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Abstract: The quality of synthesized images directly affects the practical application of virtual view
synthesis technology, which typically uses a depth-image-based rendering (DIBR) algorithm to
generate a new viewpoint based on texture and depth images. Current view synthesis quality
metrics commonly evaluate the quality of DIBR-synthesized images, where the DIBR process is
computationally expensive and time-consuming. In addition, the existing view synthesis quality
metrics cannot achieve robustness due to the shallow hand-crafted features. To avoid the complicated
DIBR process and learn more efficient features, this paper presents a blind quality prediction model
for view synthesis based on HEterogeneous DIstortion Perception, dubbed HEDIP, which predicts
the image quality of view synthesis from texture and depth images. Specifically, the texture and
depth images are first fused based on discrete cosine transform to simulate the distortion of view
synthesis images, and then the spatial and gradient domain features are extracted in a Two-Channel
Convolutional Neural Network (TCCNN). Finally, a fully connected layer maps the extracted features
to a quality score. Notably, the ground-truth score of the source image cannot effectively represent the
labels of each image patch during training due to the presence of local distortions in view synthesis
image. So, we design a Heterogeneous Distortion Perception (HDP) module to provide effective
training labels for each image patch. Experiments show that with the help of the HDP module,
the proposed model can effectively predict the quality of view synthesis. Experimental results
demonstrate the effectiveness of the proposed model.

Keywords: view synthesis; quality prediction; two-channel convolutional neural network; heteroge-
neous distortion perception

1. Introduction

With the wide application of multi-view video and free-view television, virtual view
synthesis technology has developed rapidly [1,2]. The virtual multi-view synthesis tech-
nology interacts with texture and depth images from different viewpoints to generate
new viewpoints, of which the depth-image-based rendering (DIBR) algorithm is the most
commonly used and recognized [3,4]. In practice, distortions may occur in the acquisition,
compression, and transmission of texture and depth images, which affect the image quality
of view synthesis [5]. As a result, it is necessary to give a corresponding quality evaluation
to measure and optimize the effect of view synthesis [6].

Image quality assessment (IQA) is divided into full-reference (FR), reduced-reference
(RR), and no-reference (NR) [7]. FR-IQA methods require reference to the original distortion-
free image for scoring. Typical FR-IQA methods include Structural Similarity (SSIM) [8],
Information Fidelity Criterion (IFC) [9], and Visual Information Fidelity (VIF) [10]. RR-
IQA methods use only a small amount of edge information extracted from the original
distortion-free image as a reference for scoring [11,12]. However, in practical applications,
the original image of the distorted image rarely exists. Hence, it is more practical to use
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the NR-IQA method, which does not require any information from the original distortion-
free image to be referenced for scoring [13]. Traditional NR-IQA methods include the
Blind Image Quality Index (BIQI) [14], the Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) [15], and the Natural Image Quality Evaluator (NIQE) [16]. With the
development of deep learning in recent years, Kang et al. [17] first proposed an NR-IQA
model using a Convolutional Neural Network (CNN) to extract image features. After
that, some deep-learning-based NR-IQA models were also proposed [18,19]. Although
the above IQA models have outstanding performance in the quality assessment of natural
scene images, their application in view synthesis is very limited. This is because there are
also local geometric distortions generated by the depth images and DIBR process in the
view synthesis, which cannot be handled by the general IQA model [6].

In this case, view synthesis quality metrics have been proposed [20–22] to evaluate the
image quality after DIBR-based view synthesis. However, the DIBR process is computa-
tionally expensive and time-consuming. For this reason, it is very meaningful and valuable
to predict the image quality after view synthesis from pre-synthesis texture and depth
images [23–25]. Nevertheless, current quality evaluation methods for view synthesis basi-
cally use hand-designed features. The performance improvement of traditional methods is
relatively slow because of the shallow feature extraction of hand-designed methods [26].
In contrast, CNN has a strong expressive ability and is widely used in the field of quality
evaluation of natural scene images [17]. Therefore, we consider applying deep learning in
quality prediction for view synthesis.

This paper proposes a blind quality prediction model based on HEterogeneous DIs-
tortion Perception (HEDIP), which predicts the image quality of view synthesis from
pre-synthesis texture and depth images. The distortions of texture and depth images usu-
ally lead to traditional and geometric distortions [25], i.e., heterogeneous distortions, in
the DIBR-synthesized images. To obtain more edge information, the proposed model is
designed as a Two-Channel Convolutional Neural Network (TCCNN) structure, which
can extract features in the image spatial and gradient domain, respectively. Among them,
the edge features extracted by the gradient channel can effectively reflect the geometric
distortions. Furthermore, to better describe the geometric distortions, we add a Contextual
Multi-Level Feature Fusion (CMLFF) module, which can fuse shallow detail features and
deep semantic features. At the input of the proposed HEDIP model, the texture and depth
images are fused by Discrete Cosine Transform (DCT) [27] to imitate the distortions of
DIBR-synthesized images. The fused images are then fed to the TCCNN to extract features
in the spatial and gradient domains. Additionally, a fully connected layer linearly re-
gresses the extracted features into a quality score. Considering the presence of non-uniform
distortions in the view synthesis image [25], the ground-truth score of the source image
cannot effectively represent the labels of each image patch during training. Therefore, we
design a Heterogeneous Distortion Perception (HDP) module with the help of the classic
BRISQUE [15] metric and combine it with the ground-truth score of the source image to
provide effective training labels for each image patch. The advantage of the proposed
HEDIP model is demonstrated through extensive experiments and comparisons. The
contributions of this paper are as follows.

1. We propose a deep-learning-based blind quality prediction model for view synthesis,
a two-channel convolutional neural network structure based on the spatial-gradient
domain, which operates end-to-end via input texture and depth images.

2. A heterogeneous distortion perception module is designed to provide effective training
labels for each image patch.

3. Extensive experiments on different databases show that our proposed model achieves
state of the art.

2. Related Work

Existing view synthesis quality metrics basically adopt hand-designed methods to
extract features. Tian et al. [20] proposed a NIQSV metric by quantifying the distortions of
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synthesized images based on morphological and edge operations. Furthermore, they also
proposed NIQSV+ [21] metric on this basis to evaluate blurred regions, holes, and stretching
distortions. Gu et al. [22] first generated reconstructed images using the autoregression
(AR) model and then measured the geometric distortions based on the error between
the AR-reconstructed image and the corresponding DIBR-synthesized image. In [28], a
No-Reference Morphological Wavelet with Threshold (NR-MWT) metric first obtained
high-frequency information based on morphological wavelet and then mapped the high-
frequency information to the quality score. Gu et al. [29] reported a Multiscale Natural
Scene Statistical analysis (MNSS) method, which inferred the image quality mainly based on
the degree of self-similarity impairment and major structure degradation at different scales.
Zhou et al. [30] addressed a blind view composite quality metric, which used Difference-of-
Gaussian features to measure edge degradation and texture unnaturalness. Wang et al. [31]
decomposed the DIBR-synthesized images by using discrete wavelet transform and then
calculated the quality score of the synthesized image based on the geometric distortions
and global sharpness of the low-frequency and high-frequency sub-bands. Recently, Li
et al. [32] reported a view synthesis quality metric based on local Instance DEgradation and
global Appearance (IDEA). This model used discrete orthogonal moments and superpixels
to measure local and global distortions, respectively.

The above works are all about quality evaluation of the images after view synthesis.
The DIBR-based view synthesis process includes the acquisition, compression, transmission,
and decompression of texture and depth images, as well as deformation and rendering
in the DIBR process. In practical applications, different types and degrees of distortions
may occur in each link of view synthesis. Moreover, the DIBR process is computationally
intensive and complex To avoid unnecessary distortions and calculations, it is worth
considering predicting the quality of view synthesis based on texture and depth images,
which can make the view synthesis system more flexible. Currently, only a few studies
have investigated quality prediction for view synthesis. Wang et al. [23] advised a novel FR
quality prediction model, which utilized the classic SSIM [8] method to compute two quality
indication maps between distorted images and reference images for texture and depth.
The overall quality is calculated based on the two quality indication maps. Shao et al. [24]
recommended a High-Efficiency View Synthesis Quality Prediction (HEVSQP) method
with the help of sparse representation. They first achieved Color-Involved View Synthesis
Quality Prediction (CI-VSQP) and Depth-Involved View Synthesis Quality Prediction (DI-
VSQP), and then predicted the quality score of the synthesized view through the metrics
of CI-VSQP and DI-VSQP models. Li et al. [25] put forward a prediction model based on
color-depth image fusion, which fused the input texture and depth images through wavelet
transform to imitate the synthesized images. The statistical features of the fused images are
then mapped to quality scores.

3. Materials and Methods

The proposed HEDIP is a deep learning model that can predict the image quality of
view synthesis without reference. The texture and depth images before synthesis are fused
through DCT, and then the spatial and gradient domain features of the fused image are
extracted to predict the quality score. Notably, for the problem that local distortion causes
image patches to have no valid training labels, the designed HDP module can provide
effective training labels for each image patch with the help of the classic BRISQUE metric
and the ground-truth score of the source image.

3.1. Image Preprocessing

In DIBR-based view synthesis, the distortions of texture and depth images generally
lead to traditional and geometric distortions in the synthesized images [31]. Therefore,
we fuse texture and depth images to imitate the distortions of DIBR-synthesized images.
It is worth emphasizing that DCT transform and inverse transform are real-time and
lossless, so we fuse texture and depth images through DCT transform. Among the DCT
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coefficients, the low-frequency coefficients mainly represent the information that changes
gently in image intensity (brightness/grayscale), and the high-frequency coefficients mainly
represent the detailed information of the image [33].The low-frequency coefficients may
contain noise information, and the high-frequency coefficients may contain geometric
distortion information, both of which will degrade image quality [34]. As a result, we
keep the low-frequency coefficients of the texture image and averagely fuse the high-
frequency coefficients of the texture and depth image. Then the fused image is obtained by
inverse DCT transform. The distortions of the texture image are directly transferred to the
fused image, while the distortions of the depth image destroy the edge information of the
fused image.

Because the Sobel operator is fast and accurate in edge positioning, we choose to use
the Sobel operator to calculate the gradient image. The gradient image Ig of the spatial
image Id is calculated as follows:

Ig =
√

G2
x + G2

y , (1)

Gx = M ∗ Id, (2)

Gy = MT ∗ Id, (3)

where M =

−1 0 +1
−2 0 +2
−1 0 +1

, T is the transpose operation, and ∗ is the convolution operation.

The fused image and the corresponding gradient image are shown in Figure 1. The gradient
image can represent the edge information of the fused image well.
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3.2. Two-Channel Convolutional Neural Network Structure

To obtain more edge information, the proposed HEDIP model is designed as a Two-
Channel Convolutional Neural Network structure, which can extract features in the image
spatial and gradient domain, respectively. Among them, the edge features extracted by the
gradient channel can effectively reflect the geometric distortions. The output of each layer
in the proposed HEDIP model is shown in Table 1. To be specific, the network structure is
shown in Figure 2, including Conv3 × 3, Residual block, Max pooling, Upsample block,
Global average pooling, Add, Concatenate, and the Fully connected layer. Among them,
the residual block can prevent gradient disappearance by reusing shallow features of the
image. As shown in Figure 3a, the Residual block consists of Conv3 × 3, Conv1 × 1, and
Conv3 × 3. Table 2 shows that the main function of Conv1 × 1 is to reduce the number
of parameters. As shown in Figure 3b, the Upsample block is composed of Conv1 × 1
and Upsample. The function of Conv1 × 1 here is to change the number of channels,
and the function of Upsample is to change the size of the deep features to match the
shallow features. Notably, each convolutional layer is followed by a Rectified Linear Unit
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(ReLU) [35] activation function z = max(0, ∑i wiai), where z, wi,and ai represent the output
of the current layerand the weight and the output of the previous layer, respectively.

Table 1. Information of each layer of the two-channel convolutional neural network structure.

Layer Name Output Size

Spatial/Gradient image patch 128 × 128 × 1
Conv3 × 3/ReLU 64 × 64 × 32 (F64×64)

Residual block 32 × 32 × 32
Max pooling 16 × 16 × 32 (F16×16)

Conv3 × 3/ReLU 8 × 8 × 64
Residual block 4 × 4 × 64 (F4×4)

Upsample block 16 × 16 × 32
Concatenate 16 × 16 × 64

Upsample block 64 × 64 × 32
Concatenate 64 × 64 × 64

Global average pooling 1/2/3 1 × 1 × 64
Add 1 × 1 × 64

Concatenate 1 × 1 × 128
Fully connected layer (Score) 1
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Table 2. Information of each layer of the residual block.

Layer Name Padding Filter Size Stride

Conv0/ReLU 1 3 × 3 2
Conv1/ReLU 0 1 × 1 1
Conv2/ReLU 1 3 × 3 1

Add / / /

This paper denotes the spatial domain channel as SDC(·). The spatial domain fea-
ture is:

FS = SDC(wS, pS), (4)

where wS and pS denote the spatial domain channel weight and spatial image patch. Similar
to the spatial domain channel, the gradient domain channel is denoted as GDC(·). The
gradient domain feature is:

Fg = GDC
(
wg, pg

)
, (5)

where wg and pg represent the gradient domain channel weight and gradient image patch,
respectively. Then, FS and Fg are fused as:

F = concat(FS, Fg), (6)

where concat(·) represents the concatenating multiple features.
Finally, F is linearly regressed into the quality score by a fully connected layer.

3.3. Heterogeneous Distortion Perception Module

In DIBR-synthesized images, the overall distortion is different from the local distortion.
From this point of view, the ground-truth score of the source image cannot be efficiently
represented as the labels of each image patch during training.

To address this problem, we propose an HDP module, which is shown in Figure 4. The
image patch and the corresponding source image are evaluated by the classic BRISQUE
model to obtain scores a and b. Remarkably, unlike the ground-truth score of the source
image, the evaluation standard of the BRISQUE model is that a large score corresponds to
more serious distortion. If the quality of the image patch is lower relative to the quality of
the source image, the score a of the image patch is larger than the score b of the source image.
In this case, in order for the training label of the image patch to match the ground-truth
score of the source image, i.e., the larger the score, the smaller the distortion, the HDP
weight of the image patch is calculated as:

w =
b
a

, (7)

where w represents the distortion of the image patch relative to the source image. When
w is smaller, it indicates that the distortion of the image patch is more serious, and the
corresponding score (training label) is smaller. Hence, the training label for the image patch
can be computed as:

â = b̂ ∗ w, (8)

where b̂ is the ground-truth score of the source image.
Figure 5a shows the visualization of local distortion. It can be seen from the figure

that the HDP weight w of the image patch with severe distortion is smaller, and the
corresponding color is darker. A visualization of the global distortion is shown in Figure 5b,
where the distortion perception weight w is almost the same for each image patch. The
HDP module can be easily observed to be suitable not only for images with local distortion,
but also for images with global distortion.
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3.4. Contextual Multi-Level Feature Fusion Module

To better describe the geometric distortions, we propose a contextual multi-level
feature fusion module, which fuses shallow detail features and deep semantic features.
Figure 2 shows the module, and the feature names required for operation are shown in
Table 1. First, the feature F4×4(4 × 4 × 64) is adjusted to the F′4×4(16 × 16 × 32) through
the Upsample block, and then we concatenate the F′4×4 and F16×16(16 × 16 × 32) to obtain
the F′16×16(16 × 16 × 64). In addition, the F′64×64(64 × 64 × 64) is obtained by operating the
same steps as above for the F′16×16. Finally, the GAPF64, GAPF16, and GAPF4 are obtained
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by global average pooling the F′64×64, F′16×16, and F4×4, respectively. The weight of the i-th
feature is recorded as:

p∗i = max(0, pi) + τ, (9)

where τ is a stable constant, which can guarantee p∗i > 0. Furthermore, the weights p∗i are
normalized to:

bi =
p∗i

∑
Np
j p∗j

, (10)

where Np is equal to 3. Therefore, the feature F after fusion is calculated as:

F = p∗1GAPF64 + p∗2GAPF16 + p∗3GAPF4, (11)

3.5. Training

We employ a window sliding strategy to divide the image into several 128×128 image
patches to train our model. During the training phase, each image patch is provided with
labels according to the designed HDP module. In the testing phase, the predicted score
of the source image is obtained by averaging the predicted scores of all image patches
in the source image. The mapping between extracted features and scores is achieved by
minimizing the loss of predicted and ground-truth scores, so the loss function is designed as:

min
1
N ∑N

l=1 ‖ql − q̂l1‖, (12)

where N is the number of ttexture–depth image pairs in the training set, and ql and q̂l
denote the predicted score and training label of the i-th image patch, respectively. The
proposed HEDIP model is implemented in Pytorch and runs on a Windows 10 system with
a 3.70 GHz CPU and NVIDIA 2080 Ti GPU.

4. Experiments
4.1. Datasets and Evaluation Protocols

We conduct a series of experiments on the MCL-3D [36] and IST [37] databases to
verify the performance of the proposed quality prediction metric for DIBR-based view
synthesis. MCL-3D database [36].The database consists of 684 synthesized image pairs
and corresponding Mean Opinion Score (MOS) value. Among them, 648 image pairs are
generated by the View Synthesis Reference Software (VSRS) [36] using the ttexture–depth
image pairs. There are three combinations of texture and depth images for view synthesis:
(1) distorted texture images and undistorted depth images, (2) undistorted texture images
and distorted depth images, and (3) distorted texture images and distorted depth images.
Six kinds of distortions are applied to the input color and/or depth images, namely,
Gaussian blur, JPEG compression, downsampling blurring, additive white noise, JPEG2000,
and transmission error. IST database [37]. The database consists of 180 synthesized image
pairs and corresponding MOS values. Among them, 120 image pairs are synthesized by the
VSIM [38] algorithm, and the remaining 60 image pairs are synthesized by the VSRS [36]
algorithm. Moreover, both the texture and depth images suffer from compression artifacts
to varying degrees. It is worth noting that the images are synthesized by the VSIM and
VSRS algorithms, respectively, in the DIBR-based view synthesis process. Therefore, for
this database, we conduct two sets of experiments, respectively, on the texture and depth
images required in the synthesis process of the VSIM and VSRS algorithms.

The MOS values of the synthesized images in the above two databases can be used as
the ground-truth scores of input ttexture–depth image pairs. Furthermore, we adopt the
Pearson Linear Correlation Coefficient (PLCC) and the Spearman Rank order Correlation
Coefficient (SRCC) to evaluate model performance. PLCC is used to measure the perfor-
mance of the model in terms of accuracy, and SRCC is used to measure the performance of
the model in terms of monotonicity. The closer the PLCC and SRCC are to one, the better
the model performance [24,39].
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4.2. Performance Evaluation

We compare the proposed HEDIP model with state-of-the-art related models. Four
general NR-IQA metrics are compared, namely, BRISQUE [15], NIQE [16], IL-NIQE [40],
and M3 [41]. Quality evaluation metrics for view synthesis are compared, including MW-
PSNR [42], MP-PSNR [43], LOGS [6], SET [30], Jakhetiya’s [44], and NIQSV [20]. In addition,
the metric [23], which first proposed the idea of view synthesis quality prediction, is also
compared. Depending on the scene, 80% of the image pairs are randomly selected for
training, and the remaining 20% are used for testing. To avoid bias, the random split of the
training test is repeated 10 times, and the average values are reported [45]. It should be
noted that the metric [23] needs undistorted texture and depth images during the quality
prediction, which are not provided in the IST dataset. Therefore, the PLCC and SRCC of
the metric [23] on the IST database cannot be calculated.

The accuracy (PLCC) and monotonicity (SRCC) of the general quality evaluation,
view synthesis quality evaluation, and view synthesis quality prediction models on the
MCL-3D and IST databases are shown in Tables 3–5. The best result is highlighted in
boldface, and the second best result is underlined. In Tables 3–5, ‘Post-DIBR’ indicates that
the model uses DIBR synthesized images for quality evaluation, and ‘Pre-DIBR’ indicates
that the model uses the texture and depth images to predict the quality of view synthesis.
‘GNR’ denotes the general no-reference quality metric and ‘VFR/VRR/VNR’ denotes the
full-reference/reduced-reference/no-reference view synthesis quality metric. ‘T’ represents
traditional methods, and ‘D’ represents deep learning methods. By comparison, it can be
found from Table 3 that the proposed HEDIP model has the best performance in MCL-3D,
in terms of both PLCC and SRCC. In addition, in terms of PLCC, the post-DIBR metric
SET [30] has the second best performance. In terms of SRCC, the pre-DIBR metric [23] has
the second best performance. For VSIM on the IST database (in Table 4), the HEDIP has
the best PLCC as well as the second best SRCC. For VSRS on the IST database (in Table 5),
the HEDIP delivers the best SRCC while also producing the second best PLCC (very close
to the best SET [30]). In summary, the proposed HEDIP model achieves state-of-the-art
overall performance. Moreover, as a pre-DIBR model, which is a deep learning model, the
HEDIP outperforms the post-DIBR model.

To intuitively understand the performance of the proposed model, Figure 6 shows the
ttexture–depth image pairs with different scenes and distortions, as well as the MOS values
of the synthesized image and the predicted scores. From Figure 6a–e, it can be found that
the predicted scores are very close to MOS values. Furthermore, when the MOS values
increase, the predicted scores of the proposed model also increase. It can be seen that the
prediction criteria of the proposed model are in line with the human scoring criteria.

Table 3. Performances of view synthesis quality metrics on the MCL-3D and IST database. The best
result is highlighted in boldface, and the second best result is underlined.

Category Metric Type
MCL-3D Database

PLCC SRCC

Post-DIBR

NIQE [16] GNR-T 0.754 0.710
BRISQUE [15] GNR-T 0.694 0.665
IL-NIQE [40] GNR-T 0.716 0.645

M3 [41] GNR-T 0.561 0.463
MW-PSNR [42] VRR-T 0.801 0.810
MP-PSNR [43] VRR-T 0.817 0.823

LOGS [6] VRR-T 0.726 0.661
SET [30] VNR-T 0.918 0.917

Jakhetiya [44] VNR-T 0.491 0.476
NIQSV [20] VNR-T 0.678 0.622

Pre-DIBR
Metric [23] VFR-T 0.906 0.918

HEDIP VNR-D 0.934 0.927
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Table 4. Performances of view synthesis quality metrics on the VSIM-based IST database. The best
result is highlighted in boldface, and the second best result is underlined.

Category Metric Type
VSIM on IST Database

PLCC SRCC

Post-DIBR

NIQE [16] GNR-T 0.584 0.586
BRISQUE [15] GNR-T 0.651 0.588
IL-NIQE [40] GNR-T 0.396 0.379

M3 [41] GNR-T 0.662 0.612
MW-PSNR [42] VRR-T 0.684 0.677
MP-PSNR [43] VRR-T 0.722 0.727

LOGS [6] VRR-T 0.630 0.627
SET [30] VNR-T 0.815 0.803

Jakhetiya [44] VNR-T 0.357 0.367
NIQSV [20] VNR-T 0.377 0.359

Pre-DIBR
Metric [23] VFR-T / /

HEDIP VNR-D 0.866 0.787

Table 5. Performances of view synthesis quality metrics on the VSRS-based IST database. The best
result is highlighted in boldface, and the second best result is underlined.

Category Metric Type
VSRS on IST Database

PLCC SRCC

Post-DIBR

NIQE [16] GNR-T 0.640 0.620
BRISQUE [15] GNR-T 0.745 0.711
IL-NIQE [40] GNR-T 0.613 0.599

M3 [41] GNR-T 0.713 0.719
MW-PSNR [42] VRR-T 0.572 0.564
MP-PSNR [43] VRR-T 0.552 0.535

LOGS [6] VRR-T 0.634 0.608
SET [30] VNR-T 0.753 0.710

Jakhetiya [44] VNR-T 0.504 0.343
NIQSV [20] VNR-T 0.521 0.455

Pre-DIBR
Metric [23] VFR-T / /

HEDIP VNR-D 0.750 0.767Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
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4.3. Performance on Different Distortions

The MCL-3D database includes six distortion types. In order to investigate the perfor-
mance of the proposed HEDIP model on different distortion types, we test images of six
distortion types, respectively. Figure 7a–f show the radar plots of the proposed model with
different distortion types on the MCL-3D test set; the blue line is the MOS value, and the
orange line is the predicted score. The closer the two lines are, the more accurate the model
is. On the other hand, the more similar the shapes are, the more monotonic the model is.
It can be intuitively found from the radar plots that the HEDIP model still has excellent
accuracy and monotonicity under different distortion types. Further, the MOS value for
each distorted image pair is very close to the ground truth (given in Figure 8).
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4.4. Ablation Study

To further demonstrate the effectiveness of the proposed modules, we conduct a series
of ablation experiments based on the MCL-3D database, which use the same environment
configuration as before. We use TCCNN without any modules as the base model. Then, the
CMLFF module and the HDP module are added to the base model in turn for experiments.

The experimental results are shown in Table 6. When CMLFF and HDP modules
are added, the performance reaches the state of the art. From this result, we can see the
importance and pertinence of each module. Moreover, it can be observed from Figure 9 that
the basic TCCNN model outperforms most state-of-the-art view synthesis quality metrics.

Table 6. Ablation results on the MCL-3D database. The HEDIP is the model proposed in this paper.

Module PLCC SRCC

TCCNN 0.898 0.894
TCCNN + CMLFF 0.905 0.904

TCCNN + CMLFF + HDP (HEDIP) 0.934 0.927
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5. Discussion

The current quality assessment methods for view synthesis basically use hand-designed
features. Due to the shallow feature extraction of hand-designed methods, the performance
improvement of traditional methods is relatively slow. Inspired by the above efforts, we
proposed a blind quality prediction model based on heterogeneous distortion perception,
which predicts the image quality of view synthesis from pre-synthesis texture and depth
images. The proposed deep learning model is a two-channel architecture that can extract
features in the spatial and gradient domains. Furthermore, due to the presence of local
distortion in the view synthesis image, we address a heterogeneous distortion perception
module to provide effective training labels for each image patch. The experimental results
demonstrate the effectiveness of the proposed model.

The quality prediction model can make the view synthesis system more flexible, con-
sidering that if the input color/depth images cannot generate satisfactory synthesized view-
point (by prediction), their quality can be adjusted before sending to the time-consuming
DIBR process. The current quality assessment methods for view synthesis basically use
hand-designed features, while convolutional neural networks can learn more effective
features, which may promote the development of quality assessment technology for view
synthesis. Although our model achieves very high performance in predicting the quality
of view synthesis, we believe that further improvements to the backbone network in fu-
ture work may still have the potential to improve the overall performance of the model.
The work in this paper mainly evaluates the quality of view synthesis of images. With
the demand for high-quality visuals, evaluating the view synthesis quality of videos is
a very promising direction. Therefore, in following work, we may extend from the two-
dimensional quality evaluation to the three-dimensional quality evaluation; of course, this
will be challenging.

6. Conclusions

The quality of synthesized images affects the development and application of DIBR-
based view synthesis technology. Most of the current view synthesis quality metrics
evaluate the image quality after DIBR-based view synthesis and use hand-crafted methods
to extract features. On the one hand, the DIBR process is computationally expensive. On
the other hand, shallower hand-crafted features may affect the performance improvement.
To tackle these problems, we have proposed a blind quality prediction model based on
heterogeneous distortion perception, which predicts the image quality of view synthesis
from pre-synthesis texture and depth images. To the best of our knowledge, the proposed
model is the first to apply deep learning in the field of view synthesis quality assessment,
while predicting the synthesized images without the complex DIBR process. The proposed
model has been designed as a two-channel convolutional neural network structure, which
can extract spatial and gradient domain features separately. Furthermore, we have designed
a heterogeneous distortion perception module, which can provide effective training labels
for image patches in source images. Extensive experiments have been conducted on two
public view synthesis image databases. The experimental results have demonstrated the
superior performance of the proposed model.

The work of this paper is to predict the image quality after view synthesis without
DIBR-based view synthesis, which will make the view synthesis system more sensitive. If
the predicted synthesis quality is low before synthesis, it can be adjusted in time to avoid
complex calculations. In future work, improving the backbone network of the proposed
model can optimize the quality prediction performance. Due to the strong ability of deep
learning to learn features, the wider application of convolutional neural networks in the
field of quality evaluation of view synthesis may promote the development of this field.
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The following abbreviations are used in this paper.

DIBR Depth-Image-Based Rendering
TCCNN Two-Channel Convolutional Neural Network
CMLFF Contextual Multi-Level Feature Fusion
HDP Heterogeneous Distortion Perception
IQA Image Quality Assessment
FR Full-Reference
RR Reduced-Reference
NR No-Reference
DCT Discrete Cosine Transform
CNN Convolutional Neural Network
MOS Mean Opinion Score
VSRS View Synthesis Reference Software
PLCC Pearson Linear Correlation Coefficient
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28. Sandić-Stanković, D.D.; Kukolj, D.D.; Le Callet, P. Fast blind quality assessment of DIBR-synthesized video based on high-high

wavelet subband. IEEE Trans. Image Process. 2019, 28, 5524–5536. [CrossRef] [PubMed]
29. Gu, K.; Qiao, J.; Lee, S.; Liu, H.; Lin, W.; Le Callet, P. Multiscale natural scene statistical analysis for no-reference quality evaluation

of DIBR-synthesized views. IEEE Trans. Broadcast. 2019, 66, 127–139. [CrossRef]
30. Zhou, Y.; Li, L.; Wang, S.; Wu, J.; Fang, Y.; Gao, X. No-reference quality assessment for view synthesis using DoG-based edge

statistics and texture naturalness. IEEE Trans. Image Process. 2019, 28, 4566–4579. [CrossRef]
31. Wang, G.; Wang, Z.; Gu, K.; Li, L.; Xia, Z.; Wu, L. Blind quality metric of DIBR-synthesized images in the discrete wavelet

transform domain. IEEE Trans. Image Process. 2019, 29, 1802–1814. [CrossRef]
32. Li, L.; Zhou, Y.; Wu, J.; Li, F.; Shi, G. Quality index for view synthesis by measuring instance degradation and global appearance.

IEEE Trans. Multimed. 2021, 23, 320–332. [CrossRef]
33. Ahmed, N.; Natarajan, T.; Rao, K.R. Discrete cosine transform. IEEE Trans. Comput. 1974, C-23, 90–93. [CrossRef]
34. Huang, Y.; Meng, X.; Li, L. No-reference quality prediction for DIBR-synthesized images using statistics of fused color-depth

images. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Shenzhen,
China, 6–8 August 2020; pp. 135–138.

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

36. Song, R.; Ko, H.; Kuo, C. MCL-3D: A database for stereoscopic image quality assessment using 2D-image-plus-depth source.
arXiv 2014, arXiv:1405.1403.

37. Rodrigues, F.; Ascenso, J.; Rodrigues, A.; Queluz, M.P. Blind quality assessment of 3-D synthesized views based on hybrid feature
classes. IEEE Trans. Multimed. 2019, 21, 1737–1749. [CrossRef]

38. Farid, M.S.; Lucenteforte, M.; Grangetto, M. Depth image based rendering with inverse mapping. In Proceedings of the 2013 IEEE
15th International Workshop on Multimedia Signal Processing (MMSP), Cagliari, Italy, 30 September–2 October 2013; pp. 135–140.

39. Huang, Y.; Zhou, Y.; Hu, B.; Tian, S.; Yan, J. DIBR-synthesised video quality assessment by measuring geometric distortion and
spatiotemporal inconsistency. Electron. Lett. 2020, 56, 1314–1317. [CrossRef]

http://doi.org/10.1109/TIP.2005.864165
http://doi.org/10.1016/j.asoc.2019.105928
http://doi.org/10.1109/LSP.2010.2043888
http://doi.org/10.1109/TIP.2012.2214050
http://www.ncbi.nlm.nih.gov/pubmed/22910118
http://doi.org/10.1109/LSP.2012.2227726
http://doi.org/10.1109/TIP.2018.2883741
http://doi.org/10.1109/TMM.2019.2904879
http://doi.org/10.1109/TIP.2017.2781420
http://doi.org/10.1109/TIP.2017.2733164
http://doi.org/10.1109/TMM.2017.2748460
http://doi.org/10.1109/TCSVT.2020.3024882
http://doi.org/10.1080/01431160500207088
http://doi.org/10.1109/LSP.2020.2999788
http://doi.org/10.1109/TIP.2019.2919416
http://www.ncbi.nlm.nih.gov/pubmed/31180890
http://doi.org/10.1109/TBC.2019.2906768
http://doi.org/10.1109/TIP.2019.2912463
http://doi.org/10.1109/TIP.2019.2945675
http://doi.org/10.1109/TMM.2020.2980185
http://doi.org/10.1109/T-C.1974.223784
http://doi.org/10.1145/3065386
http://doi.org/10.1109/TMM.2018.2888830
http://doi.org/10.1049/el.2020.1791


Sensors 2022, 22, 7081 16 of 16

40. Zhang, L.; Zhang, L.; Bovik, A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015,
24, 2579–2591. [CrossRef] [PubMed]

41. Xue, W.; Mou, X.; Zhang, L.; Bovik, A.C.; Feng, X. Blind image quality assessment using joint statistics of gradient magnitude and
Laplacian features. IEEE Trans. Image Process. 2014, 23, 4850–4862. [CrossRef]
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