
segmentation of the image will be more difficult. The module structure of Deeplabv3+ is
shown in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15 
 

 

(a) (b) (c) 

  
(d) (e) 

Figure 3. five kinds of meters. (a) bj, which refers to oil level, (b) bjA, which refers to Sulfur Hex-
afluoride Density Relay,(c) bjB, which refers to Discharge Counter With Current Meter For Ar-
rester, (d) bjH, which refers to Discharge Counter and (e) bjL, which also is Sulfur Hexafluoride 
Density Relay. 

2.3. Deeplabv3+ Split Tick Marks and Pointers 
Deeplabv3+ is a well-polished state-of-the-art segmentation model, which has been 

widely used in many areas, such as the remote sensing area and medical image pro-
cessing. This paper studied instrument segmentation detection. The proportion of the 
pointer and the scale was small, and the segmentation requirements were relatively fine. 
Deeplabv3+ has a better segmentation effect on fine objects, therefore, this paper chose 
Deeplabv3+. 

Deeplabv3+ adopts a spatial pyramid pooling model and an encoding-decoding 
structure for semantic segmentation, it outputs feature map information in the upper 
backbone network, and it detects incoming features through a multi-rate and multi-effec-
tive field of view, which filters or pools operations to encode multi-scale features. The 
context information is enriched by encoding the semantic information and the decoder 
part gradually recovers the sharp target boundary information. In the meter detection im-
ages, because the pointer and the scale occupy a small proportion of the area where it is 
located, the segmentation of the image will be more difficult. The module structure of 
Deeplabv3+ is shown in Figure 4. 

 
Figure 4. The Modules of Deeplabv3+. 

Compared with the Xception series used in the Deeplabv3+ paper as the backbone 
feature extraction network, a different backbone network, MobileNetv2 [34], was used in 
this paper. It is more suitable for deployment on edge devices than Xception and has more 
ideal and more efficient parameters and speed. The extracted feature maps went through 
the upgraded ASPP module. The feature map was first reduced in dimension through a 1 

Figure 4. The Modules of Deeplabv3+.

Compared with the Xception series used in the Deeplabv3+ paper as the backbone
feature extraction network, a different backbone network, MobileNetv2 [34], was used in
this paper. It is more suitable for deployment on edge devices than Xception and has more
ideal and more efficient parameters and speed. The extracted feature maps went through
the upgraded ASPP module. The feature map was first reduced in dimension through
a 1 × 1 convolution kernel, then through three depthwise separable convolutions, and
finally it was output through Adaptive Pooling. The compressed feature layer was passed
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into the decoder part through the backbone, and after being resized, it was concat with
encode_data, and finally the output result was obtained through two convolution kernels
and the Upsample.

In this paper, Deeplabv3+ was used to segment the tick marks and the pointer positions
of the dial area. The training set of the segmentation network adopted the image of the
dial area after being detected by the YOLOv5s detection network. Therefore, the cropped
RGB image of the dial area was transmitted to the Deeplabv3+ network and it output the
segmentation map as the same size as the input images. Figure 5 shows an example of
the tick training set; the upper image is the original image, and the lower image is the
label image.
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2.4. Post-Processing Methods
2.4.1. Erosion

The Deeplabv3+ segmentation removed most of the background and useless infor-
mation, leaving only the scale and the pointer outline in the image; however, there were
still many noises. In order to further eliminate interference, this paper performed erosion
morphological processing on the segmented meter pointer and scale outline to remove the
discrete point blocks. Assuming that the contour map point set is A, the convolution kernel
is B, and B moves in order in A, the erosion image can be obtained. The segment image
was obtained from the Formula (1):

A − B =
{

x, y
∣∣(B)xy ⊆ A

}
(1)

To remove the interference point blocks in the segmented image, the convolution
kernel B, used in this paper, was designed as a 4 × 4 structure. The erosion operation
eliminated the boundary points of the object, shrunk the boundary inward, and removed
the objects that were smaller than the structural elements. The pointer and scale occupied
fewer pixels in the segmentation map and were easily affected by noise. The effects of noise
such as burrs and small bumps were removed by erosion. At the same time, two objects
that are only connected by small blocks were disconnected to improve the reading accuracy
of the meter.

2.4.2. The Flattening Method and Meter Readings

After semantic segmentation and erosion processing, the circular dial area of the
pointer image was flattened into a rectangular area by the concentric circle sampling
method. The length and geometric center of the two sides of the divided rectangular image
were used as the diameter and the center of the initial concentric circle, respectively, and
the initial rotation angle and the width and height of the flattened rectangular area were
specified. The initial rotation angle was used to generate the initial sampling point of each
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concentric circle. The width corresponded to the number of times of sampling for each
concentric circle, and the height corresponded to the number of sampled concentric circles.
Starting from the initial sampling point of the concentric circles, the pixel values were
uniformly sampled on the circumference of the concentric circles in a clockwise direction.
Taking the center of the concentric circles as the center, and shortening the radius by one
pixel unit, a new concentric circle was generated. The steps for sampling were repeated
several times, and finally the flattened rectangular area corresponding to the circular dial
area was obtained.

The flattened rectangular area corresponded to the scale of the dial, and the midpoint
coordinate of the line-segment was taken as the scale feature point for the scale, thereby
forming a scale-center coordinate set that could represent the position of the scale. At the
same time, the flattened image was scanned line by line from top to bottom, and the average
value of the pointer pixel position was used as the coordinates of the pointer tip to indicate
the pointer position.

Meter readings were accurately calculated by flattening the image, and the calculation
formula is shown in (2):

R =
α

β
µ (2)

where, R represents the meter reading, α represents the distance from the initial scale point
of the flattened image to the pointer, β represents the distance from the initial scale of the
flattened image to the end scale, and µ represents the total range of the meter.

2.5. Evaluation Indicators

Due to the complex environment of the substation, the aerial image of the UAV has a
large receptive field, which will cause missed detection and false detection of the meter.
Therefore, this paper used Precision and Recall to describe the meter detection model
performance. The formulas of Precision and Recall are shown in (3) and (4):

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

In the above formula, TP and FP represent the true and false positives, respectively, and
FN represents the false negatives. In order to further evaluate the detection performance
of the model, it was proposed to use the AP of a single category to represent the sum of
the AP (average precision) values of each category, and to obtain the mAP (mean average
precision) according to the AP value. The formulas for AP and mAP are shown in (5)
and (6):

AP =
∫ 1

0
P(R)dR (5)

mAP =
∑Q

q=1 AP(q)

Q
(6)

In Formula (6), Q is the number of categories.
The accuracy evaluation index of the image semantic segmentation model is expressed

by mIoU (mean intersection over union), and the calculation formula is shown in (7):

mIoU =
1
k

k

∑
i=1

pii

∑k
j=1 pij + ∑k

j=1 Pji − Pii
(7)
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Among them, K represents the number of label categories in the data set; pii represents
the number of the category label, i, in the data set, where the actual prediction is i; pij
represents the category label, j, where the actual predicted category is the number of i; and
pji represents the category label, i, where the actual predicted category is the number of j.

3. Experiment and Results
3.1. Experimental Conditions
3.1.1. Data Acquisition and Transmission

Datasets were acquired by using the company’s self-produced drone nest, the devel-
oped platform scheduling software, and the DJI (Shenzhen DJI Sciences and Technologies
Ltd., Shenzhen, China) Genie 4rtk (Real-Time Kinematic) UAV for data collection. The UAV
itself integrates an HD video transmission system, a 360◦ rotating gimbal, and a 4K camera.
The camera carried by the UAVs captured all the photos on an SD card. Transmission was
carried out by a 4G/5G signal or, when it came back to the drone nest connected by LAN.
All collected data was sent to the control center.

This paper collected the meter images in the Harbin substation and the filming hours
were from 9:00 a.m to 6:00 p.m. The shooting environment included different weather
patterns, lighting, and time periods, and the flight collection was specified according to
the planned route. The flying height of the UAV was the same as the shooting point of the
collecting meter, and the distance between the gimbal and the meter to be collected was
about 1 to 1.5 m. Both the training set and the validation set are independent of each other.
We collected a total of 1632 images in five different categories. There were 979 images in the
training set and 653 images in the test set and the number of all the meter types is shown in
Table 1.

Table 1. Dataset Statistics.

bj bjA bjB bjH bjL

Training set 75 329 301 126 146
Test set 58 213 179 106 97

3.1.2. Experiment Platform

Server-side: Ubuntu 18.04, Intel® Silver 4210 CPU@2.20 GHz, NVIDIA GeForce RTX
A100(80 GB) GPU. The model framework is Pytorch 1.7.0, and the related software is CUDA
11.1, CUDNN 8.0.5 and Python 3.8.

Ubuntu18.04, Intel® Xeon® Gold 5120 CPU@2.20 GHZ, NVIDIA GeForce RTX 2080(8
G)*2 GPU. The model framework is PaddleX 1.3.3, and the related software is CUDA 10.2,
CUDNN 8.1.0 and Python3.8.

3.2. Experimental Results
3.2.1. YOLOv5s Detection Results

After the training was completed, the YOLOv5s detection model needed to be tested
before the semantic segmentation task, and the test results are shown in Figure 6. This shows
that from different distances, different angles, and different weather conditions, the detec-
tion model could identify the position of the meter target in the image, and at the same
time could correctly identify the meter type. This proves that the model used in this paper
had a certain generalization ability and the training effect was ideal.
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3.2.2. Deeplabv3+ Image Segmentation Results

After the Deeplabv3+ network was trained, the network model was tested. Figure 7
shows the test results of the tick marks and the pointers of the model after network
segmentation. The upper layer is the original scene image and the lower layer is the
corresponding segmented image.
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Figure 7. Image segmentation results of Deeplabv3+.

The test results show that the input image segmentation result was basically correct,
and the position of the tick mark and the pointer could be accurately separated. The final
image also needed to be corroded and flattened in order to correctly identify the dial reading.

3.2.3. Flattening Results

In the rectangular area, the scales were evenly arranged from left to right, the lower
end of the pointer was close to the center of the dial, and the upper end was close to
the scale. Figure 8 shows, the result of flattening the image. The first scale coordinate
of the scale center coordinate corresponded to the start scale position, and the last scale
coordinate corresponded to the end scale position. The first distance between the pointer
tip coordinate and the start scale position was calculated and the second distance between
the end scale position and the start scale position was calculated. The ratio of the first
distance to the second distance was multiplied by the total range of the type of meter to
obtain the readings of several pointer meters in the substation.
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Figure 8. The result of flattening the image.

3.3. Comparative Requirements

In order to choose the algorithm version that was more suitable for the research in this
paper, a comparative requirement between the parameters, FLOPS and running speed of
each version of YOLOv5 was carried out. The experimental results are shown in Table 2.

Table 2. A comparison of yolov5 detection model results.

Model Speed/ms FPS Params FLOPS

YOLOv5s 22.2 45.0 7.5M 13.2B
YOLOv5m 27.0 37.0 21.8M 39.4B
YOLOv5l 29.2 34.2 47.8M 88.1B
YOLOv5x 30.8 32.5 89.0M 166.4B

It can be seen from Table 2 that the YOLOv5s model had the least number of parameters
and the fastest speed.

In order to verify the feasibility of using the detection and segmentation algorithm in
this paper, this study compared and tested a variety of commonly used algorithms on the
premise of the same dataset. The results of this comparison are shown in Tables 3 and 4.

Table 3. The comparison of meter detection model results.

bj/% bjA/% bjB/% bjH/% bjL/% mAP50/% Speed/ms Model Size/MB

YOLOv3 99.536 99.623 99.592 99.575 99.567 99.579 27.4 123.4
YOLOv4 99.538 99.610 99.571 99.561 99.566 99.569 34.0 256.3

YOLOv5X 99.540 99.626 99.593 99.576 99.571 99.581 30.8 177.5
YOLOv5L 99.539 99.613 99.584 99.575 99.570 99.576 29.2 90.8
YOLOv5m 99.542 99.630 99.600 99.579 99.573 99.585 27.0 41.3
YOLOv5s 99.542 99.628 99.599 99.579 99.571 99.584 22.2 14.1

Table 4. A comparison of segmentation results.

Backbone bjmIoU/% bjAmIoU/% bjBmIoU/% bjHmIoU/% bjLmIoU/% Speed/ms Model Size/MB

Deeplabv1 VGG16 61.69 52.35 44.54 67.01 37.33 15.8 82.0
Deeplabv2 Resnet101 57.74 47.12 33.55 77.09 45.06 56.0 176.9
Deeplabv3+ Xception65 85.62 76.95 82.14 82.93 80.03 66.8 165.1
Deeplabv3+ MobileNetV2 78.92 76.15 79.12 81.17 75.73 35.1 11.1
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As can be seen in Table 3, this paper proposed the use of the YOLOv5s model with a
faster detection speed for the detection of the meter dial of the aerial image. The Deeplabv3+
model with MobileNetV2 as the backbone network was used to segment the pointer and
the scale of the meter image and the meter reading was realized through the meter post-
processing technology. In this paper, the YOLOv5s model was used to detect a picture on
the NVIDIA Geforce A100 GPU with an inference speed of 22 ms, which is significantly
better than the YOLOv5m, YOLOv5L, YOLOv5X, YOLOv4 [35], and the YOLOv3 [36]
models. The size of the model was only 14.1 MB; and mAP50 reached 99.584% in this
dataset. The better detection accuracy and faster detection speed is able to meet the daily
meter image inspection requirements.

In summary, compared with other commonly used detection algorithms, YOLOv5s
has the smallest model and the fastest inference speed under the premise of ensuring model
accuracy. It is more suitable for real-time detection on edge devices deployed on UAVs.

As can be seen from Table 4, for the five types of meters, the mIoU of the method
used in this paper reached 78.92%, 76.15%, 79.12%, 81.17%, and 75.73%, respectively. It is
obviously better than the Deeplabv1 model and the Deeplabv2 model, but not as good as
than the original Deeplabv3+ model. However, the Deeplabv3+ model with MobileNetV2
as the backbone achieved a single image segmentation speed of 35.1 ms on NVIDIA Geforce
2080 GPU, which was significantly faster than the other three image segmentation models.
The improved Deeplabv3+ model was only 11.1 MB and the parameters of the static model
were only 2.8 MB. Furthermore, the model ran twice as fast, which greatly improved the
model segmentation speed.

Table 4 shows that the Xception65 is the best backbone model, and this study did
not need to achieve real-time detection. The method in this paper can be applied to
substation meter reading whether using the Xception65 or the MobileNetv2 backbone
network. Furthermore, the MobileNetv2 backbone network model detection speed was
faster and we hope that the detection speed will be as fast as possible while still being of
practical use.

Compared with the method of combining Faster R-CNN and U-Net in the litera-
ture [22], the method in this paper has the following advantages:

1. Compared with the Faster R-CNN algorithm, the YOLOv5 algorithm was used in this
paper, and the detection speed was significantly faster;

2. The Deeplabv3+ image segmentation algorithm is mainly used in industrial applica-
tions, but the U-Net image segmentation method is mainly used for medical image
segmentation, so it is better to use the Deeplabv3+ method for meter readings in
industrial applications;

3. The post-processing methods such as concentric circle sampling in this paper were
more robust than the industrial applications in paper [22].

3.4. Meter Reading Interface Display

Figure 9 shows the meter reading results of this method, which are 1.2544, 0.4285,
0.3073, 0.0000, and 0.3977, respectively. It can be seen from the above that the method
in this paper could accurately read the value of the meter image, providing an effective
and accurate reading method for the UAVs aerial photography of the meter image, which,
in this case, used a pointer to indicate the value.
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3.5. Comparing Readings

Figure 10 shows the images of the five meters and Table 5 shows the manually mea-
sured values compared to the recognized values. The error shows the absolute values of the
manually measured values minus the recognized values, which are 0.0212, 0.0002, 0.0184,
0.0330, and 0.0017, respectively. The effectiveness of this method in automatic identification
and reading of substation meter images in UAV aerial photography is, therefore, proven.
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Table 5. Automated recognized results compared to manually read values.

Manually Measured Values Recognized Values Error

bj 3.8500 3.8288 0.0212
bjA 0.4385 0.4383 0.0002
bjB 0.3900 0.3716 0.0184
bjH 0.0000 0.0330 0.0330
bjL 0.4055 0.4072 0.0017

The method proposed in this paper still has many aspects that need to be improved.
We mainly realize that the reading detection of various pointer meters, and the provision of
technical support for the inspection of substation meters, is needed. However, there are
still many different types of meters that have not been studied, and when the area of the
meter is not complete due to the external conditions, it will cause errors or lead to large
reading errors.

4. Conclusions

This paper has designed a method that combined YOLOv5s and Deeplabv3+ and
has implemented a substation meter detection and reading method through a series of
post-processing methods. The test results have proven that the method proposed in this
paper could accurately read various meter types at different angles and under different
conditions. The main contributions of this paper are as follows

1. The use of UAVs to fly through designated routes at different times and different
weather conditions and the collection of 1632 images, including five different types of
meters for object detection model training;

2. The improvement of: the backbone network of the Deeplabv3+ semantic segmentation
network; and the inference speed of the segmentation algorithm for a single image,
which was twice the speed of the original model and a reduction in the size of the
model weight;

3. The use of the erosion and concentric circle sampling method to flatten images to
realize meter panel reading. The result has been to achieve an accurate reading of the
meter readings while quickly detecting the meter area. In this paper, the inspection
of substation instruments was combined with deep learning visual algorithms and
mobile flying equipment. It is hoped that the work in this paper can provide some
help for intelligent substation inspection.

5. Future Work

The main future work would be to continue to improve detection accuracy and
speed, especially for different kinds of meters and more complex background conditions.
At present, the intelligent inspection technology of meter readings has become an important
development direction of the intelligent inspection of substations. In future research,
we will increase the detection and segmentation of other components in the substation
environment, and at the same time combine other algorithms such as object tracking and
key point detection to achieve state estimation and prediction, which will further improve
the intelligence level of substation inspection from all aspects.
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