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Abstract: Unlike optical satellites, synthetic aperture radar (SAR) satellites can operate all day and in
all weather conditions, so they have a broad range of applications in the field of ocean monitoring.
The ship targets’ contour information from SAR images is often unclear, and the background is
complicated due to the influence of sea clutter and proximity to land, leading to the accuracy problem
of ship monitoring. Compared with traditional methods, deep learning has powerful data processing
ability and feature extraction ability, but its complex model and calculations lead to a certain degree
of difficulty. To solve this problem, we propose a lightweight YOLOV5-MNE, which significantly
improves the training speed and reduces the running memory and number of model parameters
and maintains a certain accuracy on a lager dataset. By redesigning the MNEBlock module and
using CBR standard convolution to reduce computation, we integrated the CA (coordinate attention)
mechanism to ensure better detection performance. We achieved 94.7% precision, a 2.2 M model size,
and a 0.91 M parameter quantity on the SSDD dataset.

Keywords: deep learning; YOLOv5; ship detection; lightweight model

1. Introduction

China has more than 18,000 km of coastline and a maritime land area of more than
300 square kilometers. Maritime security plays a vital role in our national defense security.
However, in recent years, illegal fishing, drug trafficking, illegal immigration, and other
illegal maritime activities are common, and some countries often send ships to perform
“tours” in China’s waters. Therefore, ship detection technology plays an important role in
protecting homeland security and monitoring illegal maritime activities [1].

Synthetic aperture radar (SAR) is an active earth observation system that can be
installed on aircraft, satellites, spacecraft, and other flight platforms. It has a strong
penetration ability to cloud, fog, rain, and so on, and is unaffected by light. It can observe
the earth all day and in all weather conditions in real time and has a certain surface
penetration ability [2]. Therefore, the SAR system has unique advantages in disaster,
environmental, and marine monitoring [1–5]; resource exploration; crop yield estimation;
surveying; mapping; military operations [4–7]; and other applications. It also plays a role
that other remote sensing methods find difficult to play. Therefore, increasingly more
countries have paid attention to it.

Owing to the characteristics of SAR imagery, ship detection using SAR images has
become an important research direction for SAR image applications [1–7]. We can obtain
several high-resolution SAR images through airborne and spaceborne SAR images. In
these images, ships on the ocean are clearly seen. Therefore, we can use relevant images
to detect ships and other targets conducive to improving the coastal defense capability of
our country.

At present, there are many researches on deep learning [8–11]. Traditional ship target
monitoring uses SAR images, and commonly used methods include template matching [12],
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support vector machine [13], linear interpolation [14], principal component analysis [15], a
combination of multimode dictionary learning and sparse representation [16], and CFAR
(constant false alarm rate) [17], and so forth. SAR images are easily affected by various
environmental factors, such as speckle noise and background clutter, which makes it
difficult to extract the features of the target of interest. The traditional method usually uses
manual extraction, but there are some disadvantages, such as less feature extraction and
difficult manual selection, and the rate of missing alarm is high, which ultimately affects
the detection effect. Therefore, more and more scholars and scientific research institutions
begin to carry out research on real-time detection of SAR ship targets.

Since the ImageNet competition in 2012, deep learning has begun to develop rapidly.
Its powerful data processing and feature learning abilities have attracted people’s atten-
tion and recognition. Convolutional neural network (CNN) is commonly used in deep
learning [9–11], more and more scholars have made a lot of research on this aspect [18–30].
However, most current algorithms [31–35] focus on improving the model’s accuracy, ig-
noring its speed and high cost. For some large companies, the pretraining large model
optimizes the algorithm and improves accuracy, but for smaller companies, the expensive
cost of training is prohibitive. In addition, the accuracy and speed of the model are not
always perfect. Improved accuracy decreases model speed. In the case that much time
is needed, it appears weak in instances that need real-time detection. Therefore, through
lightweight models, network redundancy can be compressed and reduced, which greatly
reduces the storage capacity, effectively improves the training speed and efficiency of the
model [36,37], and orients it to real-time to achieve a broader range of real-time detection.

Different from traditional methods that require manual feature designs, deep learn-
ing methods can automatically extract features to achieve end-to-end target detection.
Furthermore, the detection performance of deep-learning-based methods is superior. Gen-
erally speaking, target detection methods based on deep learning can be divided into two
categories. The first is single-stage detection, and the mainstream single-stage detection
models include the YOLO (You Only Look Once) series [1,2] and SSD (Single Shot MultiBox
Detector) algorithm [38]. Based on regression, this method can directly predict the category
confidence and locate the target position on the image. The other is the two-stage model,
which presents the regional proposal network structure, generates a series of candidate
boxes containing potential targets, and then further determines the target category and
corrects the boundary boxes. Faster R-CNN [9], Feature Pyramid Networks (FPNs) [10],
Mask R-CNN [11], and other algorithms based on multiscale feature fusion have been
developed. The detection speed of the single-stage model is superior, and the effect of
real-time detection is achieved. The detection accuracy of the two-stage model is better.

In terms of target detection, Dong et al. [31] improved the Faster RCNN by replacing
the traditional nonmaximum suppression (NMS) with a Sig-NMS in the regional proposal
network stage, significantly reducing the possibility of small missing targets. Cui et al. [32]
proposed a detection method based on the intensive attention Pyramid Network (DAPN).
Extracting rich features, including resolution and semantic information, improves the
detection performance of multiscale ship targets. For multidirection target detection,
An et al. [33] improved DRbox-V1 by FPN, focal loss, and improved coding scheme, and
proposed the drbox-V2 detector, which detects ships in any direction. Li et al. [34] proposed
a residual network based on a rotating region (R3-NET) to detect multidirectional vehicles
for remote sensing images and videos with high robustness and accuracy. For dense target
detection, Wang et al. [35] added the Spatial Group-wise Enhancement (SGE) attention
module to CenterNet, which detected densely docked ships well. However, although the
above methods have achieved satisfactory progress of detection accuracy, they are still
computationally expensive, time-consuming, and unsuitable for deploying devices with
limited computing resources and memory. Therefore, it is necessary to design a lightweight
target detection model for remote sensing images.

In terms of target detection using SAR images, Feng et al. [1] proposed a new lightweight
position-enhanced anchor-free SAR ship detection algorithm called LPEDet, which re-
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designed the lightweight multiscale backbone for a new position-enhanced attention strat-
egy. Xu et al. [2] designed a lightweight cross stage part (L-CSP) module to reduce the
amount of computation and applied network pruning for a more compact detector. The
FASC-NET proposed by Yu et al. [26] is mainly composed of ASIR block, focus block, SPP
block, and CAPE block; this network can reduce the number of parameters to a certain
extent and maintain a certain accuracy without losing information. Then, to ensure ex-
cellent detection performance, Hou et al. [39] proposed a ship detection method for SAR
images based on a visual attention model featuring the existing priors of ships in the water.
This method can accurately detect ocean-going ships; however, berthing ships’ missed
detection and false alarm rates are high. Liu and Cao [40] proposed a SAR image target
detection method based on a visual attention pyramid model and singular value decom-
position (VA-SVD), which has a slow calculation speed and poor detection performance
for high-resolution SAR images. Wang et al. [41] proposed a target detection algorithm
for high-resolution SAR images applied to complex scenes based on visual attention with
high detection accuracy, but it cannot retain the original shape of the target. Yu et al. [42]
proposed an efficient lightweight network, Efficient-YOLO. In this paper, a new regression
loss function, ECIoU, is proposed to improve positioning accuracy and model convergence
speed, the SCUPA module is proposed to enhance the generalization ability of the model,
and the GCHE module is proposed to enhance the feature extraction ability of the network.
Jiang et al. [43] proposed a three-channel image construction scheme based on NSLP con-
tour extraction, which enriches the contour information of the dataset while reducing the
impact of noise. Liu et al. [44] proposed a lightweight YOLOV4-Lite model based on which
the MobileNetv2 network was used as the backbone feature extraction network, and deep
separable convolution was used to reduce the computational overhead in the process of
network training and ensure the lightweight characteristics of the network. Sun et al. [45]
proposed a novel YOLO-based arbitrary-oriented SAR ship detector using bidirectional fea-
ture fusion and angular classification (BiFA-YOLO). This paper will be a novel bidirectional
feature fusion module (BI-DFFM) specifically for SAR ship detection applied to the YOLO
framework to effectively aggregate multiscale features to detect multiscale ships, and an
angle classification structure is added to obtain ship angle information more accurately.

At present, significant research has been conducted on SAR ship monitoring [1–7].
There is a great difference between SAR images and optical images. SAR images are gener-
ally used for target detection only with amplitude information. Meanwhile, SAR images are
susceptible to various environmental factors, such as speckle noise and background clutter,
which complicates feature extraction of interesting targets. In addition, the movement
sensitivity and pose sensitivity of the sensor also lead to SAR target instability. The target
detection algorithm of optical images is not entirely applicable to SAR images.

In summary, the following problems must be resolved:
(1) In order to further improve the accuracy of existing algorithms, most work in-

volves blindly increasing the structure of the model, resulting in a large number of model
parameters that slow down the speed of model training and reasoning. This outcome is
not only not conducive to the real-time detection effect of the model, but also reduces the
practicality of the model. At the same time, the complexity and the number of parameters
of the model also limit the application and promotion of the model to a certain extent.

(2) Some models may not consider the problem of location information and com-
putation overhead, which may lead to inaccurate target positioning during target detec-
tion, or the detection effect is not good because the hardware equipment with higher
conditions is required.

To this end, we propose a new lightweight YOLOv5-MNE that improves the training
speed and reduces the memory of SAR ship detection, and we did many ablation studies
to compare. The main contributions are as follows:

(1) To solve the model speed reduction problem caused by a high number of parame-
ters in the model, we designed a lightweight module, MNEBlock. Based on the YOLOv5 [46]
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network, a lightweight YOLOv5-MNE network was formed by fusing MNEBlock into the
backbone of the basic network.

(2) In order to help the model locate and identify the objects of interest more accurately,
the CA (coordinate attention) mechanism is introduced into this paper. The CA mechanism
is flexible and lightweight, which avoids a lot of computational overhead and compensates
the accuracy to a certain extent.

(3) Extensive ablation experiments were performed to confirm the validity of these
contributions. The same experiment was performed on different datasets to compare the
applicability of the proposed method with different datasets. Experiments were conducted
on different orders of magnitude datasets to compare the applicability of the proposed
method for different orders of magnitude datasets.

The remaining materials are arranged as follows: Section 2 describes the method used
in this paper. Section 3 describes the results of these experiments. Section 4 describes
the ablation experiments. Finally, Section 5 summarizes the whole article and presents
our conclusions.

2. Methodology

This section describes the main ideas of YOLOV5-MNE in detail. Section 2.1 describes
the network architecture of YOLOv5. Section 2.2 introduces the network architecture of
YOLOV5-MNE, and Section 2.3 introduces the improved and added parts of this paper.

2.1. Network Structure of YOLOv5

YOLO series algorithms [1,2] are commonly used for their simple structure and
fast processing speed. YOLOv5 is a single-stage target detection algorithm that adds
some new and improved ideas based on YOLOv4. It is a relatively advanced target
detection algorithm with fast inference speed and high accuracy. The main network
structures are classified into four types, namely, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. Considering the problem of deploying to devices with limited memory and
computing resources, we chose YOLOv5s with a smaller size and faster speed after
comprehensive consideration.

The YOLOv5 system consists of five parts: input, trunk, neck, prediction, and output.
Figure 1 shows the network structure of YOLOv5. Compared with the previous version,
the main differences in this version are as follows: (1) The focus layer is deleted; previously,
the first layer of the network was the focus layer. It was changed to a convolution layer
with kernel = 6, stride = 2, and padding = 2. Comparatively speaking, the modified
convolution layer reduces the information loss caused by downsampling, which sacrifices
a little accuracy to improve speed and achieves higher efficiency. (2) The SiLU activation
function. SiLU is used for almost all activation functions in this version of the network
architecture. (3) The SPPF module. In prior versions of YOLOv5, the neck adopted the SPP
module. The SPP module uses the maximum pooling mode of kernels 1*1, 5*5, 9*9, and
13*13 for concat feature maps of different sizes. The SPPF structure serializes the input
through multiple MaxPool layers of 5*5; that is, the 9*9 convolution is replaced by two
5*5 convolutions, and three 5*5 convolution operations replace the 13*13 convolution.

These modules constitute the target detection network. The prediction part of YOLOv5
consists of three layers of different scales: 20*20, 40*40, and 80*80. Among them, the small-
scale detection head is suitable for targeting large ships, the medium-scale detection head
is suitable for targeting medium-sized ships, and the large-scale detection head is suitable
for targeting small ships.
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2.2. Network Structure of YOLOv5—MNE

Although YOLOv5s is smaller and faster in the YOLOv5 series, it also requires a many
parameters and a considerable amount of GPU memory. As shown in Figure 2, based
on YOLOv5s, this paper designs a lighter MNEBlock to be integrated into the backbone
of YOLOv5 and replaces the CBS convolution layer in the network with CBL standard
convolution with fewer parameters. These operations reduce the number of parameters and
memory consumption to a certain extent. Considering that the accuracy will be reduced,
this paper adds a CA mechanism [8].

For the lightweight network design, we first added the ECA (efficient channel atten-
tion) attention module to MobileNetV3 [47] to form a MobileNet-ECA Block, significantly
reducing network parameters and improving detection efficiency. To increase the smooth-
ness of the subsequent compression, the ReLU function was adopted and substituted into
the convolution layer, thus replacing the CBS (Conv_BN_SiLU) convolution layer with the
CBR (Conv_BN_ReLU) convolution layer.

For better feature extraction and superior precision, we introduced the CA mechanism
in the backbone [8]. The difference between the CA mechanism [8] and the traditional
attention mechanism lies in its location information, which increases accuracy and efficiency
in target positioning and detection.

2.3. Module of Design
2.3.1. MNEBlock

MNEBlock is based on MobileNetV3. MobileNetV3 is a lightweight network architec-
ture proposed by Google on 21 March 2019. Its network architecture is based on MnasNet
implemented by NAS, which NAS searches to obtain parameters. The separable convolu-
tion mentioned in MobileNetV1 and the backward residual structure of the linear bottleneck
mentioned in MobileNetV2 were introduced. MobileNetV3 introduces the lightweight
attention model based on the SE (squeeze and excitation) structure [48] and uses a new
activation function, h-swish(x). MNEBlock, based on MobileNetV3, eliminates the original
SE attention mechanism and incorporates ECA. Thus, the model has fewer parameters, less
memory, and higher accuracy. Table 1 shows the YOLOv5-MNE backbone network.

In Section 2.3, we discuss details about the added modules.
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Table 1. Details on the YOLOv5-MNE backbone network.

Operator Kernel Size Stride ECA h-swish

CBH 3 × 3 1 -
√

MNEBlock 3 × 3 2
√

-
MNEBlock 3 × 3 2 - -
MNEBlock 3 × 3 1 - -
MNEBlock 5 × 5 2

√ √

MNEBlock 5 × 5 1
√ √

MNEBlock 5 × 5 1
√ √

MNEBlock 5 × 5 1
√ √

MNEBlock 5 × 5 1
√ √

MNEBlock 5 × 5 2
√ √

MNEBlock 5 × 5 1
√ √

MNEBlock 5 × 5 1
√ √

CA - - - -

The SE attention mechanism has been used in many networks. The SE attention
mechanism enhances the channel-level feature response by modeling the interdependence
between channels so that the important features can be strengthened and the nonimportant
features weakened. The model can obtain better features by weighting the channels in the
network. The network of SE is shown in Figure 3.
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The SE attention mechanism connects CAM (channel attention module) and SAM
(spatial attention module), with one focusing on “what” and the other on “where”. The
steps are as follows:

(a) First, given the input X, the squeeze step for the c-th channel can be formulated as:

zc =
1

H ×W ∑H
i=1 ∑W

j=1 xc(i, j) (1)

where zc is the output associated with the c-th channel. The input X is directly from a
convolutional layer with a fixed kernel size and, hence, can be viewed as a collection of
local descriptors.

(b) The squeeze operation makes collecting global information possible,

X̂ = X·σ(ẑ) (2)

where X refers to channel-wise multiplication; σ is the sigmoid function; and ẑ is the result
generated by a transformation function, which is formulated as follows:

ẑ = T2(ReLU(T1(z))) (3)

where T1 and T2 are two linear transformations that capture the importance of each channel.
The SE attention mechanism carries on the channel compression to the characteristics

of the input figure. However, such compression dimension reduction does not benefit
studying the channel dependency relationship. Therefore, the ECA mechanism [49], to
avoid dimension reduction with one-dimensional convolution, must efficiently implement
a local cross-modal interaction that is more conducive to extracting the dependent rela-
tionships between channels. The network of ECA is shown in Figure 4, and the steps
are as follows:
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(b) One-dimensional convolution operation with convolution kernel size k is con-
ducted. The weight w of each channel is obtained through the sigmoid activation function,

w = σ(C1Dk(y)) (4)

where σ is the sigmoid function.
(c) The weights are multiplied by the corresponding elements of the original input

feature map to obtain the final output feature map.

2.3.2. CA Mechanism

Existing attention mechanisms generally use maximum or average pooling to manage
channels, which lose spatial information to a certain extent. In lightweight networks where
model capacity is strictly limited, the computing overhead of attention application is even
more unaffordable. However, the CA mechanism [8] embeds location information in
channel attention, making mobile networks participate in a larger area to avoid a large
amount of computing overhead. The network of CA is shown in Figure 5.
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The CA mechanism [8] divides channel attention into two features encoding along
different directions. These features preserve precise location information about one spatial
direction while capturing the dependencies of the other. Both are complementary to the
input feature graph to enhance the representation of the object of interest. The steps are as
follows:

(a) The input feature maps underwent global average pooling along the width and
height directions to obtain feature maps for both directions:

zh
c (h) =

1
W ∑0≤i<W xc(h, i) (5)

zw
c (w) =

1
H ∑0≤j<H xc(j, w) (6)

(b) The feature graphs of two spatial directions are concatenated and normalized by
convolution,

f = δ
(

F1

([
zh, zw

]))
(7)

where δ is the nonlinear activation function and f = R
C
r ∗(H+W) is the intermediate feature

map that encodes spatial information in both the horizontal and vertical directions.
(c) It decomposes into convolution of height and width along the dimension of space,

and is activated by the sigmoid function,

gh = σ
(

Fh

(
f h
))

(8)

gw = σ(Fw( f w)) (9)
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yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (10)

where σ is the sigmoid function.

2.3.3. CBR (Conv-BN-ReLU)

In a neural network, there is a functional relationship between the output of the upper
node and the input of the lower node called the activation function. The activation function
introduces nonlinear factors to the neural network and can be used to fit various curves,
satisfying the required relationship between the output of the upper node and the input of
the lower node.

The convolution in YOLOv5s uses the SiLU activation function, which has no upper or
lower bounds. It can avoid overfitting to some extent and produce stronger regularization
effects. The SiLU function is of great distribution significance and is a function of both the
swish and ReLU functions. Figure 6 shows the graph of SiLU. The formula for SiLU is
as follows:

SiLU(x) = x ∗ Sigmoid(x) (11)
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We changed the activation function of the convolution layer into the commonly used
ReLU function, which solved the problem of gradient disappearance. Moreover, due to
the linear and unsaturated forms of the ReLU function, it converges rapidly into SGD.
Most importantly, the ReLU activation function only has linear relations and does not need
exponential calculation; therefore, its operation speed is much faster in both forward and
backward propagation. Therefore, we used the CBR standard convolution, including the
ReLU activation function, in this paper to improve the speed of the lightweight network.
Figure 7 shows the graph of ReLU. The formula for ReLU is as follows:

f (x) = max(0, x) (12)
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3. Experiments

To verify the proposed method, we conducted a series of related experiments to
evaluate the model’s detection performance. The content of this section includes details of
some settings in the experiment and the main content of the SSDD dataset, followed by the
evaluation indicators used in the experimental results.

3.1. Experimental Platform

We used a workstation with the GPU model of NVIDIA RTX3080, CPU model of
i9-11900K, and memory size of 32 G to conduct the training part of the experiment. PyTorch
1.9.1, based on the Python 3.8 language, was adopted as the framework of our algorithm.
We also used CUDA 11.1 in our experiments to call the GPU for training acceleration.

3.2. Dataset

In our experiments, we used SSDD [50] and AIR-SARship 1.0 [51] for training and
validation. For each ship, the detection algorithm predicts the frame of the ship target
and its confidence. To make a fair comparison with another work, we randomly divided
the original dataset according to the ratio of 8:2 commonly used in existing studies. Of
that, 80% of the dataset was used for the training of all methods, and the remaining 20%
was used as a test set to evaluate the detection performance of all methods. In addition,
considering the generalization ability of the model, we introduced a new dataset, HRSID
dataset [52]; randomly selected part of the HRSID data as the test set; and tested the model
trained for the SSDD dataset using the HRSID test set.

The SSDD dataset is widely used for SAR ship detection. In this article, SSDD data are
obtained by downloading public SAR images from the internet. The data mainly include
RadarSAT-2, TerraSAR-X, and Sentinel-1 sensors with four polarization modes, HH, HV,
VV, and VH, with a resolution of 1m–15 m and ship targets in a large area of sea and near
shore. Figure 8 shows part of the images in the dataset. The target area was cropped to
approximately 500 × 500 pixels, and the ships’ target location was manually marked. There
are 1160 images in the dataset, and each image contains ships of different numbers and
sizes. Table 2 shows the statistical information of the average number of ships per image in
the SSDD dataset.

The AIR-SARship 1.0 dataset released 31 scenes of Gaofen-3 SAR images in the first
batch, with image resolutions of 1 and 3 m. The targets cover nearly 1000 ships in more
than 10 categories, such as transport ships, oil tankers, fishing boats, and so on. Scene types
include ports, reefs, and sea surfaces of different sea states. Figure 9 shows part of the
images in the dataset. Since no detailed distinction is made in the dataset, all ships in the
dataset are defined as one class of this paper. In this paper, we cropped these images to
approximately 500 × 500 pixels, with the overlapping part half the size of the image. We
cropped a total of 651 SAR images containing ships.

The HRSID dataset is a large-scale SAR target detection dataset. The images of the
HRSID dataset are high-resolution SAR images from Sentinel-1B, TerraSAR-X, and Tandemi-
X sensors, which are mainly used for ship detection, semantic segmentation, and instance
segmentation tasks. The dataset contains a total of 5604 high-resolution SAR images and
16,951 ship instances. The resolutions of the HRSID contain 0.5, 1, and 3 m. Figure 10 shows
part of the images of the dataset.

Table 2. Correspondence between NS (number of ships) and NI (number of images) in the
SSDD dataset.

NS 1 2 3 4 5 6 7 8 9 10 11 12 13

NI 725 183 89 47 45 16 1 8 4 11 5 3 3
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3.3. Experimental Details

We used the stochastic gradient descent (SGD) [53] algorithm to train our network. The
network adopted the batch size of 16. We trained the network for 100 total epochs when we
performed the ablation experiments. We also set the learning rate as 0.01, the weight decay
as 0.0005, and the SGD momentum as 0.937. Other unmentioned hyper-parameters were
kept the same as those in YOLOv5. In addition, when we compared with other methods,
we set basically the same parameters in order to ensure a fair comparison.

3.4. Evaluation Indicators

We used average precision, recall, average precision (mAP), model size, parameter
amount, and so on to analyze and verify the detection performance of our proposed
method [2]. Average precision (mAP) can be derived from accuracy and recall.

Accuracy is the percentage of correctly identified targets in the test set. The percentage
is defined by true positives (TP) and false positives (FP):

P =
TP

TP + FP
(13)

where TP means that the prediction of the classifier is positive, and the prediction is correct.
FP indicates that the prediction of the classifier is positive, and the prediction is incorrect.

The recall rate is the probability that all positive samples in the test set are correctly
identified, which derives from true positives (TP) and false negatives (FN):

R =
TP

TP + FN
(14)
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where FN indicates that the prediction of the classifier is negative, and the prediction is
incorrect.

Average accuracy (mAP) is based on the accuracy and recall rate. The graphical
meaning is clearly seen in the coordinate axis, that is, the area under the accuracy and recall
rate curve, which is defined as follows:

mAP =
∫ 1

0
P(R)dR (15)

Finally, FPS is how many frames per second the network can detect, model volume
denotes the size of the weight, params denotes the parameter amount, and gpu-mem
denotes the GPU memory when training.

4. Experimental Results and Ablation Study
4.1. Experimental Results
4.1.1. Experiments Results on SSDD Dataset

Our improved method based on YOLOv5. Figure 11 shows the visualization results
on SSDD as an example. As we can see, our ship detection method has a good perfor-
mance both inshore and offshore. The comparison between our method and YOLOv5
on SSDD dataset is shown in Table 3. Table 3 shows that although the precision of our
method is reduced by 1.73% compared with YOLOv5, the model volume is reduced from
14.2 to 2.2 M, the params is reduced to 13%, and gpu-mem is reduced from 4.98 to 3.62 G.
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Table 3. Performance comparison with the raw YOLOv5 on the SSDD dataset.

Methods P (%) Model Volume (M) Params (M) GPU-MEM
(G)

YOLOv5 96.5 14.5 7.01 4.98
YOLOv5-MNE(ours) 94.77 2.2 0.91 3.62

To prove the validity of our method, we compared it with other methods used on the
SSDD dataset, as shown in Table 4. Table 5 shows the comparison between our method
and some lightweight methods on the SSDD dataset. In order to make the comparison fair,
we set the parameters to be the same as those of these methods.

Table 4. Comparison between SAR ship detection methods on the SSDD dataset.

Methods P (%) R (%) FPS mAP (%) Training Time (h)

SL-CFAR [54] 82.65 84.57 17.24 78.36 4.71
NF [55] 83.79 85.73 19.58 80.21 5.83

CSEPD [56] 81.24 82.76 21.26 77.43 6.52
FBR-Net [57] 86.73 87.14 38.52 83.76 5.42
DPA-Net [58] 87.56 88.26 41.86 84.25 4.83

SSGE-Net [59] 88.12 88.97 52.13 85.63 6.14
ARR-Net [60] 89.36 89.73 47.51 88.42 5.73

Ours 94.77 82.72 111.11 91.7 0.553

Table 5. Comparison between lightweight detection methods on the SSDD dataset.

Methods mAP (%) FPS Model
Volume (M)

Params
(M) GPU-MEM (G)

BiFA-YOLO [45] 94.85 75.19 39.4 19.57 -
YOLOv4-LITE-MR [44] 95.03 47.16 49.34 - -

YOLOv4-tiny [43] 88.08 81.63 22.5 - -
Efficient-YOLO [42] 93.56 66.14 31.34 8.2 -
YOLO-v5-Light [61] 88.7 - 23.9 3.01 -

LPEDet [1] 97.4 - - 5.68 -
Ours 96.0 111.11 2.2 0.91 3.62

It can be seen from Tables 4 and 5 that our method has certain advantages when
compared with other ship detection methods. Our method not only has higher pre-
cision, but also has smaller parameter number and model volume compared with the
other methods.

4.1.2. Experimental Results on the AIR-SARship 1.0 Dataset

Our improved method based on YOLOv5. Figure 12 shows the visualization results
on AIR-SARship 1.0 as an example. As we can see, our ship detection method has a better
performance both inshore and offshore. The comparison between our method and YOLOv5
on the AIR-SARship 1.0 dataset is shown in Table 6. Table 6 shows that the precision of our
method is reduced by 6.7% compared with YOLOv5, the model volume is reduced from
14.2 to 2.2 M, the params is reduced to 13%, and gpu-mem is reduced from 4.24 to 2.82 G.
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Table 6. Performance comparison with the raw YOLOv5 on the AIR-SARship 1.0 dataset.

Methods P (%) Model Volume (M) Params (M) GPU-MEM (G)

YOLOv5 94.5 14.5 7.01 4.24
YOLOv5-MNE (ours) 87.8 2.2 0.91 2.82

To prove the validity of our method, we compared it with other methods used on the
AIR-SARship 1.0 dataset, as shown in Table 7. As can be seen from Table 7, compared with
the other methods, our method has better precision and training speed, but the recall and
mAP are not ideal.

Table 7. Comparison between SAR ship detection methods on the AIR-SARship 1.0 dataset.

Methods P (%) R (%) FPS mAP (%) Training Time (h)

SL-CFAR [54] 82.58 84.65 16.58 78.32 9.53
NF [55] 83.75 85.73 18.73 79.54 8.24

CSEPD [56] 81.37 83.42 20.15 76.85 7.43
FBR-Net [57] 85.14 86.76 37.43 83.42 6.85
DPA-Net [58] 86.95 87.45 39.85 84.96 5.63

SSGE-Net [59] 87.56 88.93 50.23 86.73 7.14
ARR-Net [60] 88.92 89.58 45.24 87.25 6.58

Ours 87.8 70.6 116.28 78.5 0.719
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4.1.3. Experimental Results on Different Datasets

Considering the effect of train and test with different datasets, we used the SSDD
dataset to train the model and the HRSID dataset as the test set to test the visualization
results in this section. Figure 13 below shows the visualization results for testing the HRSID
dataset on the basis of training on the SSDD dataset. As can be seen from Figure 13, when
different datasets are used for the training set and testing set, our method has a better
performance in detecting the ship targets both inshore and offshore.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 22 
 

 

4.1.3. Experimental Results on Different Datasets 
Considering the effect of train and test with different datasets, we used the SSDD 

dataset to train the model and the HRSID dataset as the test set to test the visualization 
results in this section. Figure 13 below shows the visualization results for testing the 
HRSID dataset on the basis of training on the SSDD dataset. As can be seen from Figure 
13, when different datasets are used for the training set and testing set, our method has a 
better performance in detecting the ship targets both inshore and offshore. 

   

   

   

Figure 13. Visualization effect of our experiment on the HRSID dataset under the SSDD dataset 
training. 

4.2. Ablation Study 
4.2.1. Ablation Study on Different Modules 

(1) Table 8 shows the ablation study of YOLOv5-MNE with different modules. We 
compared the original MobileNetV3 module with our MNEBlock. As can be seen from 
Table 8, our method improves the precision by 2.6% compared with the original 
MobileNetV3, the model volume is reduced from 3.2 to 2.3 M, and the params is reduced 
from 1.37 to 0.92 M. 

  

Figure 13. Visualization effect of our experiment on the HRSID dataset under the SSDD
dataset training.

4.2. Ablation Study
4.2.1. Ablation Study on Different Modules

(1) Table 8 shows the ablation study of YOLOv5-MNE with different modules. We
compared the original MobileNetV3 module with our MNEBlock. As can be seen from
Table 8, our method improves the precision by 2.6% compared with the original Mo-
bileNetV3, the model volume is reduced from 3.2 to 2.3 M, and the params is reduced from
1.37 to 0.92 M.

Table 8. The ablation study of MNEBlock on the SSDD dataset.

Baseline Methods P (%) Model Volume
(M) Params (M)

YOLOv5
MobileNetV3 90.3 3.2 1.37

MNEBlock (ours) 92.9 2.3 0.92
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(2) Table 9 shows the ablation study of YOLOv5-MNE with different modules. Here,
we present three cases: (a) MobileNetV3 removes layer SE, (b) MobileNetV3, and (c)
MNEBlock. Based on (a)–(c), we added different attention mechanisms to compare the
effects. As can be seen from Table 9, the precision, after adding the CA mechanism; model
volume; and params are slightly improved.

Table 9. The ablation study of CA on the SSDD dataset.

Baseline Methods P (%) Model Volume (M) Params (M)

a CA 92.6 2.2 0.91
a ECA 92.9 2.2 0.91
a PEA 92.6 2.2 0.91
b CA 93.4 3.2 1.36
c PEA 92.8 2.2 0.91

Ours ours 93.2 2.2 0.91

(3) Table 10 shows the ablation study of YOLOv5-MNE with different modules. Based
on (2), we used different activations to compare the effects. As can be seen from Table 10,
after replacing with the ReLU activation function, the precision, model volume, and params
are also slightly improved.

Table 10. The ablation study of ReLU on the SSDD dataset.

Baseline Methods P (%) Model Volume (M) Params (M)

(2)

Aconc 89.8 2.3 0.91
MetaAconc 90.6 3.4 0.98

FReLU 92.3 2.3 0.93
LeakyReLU 94.6 2.2 0.91
DYReLUB 91.1 2.9 1.22

Ours 94.8 2.2 0.91

(4) Table 11 shows the ablation study of YOLOv5-MNE with different modules. Based
on (3), we used a different IoU to compare the effects. We find that using another IoU
actually reduced our precision.

Table 11. The ablation study of IoU on the SSDD dataset.

Baseline Methods P (%) Model Volume (M) Params (M)

(2)+LeakyReLU AlpahIoU 90.2 2.2 0.91
(2)+LeakyReLU EIoU 90.9 2.2 0.91

(2)+ ReLU AlpahIoU 92.2 2.2 0.91
(2)+ ReLU EIoU 90.8 2.2 0.91
(2)+ ReLU SIoU 94.1 2.2 0.91
(2)+ ReLU ours 94.8 2.2 0.91

We compared each YOLOv5-MNE module to verify their effectiveness, where 1 repre-
sents the addition of only the MNEBlock module, 2 represents the addition of the MNEBlock
module and CA mechanism, and 3 represents the addition of the MNEBlock module and
CA mechanism while using the CBL standard convolution, which is the method in this
paper. Among them, Table 12 shows the ablation study of our method on the SSDD dataset,
and Table 13 shows the ablation study of our method on the AIR-SARship 1.0 dataset. We
found that the addition of each step made our method better, and the accuracy gap between
our method and YOLOv5s gradually narrowed.
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Table 12. The ablation study on the SSDD dataset.

Methods P (%) Model Volume (M) Params (M) GPU-MEM (G)

1 92.9 2.3 0.92 3.7
2 93.2 2.2 0.91 3.72

3 (ours) 94.8 2.2 0.91 3.62

Table 13. The ablation study on the AIR-SARship 1.0 dataset.

Methods P (%) Model Volume (M) Params (M) GPU-MEM

1 79.1 2.3 0.92 2.88
2 87.6 2.2 0.91 2.89

3 (ours) 87.8 2.2 0.91 2.82

4.2.2. The Effect of the Number of SSDD Dataset on Detection Performance

To test the effect of our data at different quantities, we randomly selected 30% and
60% of the data from the SSDD dataset to validate the performance of our model. The
results are shown in Table 14 below. The percentages of 30%, 60%, and 100% refer to what
percentage of the original SSDD data we will use for training and testing. That is, we have
1160 SAR images when the dataset ratio is 100, which means that we will use 80% of all
data, namely, 928 SAR images, for training, and the remaining 232 SAR images for testing.
We have 696 SAR images when the dataset ratio is 60, which means that we will use 80%
of 696 SAR images, namely, 557 SAR images, for training. The same goes for 30%. As we
can see from Table 14, the precision of our method is affected as the total amount of data
decreases. Comparing Tables 12–14, we consider that the accuracy of AIR-SARship 1.0 may
also be affected by its small data volumes.

Table 14. Comparison of experimental results for different SSDD data volumes.

Methods Dataset Ratio (%) R (%)

YOLOv5
30 91.5
60 97.8
100 96.5

YOLOv5-MNE (ours)
30 87
60 94.5
100 94.77

5. Conclusions

SAR ship detection has great application values in both the military and civil fields.
We proposed a new algorithm, YOLOv5-MNE, to solve the problems of unclear contour
information, complex backgrounds, and large models in SAR ship detection. (1) Design
a lightweight module MNEBlock to solve the model speed reduction problem caused by
a high number of parameters in the model. (2) Increase the CA mechanism to better use
location information to improve accuracy. (3) Use the ReLU activation function to make the
model more lightweight. After these improvements in YOLOv5, on the SSDD dataset, the
precision of our method can reach 94.8%, the model volume can be reduced to 2.2 M, our
gpu-mem is also reduced to 3.62 G, and at the same time, it can reach 111.11 FPS. However,
on the AIR-SARship 1.0 dataset, although the number of parameters is also reduced, the
accuracy is decreased by 6.7%. Therefore, we found that, in the case of sufficient data,
although our algorithm has a slight loss of accuracy, it effectively reduces the running
memory and model size of the model. However, when the data are insufficient, the effect
will decrease. According to our research and ablation experiment results, our method is
more suitable for lager datasets, while smaller datasets lead to a certain accuracy reduction.
In the future, our work will be as follows: (1) We plan to lighten the detector further
without sacrificing accuracy. (2) We plan to explore other approaches, such as knowledge
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distillation, quantification, and network pruning. (3) We will study how to achieve higher
accuracy and better results with a small amount of training data.
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