
Citation: Meng, S.; Zhu, S.; Wang, Z.;

Zhang, R.; Han, J.; Liu, J.; Sun, H.;

Qin, P.; Zhao, X. JDAPCOO: Resource

Scheduling and Energy Efficiency

Optimization in 5G and Satellite

Converged Networks for Power

Transmission and Distribution

Scenarios. Sensors 2022, 22, 7085.

https://doi.org/10.3390/s22187085

Academic Editors: Weiwei Jiang,

Yafeng Zhan and Zhiyong Feng

Received: 31 August 2022

Accepted: 9 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

JDAPCOO: Resource Scheduling and Energy Efficiency
Optimization in 5G and Satellite Converged Networks for
Power Transmission and Distribution Scenarios
Sachula Meng 1,*, Sicheng Zhu 1, Zhihui Wang 1, Ruibing Zhang 1, Jinxia Han 1, Jiayan Liu 2 , Haoran Sun 2,
Peng Qin 2 and Xiongwen Zhao 2

1 Information & Communication Department, China Electric Power Research Institute, Beijing 100192, China
2 School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
* Correspondence: mscl@epri.sgcc.com.cn

Abstract: Along with the continuous revolution of energy production and energy consumption
structures, the information data of smart grids have exploded, and effective solutions are urgently
needed to solve the problem of power devices resource scheduling and energy efficiency optimization.
In this paper, we propose a fifth generation (5G) and satellite converged network architecture for
power transmission and distribution scenarios, where power transmission and distribution devices
(PDs) can choose to forward power data to a cloud server data center via ground networks or
space-based networks for power grid regulation and control. We propose a Joint Device Association
and Power Control Online Optimization (JDAPCOO) algorithm to maximize the long-term system
energy efficiency while guaranteeing the minimum transmission rate requirement of PDs. Since
the formulated issue is a mixed integer nonconvex optimization problem with high complexity, we
decompose the original problem into two subproblems, i.e., device association and power control,
which are solved using a genetic algorithm and improved simulated annealing algorithm, respectively.
Numerical simulation results show that when the number of PDs is 50, the proposed algorithm can
improve the system energy efficiency by 105%, 545.05% and 835.26%, respectively, compared with
the equal power allocation algorithm, random power allocation algorithm and random device
association algorithm.

Keywords: 5G and satellite converged network; energy efficiency; device association; power control

1. Introduction

With the extensive deployment of “new energy and new business”, the production
and operation links covered by smart grids continue to increase. In power transmission and
distribution application scenarios such as unmanned aerial vehicle (UAV) transmission line
inspection, robot power facility inspection, and emergency communication, etc., the power
transmission and distribution devices (PDs) will generate a large amount of data such
as monitoring data and video data, which need to be uploaded to the cloud server data
center in time for power grid regulation and control [1–3]. Facing the trend of explosive
growth of power transmission and distribution device information data, the traditional
ground network data collection method will not be able to carry massive data transmission;
therefore, the existing power communication method needs to be upgraded to monitor
more production links and accommodate more power data.

Building a fifth generation (5G) and satellite converged network is a feasible way to
solve the above-mentioned challenges. The 5G network is based on a software-defined
network [4], network function virtualization [5] and other technologies, which can support
on-demand customization, high dynamic expansion, and the automated deployment of
network resources. Applying 5G communication technology to power transmission and
distribution scenarios can further improve the system performance of wireless private
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networks and enhance the differentiated and secure bearing capacity of multiple services.
Meanwhile, the Internet of Satellite (IoS) has developed rapidly in recent years, which
can provide navigation and positioning, precise timing, short message communication
and other services for the construction of power transmission and distribution scenarios.
IoS usually uses a Ka or Ku frequency band [6] to make the system capacity increase
significantly, and it can provide high-speed broadband Internet access services for areas
where traditional Internet erection costs are too expensive or ground base stations cannot
provide coverage. Furthermore, ref. [7] also studied the performance limits of cognitive-
uplink fixed satellite service (FSS) and terrestrial fixed service (FS) operating in the range
27.5–29.5 GHz for the Ka band, which provided useful guidance for system design and
performance evaluation. Therefore, the fusion of a 5G network and satellite network
applied to power transmission and distribution scenarios can accommodate more power
data and meet the bearing needs of power business.

However, the resource scheduling and energy efficiency optimization of a 5G and
satellite converged network for power transmission and distribution scenarios still faces
some key issues. Firstly, since satellites are far away from ground PDs, the direct uploading
of data from ground to satellite may lead to large transmission loss; at present, the research
studies on data transmission in 5G and a satellite converged network rarely consider the
advantages of UAVs, while the introduction of a UAV in 5G and the satellite converged
network of a UAV as a relay for data transmission [8] as well as the data forwarding by
the UAV through the designated air-space link can appropriately reduce this transmission
loss. Therefore, it is necessary to consider adding a UAV to the 5G and satellite converged
network architecture for power transmission and distribution scenarios. Secondly, device
association is an essential technology for improving system energy efficiency in 5G and
satellite converged heterogeneous networks [9]; therefore, a reasonable device association
strategy needs to be designed. Finally, power control techniques play an important role
in reducing device energy consumption, which has a significant impact on system perfor-
mance [10]; further, joint optimization of device association and power control can better
improve system performance and user experience.

In summary, this paper investigates the resource scheduling and energy efficiency
optimization problem in a 5G and satellite converged network for power transmission
and distribution scenarios. We propose a Joint Device Association and Power Control
Online Optimization (JDAPCOO) algorithm to maximize the long-term total system energy
efficiency while guaranteeing the minimum transmission rate requirement of PDs. The
contributions are as follows.

• Combined with the actual application scenarios of PDs, this paper proposes a 5G
and satellite converged network architecture for power transmission and distribution
scenarios, where PDs can choose to forward power data to cloud server data centers
via ground networks or space-based networks. Among them, a UAV is introduced as
a relay between PDs and satellite to ensure the stability of system transmission.

• On the premise of ensuring the minimum transmission rate requirements of PDs,
we propose an online optimization algorithm of joint device association and power
control, including a device association strategy based on a genetic algorithm and
device power control scheme based on an improved simulated annealing algorithm.
By solving the device association strategy and power control scheme in each time slot,
the long-term total system energy efficiency is maximized.

• We conduct extensive simulations to compare our algorithm with several benchmark
algorithms. The results show that our solution has better performance.

The rest of this paper is organized as follows. Section 2 provides an overview of related
works. Section 3 presents the system model and problem modeling. The problem solution
will be introduced in Section 4. Section 5 presents the numerical results of the simulation.
Section 6 is the conclusion of the paper.
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2. Related Works

At present, some standardization organizations and universities have carried out
research on 5G and satellite converged network architecture. In [11], Kapovits et al. studied
the feasibility of seamless and efficient integration of ground communication systems
with satellite networks. The third Generation Partnership Project (3GPP) standardization
document puts forward four preliminary network architecture models for satellite-ground
convergence [12], and it discusses the adaptive modifications that need to be made to
deploy 5G New Radio (NR) in non-ground networks. Ge et al. presented a multi-access
edge computing 5G and satellite converged network architecture supporting enhanced
mobile broadband, and they leveraged the proposed architecture to guarantee the quality of
experience for streaming media users in [13]. Boero et al. introduced an SDN-based ground-
satellite network architecture and estimated the average transmission delay and control
delay in [14]. Lin et al. focused on the joint beamforming design and optimization of the
reconfigurable intelligent surface (RIS) assisted hybrid satellite-terrestrial relay networks
to minimize the total transmit power of the satellite and base station while ensuring the
user rate requirements in [15]. An et al. formulated a constrained optimization problem
to maximize the instantaneous rate of the terrestrial user while satisfying the interference
probability constraint of the satellite user in [16], and they studied the secrecy performance
of the cognitive satellite terrestrial network.

Although there have been some research achievements on the 5G and satellite com-
munication convergence at home and abroad, there are few researches on the business
and application scenarios of power transmission and distribution scenarios. Moreover, the
network architecture of the above literature only includes terrestrial infrastructure and
satellites, ignoring the advantages of UAVs. Different from the above work, we also take
advantage of the high mobility of UAVs [17,18] and use a UAV as a relay device for ground
and satellite communication, which can further improve the quality of data transmission.

In heterogeneous networks, device association is an important issue to improve system
performance, and the goal of the device association issue is to determine the communication
mode of every ground device in heterogeneous networks [19,20]. Kaleem et al. proposed a
user association scheme based on the public security user priority to solve the problem of
user association in a multi-layer heterogeneous network, and they realized load balancing
and interference management in a long-term evolution system of high volatility public
security in [21]. Mlika et al. studied the strategy of base station dormancy and user associa-
tion under the constraint of guaranteeing the minimum rate of users in [22]. The proposal
of this scheme can effectively shut down the base station in the standby state, thereby
achieving the purpose of saving the energy consumption of the entire heterogeneous net-
work. In addition, from the perspective of energy saving, power control technology plays
an important role in reducing device energy consumption [23,24]. Zhang et al. proposed
an energy-efficient power allocation and wireless backhaul bandwidth allocation method
under the constraints of specific quality of service (QoS) to maximize the system energy
efficiency of downlink heterogeneous networks in [25]. Qiu et al. studied a gradient-based
iterative algorithm to find the optimal solution for energy-saving power allocation, thereby
maximizing the energy efficiency of the system in [26]. Efrem et al. studied the weighted
sum of energy efficiency in heterogeneous networks considering power and rate constraints
in [27].

Although relevant studies on device association or power control have been carried
out in the above literature, there are few studies on the joint optimization of device as-
sociation and power control for 5G and satellite converged networks oriented to power
transmission and distribution scenarios. Therefore, inspired by the above work, in order
to further improve the system performance and user experience, the joint optimization
problem between user association and power control in heterogeneous networks also be-
comes particularly important. Inspired by the above work, under the premise of ensuring
the minimum transmission rate requirement of PDs, we propose an online optimization
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algorithm that combines device association and power control to maximize the long-term
total system energy efficiency.

3. System Model and Problem Modeling
3.1. System Model

The power transmission and distribution scenario is composed of a low earth orbit
(LEO) satellite, a UAV, a ground 5G base station, and I ground PDs, as shown in Figure 1.
Specifically, the PDs i ∈ {1, . . . , i, . . . , I} on the ground run different power services,
thereby generating various power data, such as acquisition data, monitoring data, video
data, etc., which need to be uploaded to the cloud server data center. In the model, the
ground 5G base station is equipped with a cloud server data center, and the PDs can upload
the collected data to the ground 5G base station. Due to the fixed locations of the PDs and
the 5G base station, the link loss of data transmission for PDs with longer distance is large
and consumes too much transmission energy; the actual amount of data transmitted to the
base station will be consistently low, which seriously affects the information collection of
PDs. In addition, a large number of PDs uploading data to the ground 5G base station will
also lead to an excessive transmission link load on the 5G base station. Therefore, in order
to reduce the link load and improve the energy efficiency of data transmission, we provide
another way of data transmission, i.e., taking advantage of the UAV and the satellite.
PDs upload data to the LEO satellite via the UAV. Among them, the UAV operates on a
predetermined trajectory as a relay for data forwarding, and the LEO satellite, similar to
the ground 5G base station, is equipped with a cloud server. The components participating
in the system are summarized as follows.

LEO 

Satellite
UAV

5G 

Base Station 

Power 

transmission 

and distribution  

device (PD)

Figure 1. System Model.

• Power transmission and distribution device (PD): run different power services and gen-
erate a variety of power data that need to be uploaded to the cloud server data center.

• UAV: as a relay for data forwarding of PDs, which is used to forward the power data
from the PDs to the cloud server data center of an LEO satellite.
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• 5G base station: equipped with a cloud server data center, which is used to receive
power data from PDs that need to be uploaded to the cloud server data center.

• LEO satellite: equipped with a cloud server data center to receive power data for-
warded by the UAV that need to be uploaded to the cloud server data center.

In addition, we show in Figure 2 how to communicate the components participating
in the system according to Figure 1.

·
·
·

UAV
LEO 

Satellite

5G 

Base Station 

Data Transmission from PD to UAV

Data Transmission from PD to 5G Base Station 

Data forwarding from PD to LEO Satellite

PDs

Figure 2. Communication mode of components participating in Figure 1.

We adopt a time-slotted model to formulate the network operation time, which is
evenly divided into T time slots. Therefore, the duration of each time slot is τ and the entire
operation time can be expressed by {1, . . . , t, . . . , T}. Since the UAV moves, the distance
di,u(t) between the PD and the UAV changes among slots, while the distance di,b between
PD and the ground 5G base station remains constant.

According to the two data transmission ways of PD provided above, we use binary
variables xi,u(t) and xi,b(t) to represent the association between the PD i and the UAV as
well as the ground 5G base station, respectively. xi,u(t) = 1 means that the PD chooses
to upload data to the UAV and then forward it to the LEO satellite in the current time
slot, while xi,u(t) = 0 means that the PD does not choose to upload the data to the UAV.
Similarly, xi,b(t) = 1 means the PD in the current time slot chooses to directly forward
the data to the ground 5G base station, while xi,b(t) = 0 means PD i does not choose to
forward the data to the ground 5G base station. In particular, to avoid wasting excessive
resources by repeatedly forwarding data, each PD can only choose one data transmission
way in each time slot, i.e.,

xi,u(t) + xi,b(t) ≤ 1. (1)

When the PD chooses to transmit the data via the UAV, it is assumed that the flight
height Hu of the UAV is the minimum height that satisfies avoiding the actual terrain or
buildings. Therefore, there is no need to adjust the flight height of the UAV frequently,
and the severe ground attenuation of the UAV during sensing and transmission can be
ignored [28]. Meanwhile, considering that the Doppler effect generated by the UAV motion
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is compensated [29], the channel gain from the PD to the UAV is consistent with the model
of free-space path loss [30], which can be expressed as

hi,u(t) =
h0

[di,u(t)]
2 , (2)

where h0 denotes the channel gain per unit distance. Furthermore, since the distance
between the UAV and the LEO satellite is far away, the horizontal distance can be negligible;
then, the channel gain between the UAV and the LEO satellite still conforms to the free-
space path loss model and can be represented as

hu =
h0[

Hg − Hu
]2 , (3)

where Hg denotes the altitude of the LEO satellite from the ground. Let Ri,u(t) represent
the data rate of the current time slot PD uploaded to the LEO satellite, which can be
expressed as

Ri,u(t) = W · log2

(
1 +

γi,u(t) · γu

1 + γi,u(t) + γu

)
, (4)

where W is the channel bandwidth pre-allocated for each PD before the data transmission
mode is selected. For ease of expression, the signal-to-noise ratio (SNR) from the PD to
the UAV is denoted by γi,u(t), and γi,u(t) = Pi(t) · hi,u(t)/σ2. The transmission power of
the PD is denoted by Pi(t), which selects different values in different time slots, and the
parameter σ2 is the variance of additive white Gaussian noise (AWGN). Similarly, the SNR
of the data from the UAV to the LEO satellite is denoted by γu, and γu = Pu · hu/σ2, where
Pu denotes the transmit power of the UAV.

When the PD chooses to forward data directly to the ground 5G base station, let the
path loss between the PD i and the ground 5G base station as li,b = l0 · (di,b)

−l , where l0
denotes the channel gain per unit distance and l means the path loss index [31]. Further-

more, the corresponding channel gain is expressed as hi,b = 10−
li,b
10 . Then, the data rate of

the current time slot PD i to directly forward data to the ground 5G base station is

Ri,b(t) = W · log2

(
1 +

Pi(t) · hi,b

σ2

)
. (5)

In summary, the actual data transmission rate of PD i at time slot t can be obtained
as follows

Ri(t) = xi,u(t) · Ri,u(t) + xi,b(t) · Ri,b(t). (6)

The actual energy consumption of PD i at time slot t is given by

Ei(t) = [xi,u(t) · Pi(t) + xi,b(t) · Pi(t)] · τ. (7)

Therefore, the total long-term system energy efficiency is defined as

UEE =
∑T

t=1 ∑I
i=1 Ri(t)

∑T
t=1 ∑I

i=1 Ei(t)
. (8)

3.2. Problem Modeling

Let xu = (xi,u(t) : ∀u ∈ U , i ∈ I , t ∈ T ), xb = (xi,b(t) : ∀b ∈ B, i ∈ I , t ∈ T ), and
P(t) = (Pi : ∀i ∈ I , t ∈ T ), where U , B, I , and T denote the sets of UAVs, ground 5G
base stations, PDs, and network operation time, respectively. The objective of this paper
is to maximize the total long-term system energy efficiency and jointly optimize the PD
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association strategy (xu and xb) and the power of PDs (P) within each time slot, so that the
optimization problem can be expressed as

P1 : max
xu,xb,P

UEE

s.t. C1 ∼ C7. (9)

C1 : xi,u(t) ∈ {0, 1}, ∀u ∈ U , i ∈ I , t ∈ T ,

C2 : xi,b(t) ∈ {0, 1}, ∀b ∈ B, i ∈ I , t ∈ T ,

C3 : xi,u(t) + xi,b(t) ≤ 1, ∀u ∈ U , b ∈ B, i ∈ I , t ∈ T ,

C4 :
I

∑
i=1

xi,u(t) ≤ IU , ∀u ∈ U , i ∈ I , t ∈ T ,

C5 :
I

∑
i=1

xi,b(t) ≤ IB, ∀b ∈ B, i ∈ I , t ∈ T ,

C6 : 0 ≤ Pi(t) ≤ Pmax, ∀i ∈ I , t ∈ T ,

C7 : Ri(t) ≥ Rth, ∀i ∈ I , t ∈ T .

C1 and C2 denote that the PD association strategy is a binary strategy. C3 indicates that
at most one data transmission way is selected for each PD at each time slot, i.e., either the
data are forwarded directly to the ground 5G base station or the data are uploaded to the
UAV and then forwarded to the LEO satellite. C4 and C5 represent that there is an upper
limit on the number of PDs associated to the UAV or ground 5G base station per time slot,
IU or IB, respectively. C6 shows that the transmission power of each PD is limited by the
maximum power Pmax. C7 means that the transmission rate of each PD needs to meet the
minimum transmission rate requirement.

4. Problem Solution

Since the above optimization problem contains binary variables, it can be seen that it is
a nonlinear constrained programming problem with a high solution complexity. Therefore,
we decompose the joint optimization problem (9) into two subproblems by solving the
device association strategy and the power control scheme within each time slot separately,
so as to find the optimal solution of the objective function.

4.1. Device Association Strategy

In this subsection, we solve the device association subproblem in each time slot to
obtain the device association strategy in each time slot; here, we do not consider the device
power optimization, so the PDs are assigned equal power, and then, the optimization
problem P1 in each time slot is transformed as follows

SP1 : max
xu(t),xb(t)

∑I
i=1 Ri(t)

∑I
i=1 Ei(t)

s.t. C1 : xi,u(t) ∈ {0, 1}, ∀u ∈ U , i ∈ I , t ∈ T ,

C2 : xi,b(t) ∈ {0, 1}, ∀b ∈ B, i ∈ I , t ∈ T ,

C3 : xi,u(t) + xi,b(t) ≤ 1, ∀u ∈ U , b ∈ B, i ∈ I , t ∈ T ,

C4 :
I

∑
i=1

xi,u(t) ≤ IU , ∀u ∈ U , i ∈ I , t ∈ T ,

C5 :
I

∑
i=1

xi,b(t) ≤ IB, ∀b ∈ B, i ∈ I , t ∈ T . (10)

The objective of subproblem SP1 is to solve the device association strategy. Since
the association matrices xu(t) and xb(t) are subject to the constraints C1–C5, the solution
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dimension is too high if solving for the whole association matrix. To reduce the solution
complexity, this section adopts the genetic algorithm [32] for solving SP1. The genetic algo-
rithm is able to achieve a global stochastic search to obtain the global optimal solution by
simulating the evolutionary phenomenon of species in the biological world. The algorithm
works in an encoded manner, can search multiple peaks in parallel, and does not operate
on the parameters themselves, which has good operability and strong robustness [33].

The genetic algorithm mainly consists of chromosomes, genes, population individuals,
fitness function, a selection process, a replication process, a crossover process, and a
mutation process. Among them, a chromosome represents a feasible solution to the problem
to be solved, while all the constituent elements in each feasible solution can be seen as genes
in the chromosome, and the carrier of the chromosome is called the population individual;
the fitness function represents the degree of adaptation of the population individuals to the
survival environment and can be used to measure the chromosomal merit of the population
individuals in the evolutionary process; the selection process selects the better individuals
from the current population so that they can continue to evolve without being eliminated;
the replication process indicates that in each evolutionary process, the best individuals
from the previous generation are retained and replicated intact to the next generation; the
crossover process can be seen as a hybridization of genes in the chromosomes of population
individuals, in which the selected parent chromosomes are randomly matched two by two
to generate a new set of chromosomes according to the crossover method, and the crossover
process is used to retain the good genes in each evolutionary process so that the result
obtained is close to the local optimal solution; while the mutation process is used to achieve
the global optimal solution by randomly selecting several genes on the chromosomes for
random modification, thus introducing new genes into the current gene sequence in order
to break the search limit to find the global optimal solution [34].

In problem SP1, by combining the device and UAV association strategy xu(t) and the
device and ground 5G base station association strategy xb(t), we can represent the overall
device association decision as A(t) = xu(t)× xb(t), and

ai,j(t) =
{

xi,u(t), xi,b(t) : ∀j ∈ U ∪ B, i ∈ I , t ∈ T
}

. (11)

At this time, the matrix A(t), as a feasible solution in problem SP1, can be used as
a chromosome in the genetic algorithm, and each element in A(t) is called a gene on the
chromosome of the population individual. In addition, the fitness function is set to the total
system energy efficiency in each time slot as follows

f itness = ∑I
i=1 Ri(t)

∑I
i=1 Ei(t)

. (12)

Based on this, in order to solve the problem SP1, we propose a genetic algorithm-
based device association strategy, as summarized in Algorithm 1. First, the population
is initialized (lines 2–3), and a certain number of feasible solutions to problem SP1 are
randomly generated as for the initial population, and the genes of each individual chromo-
some are binary encoded, while each feasible solution needs to ensure that the constraints
C1–C5 are satisfied. Next, the fitness function (lines 5–7) is calculated for the population
individuals, and their fitness degree is calculated separately using the fitness function (12).
Then, the population individual selection operation (line 8) is performed, and the elitist
retention strategy is used to select the individuals with the largest fitness function values to
be retained, called elite individuals, and then, the roulette strategy is used to determine the
level of selection probability according to the fitness function values, where individuals
with high fitness have a higher chance of being selected, while individuals with low fitness
are more likely to be eliminated in the offspring population, so that a certain number of
individuals can be selected to be retained, and the rest of the individuals with low fitness
can be eliminated. In the replication process (line 9), elite individuals are replicated into
the next generation population. Then, the crossover process (line 10) is carried out, setting
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a certain crossover probability pCrossover. For the parent chromosomes to be crossed, a set
of two is used, and each set is subjected to a single-point crossover operation: a random
crossover point is set in the individual chromosome, thus dividing the chromosome into
two parts, with the left and right sides of the offspring chromosome coming from the parent
chromosome, respectively. For the newly generated offspring individuals, it is necessary
to determine whether they satisfy the C1–C5 constraints, and if so, they are retained; oth-
erwise, the new individuals need to be discarded. The next mutation is performed (line
11), setting a certain mutation probability of pMutation. Since each gene position is a binary
variable, the mutation of gene positions is achieved by inverting the variables from 0 to
1. In addition, it should be noted that each device is associated with at most one location
in the same time slot, i.e., a UAV or a ground 5G base station, and thus, the gene position
which is already ’1’ needs to be ‘0’ subsequently before flipping for the mutation process.
Similarly, the new individual after mutation also needs to be judged whether it meets the
C1–C5 constraints. By the above operation, the next generation population can be obtained
(line 12) and then return to line 5 for a loop until convergence or the maximum number of
iterations is reached.

Algorithm 1 : Genetic algorithm-based device association strategy

1: Input: Device set I , UAV set U , ground 5G base station set B and channel state
information.
Output: Optimal device association strategy {xu(t), xb(t)}.

2: Initialize: Population size Nnumber, crossover probability pCrossover, mutation probabil-
ity pMutation, maximum number of iterations Niteration and f = 1.

3: Random generate initial population J f .
4: repeat
5: for each population individual in J f do
6: Calculate the fitness function using (12).
7: end for
8: Selective manipulation of individuals using elitist retention strategies and roulette

wheel strategies.
9: Replication of elite individuals into the next generation of populations.

10: For all parental chromosomes that are selected, a set of two is used, and each set is
crossed over according to the crossover probability pCrossover to generate new offspring
to be added to the next generation population.

11: According to pMutation, genes in the chromosomes of non-elite individuals of the par-
ent are mutated, and the mutated individuals are inserted into the next generation
population.

12: Combining lines 8–11 yields the new generation of populations J f+1.
13: f = f + 1.
14: until f > Niteration.
15: Return {xu(t), xb(t)}.

By performing Algorithm 1 within each time slot, the optimal device association
strategy can be obtained with equal power allocation for each device.

4.2. Power Control Scheme

In this subsection, based on the optimal device association strategy obtained in the
previous section, the power of PDs is optimized to further improve the system energy
efficiency. The optimization problem is transformed into SP2.

SP2 : max
P(t)

f (P(t)) =
∑I

i=1 Ri(t)

∑I
i=1 Ei(t)

s.t. C6 : 0 ≤ Pi(t) ≤ Pmax, ∀i ∈ I , t ∈ T ,

C7 : Ri(t) ≥ Rth, ∀i ∈ I , t ∈ T . (13)
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It can be seen that the objective function of subproblem SP2 is nonconvex and therefore
cannot be solved using convex optimization theory. Furthermore, we use the idea of the
simulated annealing algorithm and improve the algorithm to solve the power control
scheme. The simulated annealing algorithm is derived from the solid annealing principle
and is a probability-based algorithm [35]. The algorithm starts from a certain higher
initial temperature, along with the decreasing temperature parameter, and combines the
probabilistic sudden jump property to randomly find the global optimal solution of the
objective function in the solution space; i.e., the local optimal solution can probabilistically
jump out and eventually converge to the global optimum. The simulated annealing
algorithm is an optimization algorithm that can effectively avoid falling into a serial
structure of local minima and eventually converge to the global optimum by giving the
search process a time-varying probabilistic jump property that eventually converges to
zero [36].

The simulated annealing algorithm consists of two main parts, namely the annealing
process and the Metropolis algorithm, which correspond to the outer and inner loops,
respectively. The outer loop is the annealing process, which brings the solid to a high
initial temperature T0 and then decreases the temperature in a certain proportion according
to the cooling factor, and when the termination temperature Tend is reached, the cooling
ends, i.e., the annealing process is finished. The Metropolis algorithm is an inner loop;
i.e., at each temperature, it iterates Literation times to find the optimal value of the energy
at that temperature, i.e., the maximum value of the objective function for the subproblem
SP2. Specifically, the Metropolis algorithm accepts new feasible solutions with probability
instead of using a completely deterministic rule, also known as the Metropolis criterion:
if the current temperature is Tnow, where T0 ≤ Tnow ≤ Tend, in the iterative process, the
current optimal solution wants to change from a to b when the function values of the
two feasible solutions are calculated as f (a) and f (b). If f (b) > f (a), the function value
increases; then, this optimal solution transfer is accepted, i.e., the probability of the current
optimal solution transfer to b is 1. If f (b) ≤ f (a), it means that the system deviates from
the global optimal value position further. At this time, the Metropolis algorithm does not
immediately discard it, but it carries out a probabilistic operation to generate a uniformly

distributed random number ∂ in the interval [0, 1]. If ∂ < e
E(b)−E(a)

Tnow , then accept the new
feasible solution b as the current optimal solution; otherwise, keep the original feasible
solution a as the current optimal solution and go to the next step, and the loop repeats. By
the above way, the Metropolis criterion can prevent falling into local optimal solutions [37].

However, when the network size, the number of iterations, and the difference between
the initial and termination temperatures are large, the simulated annealing algorithm will
cool down particularly slowly, and it is likely to waste too much time to find a better
solution. Therefore, in solving the subproblem SP2, we improve the simulated annealing
algorithm to solve the power control scheme to accelerate the cooling process of the system.
Specifically, if the system finds a better feasible solution during the iterative search at the
current temperature, we give the system an additional cooling rate vdecrease to accelerate
the system annealing; when the iteration at that temperature ends, if the system does not
find a better feasible solution, then the system continues the annealing process with the
original cooling rate Vdecrease to find a better solution.

We summarize the improved power control scheme based on the simulated annealing
algorithm in Algorithm 2. In Algorithm 2, the system is first initialized and the initial
solution is randomly generated, the value of the objective function corresponding to the
initial solution is calculated (lines 2–4), and the process of outer loop annealing is started.
Next, at the current temperature, it enters an inner loop to generate new feasible solutions
and uses the Metropolis criterion to determine whether to accept the new feasible solutions
until the end of the inner loop when the number of iterations is reached (lines 9–22). Then,
the temperature is updated using the improved strategy (lines 23–26) and re-entered into
the inner loop until the current temperature is lower than the termination temperature, the
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outer loop is ended and the algorithm is terminated to obtain the optimal power control
scheme for all PDs under the current time slot.

Algorithm 2 : Improved power control scheme based on simulated annealing algorithm

1: Input: PD power maximum Pmax and the minimum transmission rate requirement of
the PDs Rth.
Output: Optimal power control scheme {P(t)}.

2: Initialize: Initial temperature T0, original cooling rate Vdecrease, additional cooling rate
vdecrease, termination temperature Tend and the number of iterations Literation.

3: Randomly generate a random initial solution p1 to the subproblem SP2.
4: Calculate f (p1).
5: repeat
6: for temperature T0 do
7: Set k = 0, r = 0.
8: repeat
9: Randomly generate a random initial solution p2 to the subproblem SP2.

10: Calculate f (p2).
11: Calculate ∆ f = f (p2)− f (p1).
12: if ∆ f > 0 then
13: p1 = p2.
14: r = r + 1.
15: else
16: Generate a uniformly distributed random number ∂ in the interval [0,1].

17: if e
∆ f
T0 > ∂ then

18: p1 = p2.
19: end if
20: end if
21: k = k + 1.
22: until k > Literation.
23: if r > 0 then
24: T0 = T0 × vdecrease.
25: end if
26: T0 = T0 ×Vdecrease.
27: end for
28: until T0 < Tend.
29: Return p1.

4.3. Joint Device Association and Power Control Online Optimization Algorithm

Combining Algorithms 1 and 2, we propose a Joint Device Association and Power
Control Online Optimization (JDAPCOO) algorithm of 5G and satellite converged networks
for transmission and distribution scenarios, as shown in Algorithm 3. Within each time
slot, the device power is first initialized, the device association strategy is solved according
to Algorithm 1, and then the device power is solved using Algorithm 2 according to
the obtained device association strategy. The algorithm terminates until both the device
association strategy and the power control scheme are solved for each time slot during the
network operation time. For simplicity, we add the Algorithm 3 flowchart in Figure 3.
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Algorithm 3 : Joint Device Association and Power Control Online Optimization (JDAP-
COO) algorithm

1: Input: Device set I , UAV set U , ground 5G base station set B, channel state information,
PD power maximum Pmax and the minimum transmission rate requirement of the PDs
Rth.
Output: Optimal device association strategy {xu, xb} and optimal power control
scheme {P}.

2: repeat
3: for each time slot do
4: Initialize PDs’ power and decide the device association strategy xu(t) and xb(t)

according to Algorithm 1.
5: Based on xu(t) and xb(t) obtained from Algorithm 1, the power control scheme P(t)

is decided using Algorithm 2.
6: Update channel state information.
7: t = t + 1.
8: end for
9: until t > T.

10: Return {xu, xb and P}.

Start

Is the current time slot  
within the network running time    , 

that is,               ?

According to Algorithm 2, 
obtain the power control scheme

According to Algorithm 1, 
solve the device association strategy  

Network initialization

Yes

No

1t t= +

t T

t

T

Finish

Figure 3. Algorithm 3 flowchart.

5. Simulation Results

This section verifies the effectiveness of the proposed JDAPCOO algorithm through
MATLAB simulations. The considered scenario has PDs randomly distributed in a
1 km× 1 km geographical area, a UAV flies in a circle with a radius of 300 m at a fixed
altitude with a fixed flight speed of 20 m/s, an LEO satellite and a ground 5G base station
are used as cloud server data centers to collect the PDs’ data, as shown in Figure 4 as
the projection schematic of the simulation scenario in the horizontal plane. Due to space
constraints, the detailed system model simulation parameters are shown in Table 1.
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Table 1. System model simulation parameters.

Parameter Value Parameter Value

I 50∼400 W 90 kHz
T 100 s σ2 −127 dBm/Hz
τ 1 s Pu 46 dBm

Hu 90 m Iu 75
h0 1.4 × 10−4 IB 75
Hg 200 km Pmax 40 dBm
l 4 Rth 10 Mbps

Furthermore, the relevant parameters of the algorithm proposed in this paper are
shown in Tables 2 and 3, respectively.

Table 2. Algorithm 1 simulation parameters.

Parameter Value

Nnumber 90
pCrossover 0.1
pMutation 0.3
Niteration 1500

Table 3. Algorithm 2 simulation parameters.

Parameter Value

T0 1
Vdecrease 0.999
vdecrease 0.999

Tend 0.5
Literation 6932

0 500 1000 1500

x (m)

0

500

1000

1500

y
 (

m
)

PD

Ground 5G base station

Horizontal projection of

initial position of the UAV

Figure 4. Projection schematic of the simulation scenario in the horizontal plane.

Figures 5 and 6 show the convergence of Algorithms 1 and 2 for different numbers
of PDs with the 100th time slot as an example, respectively. From the figures, we can see
that as the number of PDs increases, the number of iterations required to find the global
optimal solution will also surge, and the convergence time of the algorithm will become
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longer, so we can set a suitable limited number of iterations or annealing speed to obtain a
suboptimal solution close to the optimal one.
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Figure 5. Convergence of Algorithm 1.

0 2 4 6 8

Number of iterations 104

0

1

2

3

4

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

b
it
s
/J

) 109

0 2 4 6 8

Number of iterations 104

0

1

2

3

4

5

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

b
it
s
/J

) 109

0 2 4 6 8

Number of iterations 104

0

2

4

6

8

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

b
it
s
/J

) 109

0 2 4 6 8

Number of iterations 104

0

2

4

6

8

E
n
e
rg

y
 e

ff
ic

ie
n
c
y
 (

b
it
s
/J

) 109
(b) The number of PDs is 200.

(d) The number of PDs is 400.(c) The number of PDs is 300.

(a) The number of PDs is 100.

Figure 6. Convergence of Algorithm 2.

In order to illustrate the effectiveness of the JDAPCOO algorithm proposed in this
paper, we compare the JDAPCOO algorithm proposed in this paper with the following
three algorithms:

• Equal power allocation algorithm [38]: The power of all PDs is set as the same value
within the maximum power range. For the convenience of comparison with the
JDAPCOO algorithm in this paper, the device association strategy still adopts the
algorithm proposed in this paper.

• Random power allocation algorithm [39]: The power of all PDs is determined ran-
domly within the maximum power range. Like the equal power distribution algo-
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rithm [38], the device association strategy still adopts the algorithm proposed in
this paper.

• Random device association algorithm: All PDs are randomly associated with the UAV
or ground 5G base station. In order to show the superiority of the device association
strategy in this paper, the power control scheme of PDs is the same as that in this paper.

Figure 7 shows the curve of the total system energy efficiency changing with the
number of PDs. The total energy efficiency of the four algorithms all shows an increasing
trend with the increasing number of PDs. However, the JDAPCOO algorithm proposed
in this paper is still improved compared with the other three algorithms. As the number
of PDs continues to increase, the joint optimization algorithm proposed in this paper
simultaneously optimizes the device association strategy and power control, thus bringing
significant performance improvement. Moreover, in order to more clearly demonstrate the
superiority of the algorithm proposed in this paper compared with other algorithms, the
energy efficiency values of different algorithms under different number of PDs are shown
in Table 4. When the number of devices is 50, the total energy efficiency of the algorithm
proposed in this paper is about 1, 5 and 8 times higher than that of the equal power
allocation algorithm, random power allocation algorithm and random device association
algorithm, respectively.
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Figure 7. The relationship between the total system energy efficiency and the number of PDs.

Figure 8 shows the relationship between total energy efficiency and the maximum
power Pmax. It can be seen that for small Pmax, the total energy efficiency of the JDAPCOO
algorithm proposed in this paper increases with the increase of Pmax, indicating that a
higher transmission power threshold is needed to achieve the overall energy efficiency
optimization. However, when Pmax reaches a certain value, the total energy efficiency
increases slowly and gradually converges, and the total energy efficiency of the other two
algorithms is always lower than that of the proposed algorithm. Therefore, by comparing
the results of the three algorithms, it can be concluded that the JDAPCOO algorithm
proposed in this paper has better performance.
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Table 4. Total system energy efficiency of different algorithms with different PDs.

Different Algorithms
Number of PDs

50 100 150 200 250 300 350 400

JDAPCOO
algorithm 3.23× 1011 5.82× 1011 9.36× 1011 1.13× 1012 1.25× 1012 1.57× 1012 1.74× 1012 1.97× 1012

Equal power
allocation algorithm 3.46× 1010 6.76× 1010 9.93× 1010 1.33× 1011 1.68× 1011 2.01× 1011 2.34× 1011 2.71× 1011

Random power
allocation algorithm 5.02× 1010 9.08× 1010 1.36× 1011 1.93× 1011 2.63× 1011 3.38× 1011 3.70× 1011 4.18× 1011

Random device
association algorithm 1.58× 1011 3.05× 1011 2.94× 1011 3.30× 1011 3.95× 1011 3.90× 1011 4.61× 1011 5.12× 1011
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Figure 8. The relationship between the total system energy efficiency and the maximum power.

Figure 9 shows that the total system energy efficiency increases with the increase of
channel bandwidth, because a higher channel bandwidth corresponds to a better trans-
mission rate and higher energy efficiency. In addition, compared with the other three
algorithms, the proposed JDAPCOO algorithm has better performance.

Figure 10 considers the impact of link characteristics on the total system energy
efficiency. By changing the noise power of the link between PDs and UAV or ground 5G
base station, the total system energy efficiency will change. In Figure 10, with the increase
of noise power, the total system energy efficiency decreases, because the larger noise power
will lead to the decline of transmission performance and then the total system energy
efficiency. Compared with other algorithms, it can also be seen that the algorithm proposed
in this chapter can provide higher total energy efficiency.
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Figure 9. The relationship between the total system energy efficiency and the channel bandwidth.
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Figure 10. The relationship between the total system energy efficiency and the noise power.

6. Conclusions

In this paper, we investigate the resource scheduling and energy efficiency optimiza-
tion problem of 5G and satellite converged networks for transmission and distribution
scenarios. A Joint Device Association and Power Control Online Optimization (JDAPCOO)
algorithm is proposed with the aim of maximizing the total long-term system energy effi-
ciency while ensuring the minimum transmission rate requirement of PDs. The proposed
JDAPCOO algorithm can make an asymptotically optimal device association strategy and
power control scheme based on the current network state information, and the simulation
results confirm the superior performance of the JDAPCOO algorithm. Although the algo-
rithm proposed in this paper has been improved in terms of energy efficiency, it has not
considered the delay of data transmission of PDs. Therefore, future work will focus on
the problem of delay and jitter guarantee for data transmission of PDs in 5G and satellite
fusion networks so as to further meet the needs of power service carrying.
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