
Citation: Fahim, M.A.N.I.; Saqib, N.;

Siam, S.K.; Jung, H. Denoising Single

Images by Feature Ensemble

Revisited. Sensors 2022, 22, 7080.

https://doi.org/10.3390/s22187080

Academic Editors: Kai Zhang and

Dongwei Ren

Received: 27 July 2022

Accepted: 16 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Denoising Single Images by Feature Ensemble Revisited
Masud An Nur Islam Fahim, Nazmus Saqib , Shafkat Khan Siam and Ho Yub Jung *

Department of Computer Engineering, Chosun University, Gwangju 61452, Korea
* Correspondence: hoyub@chosun.ac.kr

Abstract: Image denoising is still a challenging issue in many computer vision subdomains. Recent
studies have shown that significant improvements are possible in a supervised setting. However, a
few challenges, such as spatial fidelity and cartoon-like smoothing, remain unresolved or decisively
overlooked. Our study proposes a simple yet efficient architecture for the denoising problem that
addresses the aforementioned issues. The proposed architecture revisits the concept of modular
concatenation instead of long and deeper cascaded connections, to recover a cleaner approximation
of the given image. We find that different modules can capture versatile representations, and a
concatenated representation creates a richer subspace for low-level image restoration. The proposed
architecture’s number of parameters remains smaller than in most of the previous networks and still
achieves significant improvements over the current state-of-the-art networks.
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1. Introduction

Image denoising is a classic problem in the low-level vision domain. A given image X
goes through the following mapping to create its noisy counterpart.

Y = X +N

Here, Y is the noisy observation, where N is the additive noise on a clean image X .
Denoising is an ill-posed problem, with no direct means to separate the source image and
corresponding noise. Hence, researchers follow the best possible approximation of X from
Y with corresponding algorithmic strategies.

Typical methods without machine learning involve employing efficient filtering tech-
niques such as NLM [1], BM3D [2], median [3], Weiner [4], etc. Due to their limited
generalization capability, additional knowledge-based priors or matrix properties have
been integrated into these denoising strategies. However, despite certain improvements
with prior-based methods, many concerns remain unresolved, such as holistic fidelity or
the choice of priors.

Convolution neural network (CNN) denoising methods later offered an unprece-
dented improvement over the previous strategies through their customized learning setup.
Usually, CNN methods offer better performance through brute force learning [5], tricky
training strategy [6], or inverting image properties [7] by various proposals. We observed
gradual improvements over the years for denoising solutions. However, these methods
with pure brute force mapping sometimes face fidelity issues within challenging noisy
images. Furthermore, due to the lack of generalization properties, the methods provide
reconstructed images that often result in cartoonized smoothing.

In contrast, the proposed approach rebuilds a previous ensemble-oriented denoising
network that can successfully estimate a cleaner image with less cartoon-like smoothing. For
the design of the proposed denoising network, we carefully maximized detail restoration
by providing a variety of low-level ensemble features while keeping the network relatively
shallow to prevent an oversized receptive field and hallucination effects. In summary, our
study has the following contributions:
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• We propose a shallow ensemble approach through feature concatenation to create a
large array of feature combinations for low-level image recovery.

• Due to the ensemble of multiple modules, our model successfully returns fine details
compared to previous data-driven studies.

• The parameter space is relatively small compared to the contemporary methods with
a computationally fast inference time.

• Finally, the proposed study shows better performance with a different range of syn-
thetic noise and real noise without the cartoonization and hallucination effect. See
Figure 1.

(a) (b) (c) (d)

Figure 1. Demonstration of our contribution. An image from the BSD68 dataset with additive white
gaussian noise (AWGN) noise with σ = 50. Here, the first column shows the ground truth, followed
by the inference from the DEAMNet [8], and the final column shows the proposed result. From
a side-by-side comparison, the proposed method can restore the image without the hallucination
effects of deeper networks. (a) Noisy. (b) Ground Truth. (c) DEAMNet [8]. (d) Proposed.

2. Related Work
2.1. Filtering Based Schemes

Traditional filtering approaches aim for handcrafted filters for noise and image sepa-
ration. These studies [3,4] utilized low-pass filtering methods to extract the clean images
from the noisy images. The iterative filtering approach adopted a progressive reduction for
image restoration [9]. Additionally, several methods used nonlocal similar patches for noise
reduction based on the similarity between the counterpart patches in the same image. For
example, NLM [1] and BM3D [2] assumed a redundancy within patches from a given image
for noise reduction. Nonetheless, these methods usually produce flat approximations, as
the given image severely degrades the noisy image quality with a heavy noise presence.

2.2. Prior Based Schemes

Another group of studies focused on selecting priors for the model, which produce
clean images when optimized. These methods reformulated the denoising problem as a
maximum a posteriori (MAP)-based optimization problem, where the image prior regulated
the performance of the objective function. For example, the studies [10,11] assumed
sparsity as the prior for their optimization process. The primary intuition was to represent
each patch separately through the help of a function. Xu et al. [12] performed real-
world image denoising by proposing a trilateral weighted sparse coding scheme. Other
studies [12–15] focused on rank properties to minimize their objective function. Weighted
nuclear norm minimization (WNNM) [12] calculated the nuclear norm through a low-
rank matrix approximation for image denoising. Additionally, there are several complex
model-based derivations using graph-based regularizers for noise reduction. However,
their performance degrades monotonically for noisier areas, and recovering the detailed
information is sometime difficult [16–18]. Additionally, these methods generally output
significantly varying results depending on their prior parameters and the respective target
noise levels.
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2.3. Learning Based Schemes

Due to the availability of paired data and the current success of CNN modules, data-
driven schemes have achieved significant improvements in separating clean images from
noisy images. Recent CNN studies [19–21] utilized the residual connection for estimating
the noise removal map before inference. These studies evaluated the clean image without
taking any priors regarding the structure or noise. They achieved enhanced performance
by using a noncomplex architecture with repeated convolutional, batch normalization, and
ReLU activation function blocks. However, these methods can fail to recover some of the
detailed texture structure in the presence of heavy noise area.

Trainable nonlinear reaction diffusion (TRND) [22] used a prior in its neural net-
work and extended the nonlinear diffusion algorithm for noise reduction. However, the
method suffered from computational complexity as it required a vast number of param-
eters. Similarly, the nonlocal color net [23] utilized the nonlocal similarity priors for the
image denoising operation. Although priors mostly aid the denoising, there are some
cases where the adaptation of the priors degrades the denoising performance. Very re-
cently, DEAMNet [8] surpassed the previous state-of-the-art results by using an adaptive
consistency prior.

With the success of the DnCNN [19], two similar networks called “Formatting net”
and “DiffResNet” were proposed with different loss layers [5]. Later, Bae et al. [24]
proposed a residual learning strategy based on the improved performance of a learning
algorithm using manifold simplification, providing significantly better performance. After
that, Anwar et al. [25] proposed a cascaded CNN architecture with feature attention using
a self-ensemble to boost the performance.

A few recent approaches [26,27] followed the blind denoising strategy. CBDNet [27]
proposed a blind denoising network consisting of two submodules, noise estimation and
noise removal, by incorporating multiple losses. However, their performance was limited
by manual intervention requirements and a slightly lower performance on real-world noisy
images. In comparison, FFDNet [28] achieved enhanced results by proposing the nonblind
Gaussian denoising network. Consequently, RIDNet [5] utilized perceptual loss with `2
apart from the DnCNN architectures for noise removal and achieved significant success
by introducing a single-stage attention denoising architecture from real and synthetic
noises. Liu et al. [7] introduced GradNet by revisiting the image gradient theory of neural
networks. Recently, several GAN-based approaches [29–32] were introduced through
generating denoised images following either a data augmentation strategy for creating
diverse training samples or a strategy based on the distribution of the clean images.

The tendency for a modern denoising machine learning scheme is to use a deeper
network with complex training. However, Figure 1 shows some of the hallucination and
oversmoothing problems of deeper networks. A hallucination of a windowed building can
be observed in the DEAMNet [8] results in Figure 1. We believe that deeper network archi-
tecture with its overfitting tendencies is the cause of the hallucination and over-smoothing.
We also suspect the PSNR minimization is contributing to oversmoothing. Thus, in this
paper, we propose a variety of shallow networks for low-level feature accumulation as well
as a network that finds a balance between PSNR and SSIM. We show that multiple feature
ensembles from a variety of shallow networks are more appropriate for denoising image
problems compared to a single deeper and complex network. The shallow architecture
prevents overfitting, and the necessary statistics are obtained from the feature ensemble.

3. Methodology
3.1. Baseline Supervised Architecture

Recently, supervised model-based denoising methods embedded a similar baseline
formation in their proposals [5,33]. In brief, it is possible to compartmentalize the baseline
architecture in Figure 2 into three distinct modules: initial feature extraction, large interme-
diate blocks, and feature reconstruction. Typically, the primary module consists of a single
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layer that serves the purpose of the initial feature learner or initial noise estimator. For any
noisy image In, the representation of the initial block Ep is as follows:

Ep = β(In) (1)

where β is the initial convolutional layer for basic feature training. Following that, we
see the main restoration part of the given network through the help of an intermediate
processor. Typically, this intermediate layer is a very long cascaded connection of the
unique feature extractor units. From time to time, we often observe the presence of long
residual-dense or residual-attention blocks as the backbone of such setup.

Figure 2. This figure shows the general baseline architecture for the denoising model, which usually
consists of the more prolonged feature extraction phase with cascaded modules, which begin right
after the initial feature collection and end with the final residual aggregation.

Now, if the intermediate block isM, the cascaded representation of the intermediate
processing stage is as follows:

Ei =Mj(Mi−1(.....(Ep)..)) (2)

whereMi represents the ith instance of the learning stage of the intermediate block and Ei
is the corresponding outcome of the intermediate layer.

The final reconstruction module operates through a residual connection followed by a
consecutive final convolution. IfR is the final reconstruction stage before the output, then
the recovered image Ir is a combination of Ei, Ep, and In.

Ir = R(Ei, Ep, In) = fN(In) (3)

Here, fN denotes the overall neural network, In is the noisy input image, and Ir is the
recovered image. A typical choice of the cost function for this task involves the `1 or `2 loss.
There are other customized loss functions available, such as weighted-augmentation of
different loss functions that integrate spatial properties or relevant regularization [5]. In
general, the network is optimized by minimizing the difference from clean images.

ζ(θ) =
1
N

N

∑
i=1
|| fN(θ, Ii

n)− Ii
c||1 (4)

Here, θ is the learnable parameter, Ii
n is the noisy image, and Ii

c is the corresponding
clean image. Most of the baseline network parameters are placed in the intermediate
learning block.

3.2. Proposed Architecture

In contrast, we designed our network to allocate more resources to the concatenated
learned features. Instead of developing a basic learning block for long cascading con-
nections, we chose variety by proposing various individual feature learning blocks. The
proposed network is focused on delivering richer and diverse low-level features. To fur-
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ther reduce complexity, we avoided using an attention operation, which is typically more
expensive. More details are provided in Figure 3 and the following subsection.

Initial Feature Block

Three consecutive convolution layers are used to extract the initial features for the
network. The layers are equal in depth, but their kernel sizes were in descending order.
The input image goes through the 5× 5 convolution operation at the first layer, followed by
a 3× 3 convolution, and ends at the 1× 1 pixelwise operation. A larger kernel size makes
use of a larger neighborhood of input features and estimates the representations on larger
receptive fields. By limiting the kernel size and the number of layers, the network learns to
focus on the smaller receptive fields and disregards the broader view, which we argue to
be less meaningful in low-level vision tasks such as denoising. Therefore, the purpose of
the primary layer is to project the representation for the denoising features from a smaller
receptive field into individual responses which can be further diversified in the next four
block modules in Figure 3.

Residual Feature Aggregation block 

Multi-activation Feature Ensemble block    

Multi-activated Cascaded Aggregation block

Densely Residual Feature Extraction block 

Concatenation block 

Convolution block 

Figure 3. In the above figure, we present the overall diagram of the proposed architecture for image
denoising. Our pipeline first extracts the initial feature using consecutive convolution operation,
followed by the four modules for feature refinements. These modules are standing upon the cus-
tomized convolution and residual setup with supportive activation functions. After refinement, we
concatenate all the refined feature maps into a single layer, followed by a final dilated convolution to
make the inference.

3.3. Four Modules for Feature Refinement

Before presenting the four modules for feature refinement, we cover the convolution,
activation functions, and residual connections used in the modules. Even though the
attention mechanism is a common choice to learn richer representations, we can still find
a similar or better result without it in this study. Additionally, our selection of residual
blocks was for blocks to be no longer than six consecutive connections. The fundamental
operations for our modules are introduced below.

Convolution. In the internal convolution operation, our choice of kernels varied from
1× 1 to 7× 7. Due to such a range, our network was naturally focused on both smaller and
larger receptive fields.

Activation functions. Recent advancements in nonlinear activation functions have
shown that better performance is achievable through the interconnected operation of
different activation representations that are compacted into a single function. Hence, we
chose the SWISH [34] and MISH [35] activation representations in addition to the ReLU
operations. As a result, our network learned from diverse representations obtained from
various parallel activated functions.

Residual connections. It is redundant to mention the efficacy of the residual connec-
tions in the vision tasks. In the literature, we can see that the customization of residual
connections varies within the task. In the original ResNet paper [36], the authors included
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batch-normalization between the convolution layer, followed by the ReLU layer. In our
study, we used the convolution layers, which were separated by the ReLU layer. This
choice of the ReLU sandwich residual connection is prevalent in regression tasks [37].

We focus on the major processing modules below with the description of the utilized
blocks. We propose four processing modules that perform the refinement operations on the
initial features. The following subsections cover their descriptions and the basic reasoning
behind the proposed architecture.

3.3.1. Residual Feature Aggregation Module

In our residual feature aggregation module, we used the aforementioned residual
blocks as our underlying design mechanism. In the construction of this module, we took
inspiration from the traditional pyramid feature extraction [38] and aggregation, which
has been very influential in computer vision. A typical pyramid setup is motivated by
the needs for multiscale feature aggregation, which, in essence, utilizes low-frequency
information along with high-frequency features. However, the subsequent downsampling
process is a lossy operation by nature. To mitigate information loss for low-frequency
features, we chose to employ the concurrent residual blocks on the same initial features
through three different kernel sizes. Naturally, our kernel choice ranged from 1× 1 to
5× 5, as seen in Figure 4a. Hence, a larger kernel allowed us to learn the features from a
larger area of image, while the 1× 1 kernel operation allowed us to maintain the initial
receptive field and make use of more high-frequency information. We aggregated the
response from all three residual block to learn the overall multiscale impact of the initial
features. Finally, a typical 3× 3 convolution with standard depth gave us the n number of
diverse representations from this module. As a result, our model can learn the important
multiscale features without going through a pooling operation.
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Figure 4. The first two modules in our proposed architecture. The first one is the residual feature
aggregation module, and the second one is the multiactivation feature ensemble module. (a) Residual
feature aggregation module. (b) Multiactivation feature ensemble module.

3.3.2. Multiactivation Feature Ensemble

Activation functions are unavoidable components for neural network construction
that aid the learning operation by projecting the impactful information to the next layer.
Hence, widely different nonlinear functions are available as activation functions in all sorts
of neural networks for various purposes. The ReLU is the most widely used activation
function, which at heart is a “positive pass” filter. However, in some cases, zero-out
negatives and a discontinuity in the gradient are argued to be unhelpful in the optimization
process. To address some of its weaknesses, SWISH [34] and MISH [35] were proposed
with smooth gradients while maintaining a similar positive-pass shape of the ReLU. A
recent experiment [35] showed that these activation functions provided a smoother loss
landscape than the ReLU.

Nonetheless, we incorporated all three activation functions, as seen in Figure 4b.
SWISH, MISH, and ReLU activation functions were applied to the initial features, followed
by a convolution layer. The subsequent responses were concatenated into a single tensor
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to learn from the integrated representation of varying activation functions. No further
kernels and residual blocks were utilized for this module. The initial feature results of
these modules were ensembled with the responses of the other three modules, but the
multiactivation functions were also integrated into the multiactivated cascaded aggregation
module described in Section 3.3.3.

3.3.3. Multiactivated Cascaded Aggregation

In this module, both shallow and relatively deeper layer features were concatenated.
Typically, a deep consecutive convolution operation is formulated after the initial feature
extraction, and the conventional thinking is to build a deeper network for complex problems.
However, we added a single convolution layer feature to complement the deeper layer
features because we believed that a shallower interpretation might be more appropriate for
low-level vision problems. See Figure 5.

Multi-activation 
Feature Ensemble 
block

Conv-2          Conv-4            Conv-6

Conv (2-6)

Conv-1

In
it

ia
l f

ea
tu

re

Multi-activation 
Feature Ensemble 
block

O
u

tp
u

t 
fe

at
u

re

C
o

n
ca

te
n

at
io

n

Figure 5. Multiactivated cascaded aggregation module.

For a single convolution path, a 3× 3 kernel size was chosen with the same depth
as the initial features. For the deeper path, five consecutive convolution layers with
different kernel sizes were used. The activation functions between the layers were ReLUs,
however, for both paths, a multiactivation feature ensemble was implemented as described
earlier. Both the shallow and deeper responses were concatenated followed by another
convolution layer.

3.3.4. Densely Residual Feature Extraction

The densely residual operation has shown great promise in both regression and
classification tasks [39]. Dense residual connections are an efficient way to emphasize
hierarchical representation. For this reason, we designed a densely residual module to
aggregate features for the network. The proposed design in Figure 6 also utilized the
concatenation between the final and previous aggregation in support of a total hierarchy
concentration. A final convolution was added to combine the three concatenated features
from the densely residual layers.
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Figure 6. Densely residual feature extraction module.
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After collecting and concatenating the individual responses from each of the four
modules, the responses were merged by the final convolution layer with a dilation rate
of 2, see the overall process in Figure 3. This layer’s output contained the most refined
representation for the restored image. The restored image was fed into a simple loss
function consisting of `1 and `SSIM.

3.4. Loss Function

We used two typical loss functions, `1 and `SSIM, to update the parameter space. The
total loss function was a simple addition of the two.

`total = `1 + `SSIM. (5)

`1 measures the distance between the ground truth, clean image and the restored image as
shown in next equation.

`1 =
1
n

n

∑
j=1
|γg − γp|. (6)

Here, γg is the ground truth clean image and γp is the restored prediction image.
The secondary component is the loss function from SSIM, which is another widely used
similarity measure for images.

`SSIM =
1
n

n

∑
j=1

1− SSIM(γg, γp) (7)

4. Experimental Results

This section describes the overall performance of our method on both real and synthetic
noisy images.

4.1. Network Implementation and Training Set

For the proposed study, we utilized a TensorFlow framework with NVIDIA GPU
support. Most of the convolutional layers in our network were 3× 3 kernels, apart from
the specific cases where 1× 1, 5× 5, and 7× 7 kernels in addition to the 3× 3 kernels
were used. For the training phase, we used the method from He et al. [40] for the initial-
ization and the Adam optimizer with a learning rate of 10−4, a typical default in many
vision studies.

For the training, the DIV2K dataset was used. To enable diversity in the data flow, the
typical rotation, blurring, contrast stretching, and inverse augmentation techniques were
implemented. The training images were cropped into smaller patches. The noisy input
images were created by perturbing the clean patches by additive white gaussian noise
(AWGN) with 15, 25, and 50 standard deviations.

4.2. Testing Set

We use the BSD68, Kodak24, and Urban100 datasets for the inference comparison,
where clean observations were available and noisy versions were created through the same
artificial noise augmentation. The results are summarized in Table 1.

The DND, SIDD, and RN15 datasets were used to evaluate the proposed approach on
images with natural noise. A brief description of the real-world noisy image dataset and
the evaluation procedures are described below.

• DND: DND [41] is a real-world image dataset consisting of 50 real-world noisy images.
However, near noise-free counterparts are unavailable to the public. The correspond-
ing server provides the PSNR/SSIM results for the uploaded denoised images.
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• SIDD: SIDD [42] is another real-world noisy image dataset that provides 320 pairs
of noisy images and near noise-free counterparts for training. This dataset follows a
similar evaluation process as for the DND dataset.

• RN15: RN15 [26] dataset provides 15 real-world noisy images. Due to the unavailabil-
ity of the ground truths, we only present the visual result of this dataset.

Table 1. Quantitative comparison results of the competing methods with AWGN noise levels
σ =15, 25, 50 on kodak24, BSD68, and Urban100. Top results are in bold, and second-best results
are underlined.

Method Metrics σ = 15 σ = 25 σ = 50
BSD68 Kodak24 Urban100 BSD68 Kodak24 Urban100 BSD68 Kodak24 Urban100

BM3D [2] PSNR 32.37 31.07 32.35 29.97 28.57 29.70 26.72 25.62 25.95
SSIM 0.8952 0.8717 0.9220 0.8504 0.8013 0.8777 0.7676 0.6864 0.7791

WNNM [12] PSNR 32.70 31.37 32.97 30.28 28.83 30.39 27.05 25.87 26.83
SSIM 0.8982 0.8766 0.9271 0.8577 0.8087 0.8885 0.7775 0.6982 0.8047

DnCNN [19] PSNR 32.86 31.73 31.86 30.06 28.92 29.25 27.18 26.23 26.28
SSIM 0.9031 0.8907 0.9255 0.8622 0.8278 0.8797 0.7829 0.7189 0.7874

FFDNet [28] PSNR 32.75 31.63 32.43 30.43 29.19 29.92 27.32 26.29 26.28
SSIM 0.9027 0.8902 0.9273 0.8634 0.8289 0.8886 0.7903 0.7245 0.8057

IrCNN [20] 1 PSNR 31.67 33.60 31.85 29.96 30.98 28.92 26.59 27.66 25.21
SSIM 0.9318 0.9247 0.9493 0.8859 0.8799 0.9101 0.7899 0.7914 0.8168

ADNet [43] PSNR 32.98 31.74 32.87 30.58 29.25 30.24 27.37 26.29 26.64
SSIM 0.9050 0.8916 0.9308 0.8654 0.8294 0.8923 0.7908 0.7216 0.8073

RIDNet [5] PSNR 32.91 31.81 33.11 30.60 29.34 30.49 27.43 26.40 26.73
SSIM 0.9059 0.8934 0.9339 0.8672 0.8331 0.8975 0.7932 0.7267 0.8132

VDN [44] PSNR 33.90 34.81 33.41 31.35 32.38 30.83 28.19 29.19 28.43
SSIM 0.9243 0.9251 0.9339 0.8713 0.8842 0.8361 0.8014 0.7213 0.8212

DEAMNet [8] PSNR 33.19 31.91 33.37 30.81 29.44 30.85 27.74 26.54 27.53
SSIM 0.9097 0.8957 0.9372 0.8717 0.8373 0.9048 0.8057 0.7368 0.8373

Proposed PSNR 33.85 32.90 33.97 31.32 30.67 31.52 29.02 28.12 28.25
SSIM 0.9603 0.9517 0.9621 0.9150 0.9246 0.9241 0.8831 0.8782 0.8755

1 The PSNR results for Kodak24 and BSD68 were obtained from the IrCNN implementation from (https://github.
com/cszn/IRCNN, accessed on 10 October 2021).We want to note that our results are significantly different from
the results reported in [45].

4.3. Denoising on Synthetic Noisy Images

For evaluation purposes, we considered previous state-of-the-art studies within
various contexts. The evaluation procedure included two filtering methods, BM3D [2],
WNNM [12], and several convolutional networks including DnCNN [19], FFDNet [28],
IrCNN [20], ADNet [43], RIDNet [5], VDN [44], and DEAMNet [8].

Table 1 shows the average PSNR/SSIM scores for the quantitative comparison. From
the average PSNR and SSIM score, the proposed study surpasses the previous studies
with a considerable margin. We adopted three widely used datasets BSD68, Kodak24, and
Urban100 with three different AWGN noise levels, 15, 50, and 50. The code for all methods
used in this evaluation, including our own source code, is found in Appendix A.

For a visual comparison, Figures 7–9 from BSD68, Kodak24, and Urban100 are pre-
sented, respectively, with a noise level of 50. Figure 7 shows the “fireman” picture from the
BSD68 dataset. The differences in the restoration are shown in detail with a more controlled
smoothing. From Figure 8, we see that the proposed approach avoids image cartoonization
and preserves details while restoring clean details. The proposed study manages to restore
the structural continuity compared to other methods while preserving the appropriate color
and contrast of the image. The last visual comparison for the synthetic noisy image is the
“Interior” picture from the Urban100 dataset, shown in Figure 9. For a better illustration
of the differences, a zoomed image of the interior wall of the place is shown, where the
proposed method manages to preserve the brick’s separating lines more clearly. We also

https://github.com/cszn/IRCNN
https://github.com/cszn/IRCNN
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provide Figure 10, where multiple images were combined with different intensities of noise
with their proposed output.

Fireman

Noisy
patch

Ground
truth

BM3D
26.72 dB

SSIM = 0.7572

WNNM
27.05 dB

SSIM = 0.7628

DnCNN
27.18 dB

SSIM = 0.7825

FFDNet
27.32 dB

SSIM = 0.7908

IrCNN
26.59 dB

SSIM = 0.7825

VDNet
28.19 dB

SSIM = 0.7946

ADNet
27.39 dB

SSIM = 0.8009

RIDNet
27.43 dB

SSIM = 0.8068

DEAMNet
27.74 dB

SSIM = 0.8846

Proposed
28.25 dB

SSIM = 0.8958

Figure 7. Visual quality comparison with PSNR and SSIM scores for “Fireman” from the BSD68
dataset with AWGN noise level σ = 50 (for best view, zooming in is recommended).

Model in black dress

Noisy
patch

Ground
truth

BM3D
25.62 dB

SSIM = 0.6899

WNNM
25.87 dB

SSIM = 0.6957

DnCNN
26.23 dB

SSIM = 0.6877

FFDNet
26.29 dB

SSIM = 0.7395

IrCNN
27.37 dB

SSIM = 0.7825

VDNet
29.19 dB

SSIM = 0.7317

ADNet
26.29 dB

SSIM = 0.7255

RIDNet
26.40 dB

SSIM = 0.7307

DEAMNet
26.54 dB

SSIM = 0.8359

Proposed
28.12 dB

SSIM = 0.8896

Figure 8. Visual quality comparison with PSNR and SSIM scores for “Model in black dress” from the
Kodak24 dataset with AWGN noise level σ = 50 (for best view, zooming in is recommended).

Interior

Noisy
patch

Ground
truth

BM3D
25.95 dB

SSIM = 0.7786

WNNM
26.83 dB

SSIM = 0.7865

DnCNN
26.28 dB

SSIM = 0.8128

FFDNet
26.28 dB

SSIM = 0.8079

IrCNN
25.21 dB

SSIM = 0.8193

VDNet
28.43 dB

SSIM = 0.8215

ADNet
26.64 dB

SSIM = 0.8155

RIDNet
26.73 dB

SSIM = 0.8254

DEAMNet
27.53 dB

SSIM = 0.8469

Proposed
28.25 dB

SSIM = 0.8877

Figure 9. Visual quality comparison with PSNR and SSIM scores for “Interior” from the Urban100
dataset with AWGN noise level σ = 50 (for best view, zooming in is recommended).
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Proposed
σ = 25

Noisy image
σ = 50
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Proposed
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Proposed
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Proposed
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Figure 10. Sample results for different datasets for σ = 15, 25, and 50 (for best view, zooming in
is recommended).

4.4. Denoising on Real-World Noisy Images

The results for real-world noisy image restoration are presented in Table 2. Natural
noise removal is challenging because the convoluted noises are not signal independent and
vary within the spatial neighborhood.
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Table 2. Real-image denoising results of several existing methods on SIDD and DnD dataset. Top
results are in bold, and second best results are underlined.

Dataset Metrics BM3D DnCNN FFDNet VDN RIDNet DEAMNet Proposed

SIDD [42] PSNR 25.65 23.66 29.30 39.26 37.87 39.35 39.55
SSIM 0.685 0.583 0.694 0.944 0.943 0.955 0.964

DnD [41] PSNR 34.51 32.43 37.61 39.38 39.25 39.63 39.76
SSIM 0.8507 0.7900 0.9115 0.9518 0.9528 0.9531 0.9617

We chose three real noisy image datasets, the SIDD benchmark [42], the DnD bench-
mark [41], and RN15 [26], to analyze the generalization capability of our proposed method.
For the SIDD and DnD benchmarks, the clean counterpart images are not openly dis-
tributed. Hence, the presented PSNR/SSIM in Table 2 was obtained by uploading the
results into the corresponding server. For the RN15 dataset, there is no benchmark utility.
Table 2 represents the comparative performance for both SIDD and DnD benchmarks.
Among the existing methods, VDN [44] and DEAMNet [8] perform well. However,
our method achieves a better result among the existing methods for both the real and
synthetic noises.

To demonstrate the performance of our method with real images, we also provide
some visual comparisons in Figures 11–13 on the SIDD, DND, and RN15 datasets, respec-
tively. For a visual comparison on real noisy images, we included the recent VDN [44],
RIDNet [5], and DEAMNet [8]. The visual comparison shows that our method tends to
avoid cartoonization while effectively removing noise, suppressing artifacts, and preserv-
ing object edges. Overall, the qualitative and quantitative comparisons display an effective
performance on all fronts.

Noisy
patch

VDNet
39.26 dB

SSIM = 0.875

RIDNet
37.87 dB

SSIM = 0.921

DEAMNet
39.35 dB

SSIM = 0.947

Proposed
39.44 dB

SSIM = 0.972

Figure 11. Visual quality comparison with PSNR and SSIM scores for the SIDD dataset with real
noises (for best view, zooming in is recommended).

Star

Noisy
patch

VDNet
39.38 dB

SSIM = 0.9324

RIDNet
39.25 dB

SSIM = 0.9615

DEAMNet
39.63 dB

SSIM = 0.9528

Proposed
39.76 dB

SSIM = 0.9725

Figure 12. Visual quality comparison with PSNR and SSIM scores for “Star” from the DnD dataset
with real noises (for best view, zooming in is recommended).
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Noisy VDNet RIDNet DEAMNet Proposed

Figure 13. Visual quality comparison for “Dog" and “Glass” from the RN15 dataset. RN15 dataset
is a set of real noise images without the clean image counterparts (for best view, zooming in is
recommended).

4.5. Computational Complexity

This section provides a comparison of the computational complexity through Table 3.
The table represents the average running times for the three different image sizes 256× 256,
512× 512, and 1024× 1024. In addition, we present the parameter counts of the compared
methods. Apart from BM3D [2], we report the model-specific computation time. In this
comparison, we considered BM3D [2], DnCNN [19], WNNM [12], IrCNN [20], FFDNet [28],
AINDNet [33], ADNet [43], VDN [44], RIDNet [5], and DEAMNet [8]. In Table 3, our
method’s computation time is only slightly longer than the earlier DnCNN, IrCNN, FFDNet,
ADNet, and VDN. In terms of parameter counting, the proposed study is significantly
smaller than the recent RIDNet [5], AINDNet [33], VDN [44], and DEAMNet [8].

Table 3. Running time (in seconds) and parameter comparison.

Method Size 2562 Size 5122 Size 10242 Parameters

BM3D [2] 0.76 3.12 12.82 -
WNNM [12] 210.26 858.04 3603.68 -
DnCNN [19] 0.01 0.05 0.16 558 k
IrCNN [20] 0.012 0.038 0.146 -
FFDNet [28] 0.01 0.05 0.11 490 k

AINDNet [33] 0.05 0.03 0.80 13,764 k
ADNet [43] 0.02 0.06 0.20 519 k
VDN [44] 0.04 0.07 0.19 7817 k

RIDNet [5] 0.07 0.21 0.84 1499 k
DEAMNet [8] 0.05 0.19 0.73 2225 k

Proposed 0.031 0.11 0.42 846 k

4.6. Ablation Study on Modules

In this section, we provide an ablation study based on the effect on our modules’
correlation. We used four different modules, which work separately and generate various
features. These different features cannot be considered separately as clean images. However,
if we concatenate them together as the proposed method described, we can obtain a
clean image. In Table 4, the modules are the residual feature aggregation block (RFA),
multiactivation feature ensemble block (MFE), multiactivated cascaded aggregation block
(MCA), and densely residual feature extraction block (DRFE). We removed each module
separately and calculated the PSNR and SSIM for three different datasets. Here, we can
observe that the PSNR value drops every time a module is removed. For the multiactivation
feature ensemble block (MFE), the value of the PSNR drops the most, and for the module
multiactivated cascaded aggregation block (MCA), the SSIM value drops the most. In
Figure 14, we represent the output of these four modules separately with the ground truth
and our proposed method’s output.
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Table 4. Removing different modules from the ensemble and comparing their results on different datasets.

Dataset PSNR and
SSIM

RFA Module
Removed

MFE Module
Removed

MCA Module
Removed

DRFE Module
Removed

BSD68 33.85 30.65 28.66 29.30 30.26
0.9603 0.885 0.783 0.824 0.855

Kodak24 32.90 29.51 27.43 28.61 30.38
0.9517 0.7507 0.6900 0.8115 0.8518

Urban100 33.97 30.48 27.75 30.54 31.38
0.9621 0.7824 0.6192 0.7822 0.8766

Ground truth RFA module MFE module MCA module DRFE module Proposed

Ground truth RFA module MFE module MCA module DRFE module Proposed

Ground truth RFA module MFE module MCA module DRFE module Proposed

Figure 14. Sample results for all four modules separately (for best view, zooming in is recommended).

5. Conclusions

In this paper, the basic strategy for the low-level denoising problem was to gather
a variety of low-level features while keeping the interpretation simple by implementing
relatively shallow layers. We argued that for low-level vision tasks, the principle of
Occam’s razor was more appropriate, and accordingly, we designed a network that focused
on gathering a variety of low-level evidence rather than providing a deep explanation of
the evidence. Thus, we revisited the feature ensemble approach for the image denoising
problem. Our study offered a new model which concatenated different modules for
creating large and varying feature maps. To enhance the performance of our network,
we utilized different kernel sizes, residual and densely residual connections, and avoided
deep unimodule cascaded aggregation. We carefully designed four different modules for
our study, where each helped to restore different spatial properties. Finally, we validated
our network with natural and synthetic noisy images. Extensive comparisons showed
the overall efficiency of the proposed study. We observed that although our SSIM scores
were much higher across the board, the PSNR scores were not the best in the comparison.
Our model extracted a variety of shallow features from the image; however, for higher
PSNR evaluation, a deeper network may be desirable. In future work, we are planning to
apply a self-supervised strategy in training procedures using the same ensemble of shallow
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networks. The different versions of the noisy input images are planned to be used during
the denoising self-supervised training.
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Appendix A

In the appendix, we list the open source code we used for the evaluations. First,
the code for the proposed network can be found at (https://github.com/cvlabchosun/
denoising_ensemble, accessed on 7 September 2022 ). The github repository also contains
the SSIM and PSNR calculations for Table 1, as well as the denoised images with a noise level
of 50 for different datasets. We used the built-in BM3D [2] python library to generate the
BM3D images. WNNM [12] was evaluated using (https://github.com/csjunxu/WNNM_
CVPR2014, accessed on 27 November 2017). DnCNN [19] was evaluated using (https:
//github.com/cszn/DnCNN, accessed on 10 October 2021). The FFDNet [28] results
were from (https://github.com/cszn/FFDNet, accessed on 10 October 2021). The IrCNN
[20] results were from (https://github.com/cszn/IRCNN, accessed on 10 October 2021).
(https://github.com/cqray1990/ADNet, accessed on 17 January 2020). was used for the
ADNet [43] results. The VDN [44] results were from (https://github.com/zsyOAOA/
VDNet, accessed on 29 June 2021). Finally, the DEAMNet [8] results were obtained from
(https://github.com/chaoren88/DeamNet, accessed on 23 June 2021).
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