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Abstract: Fouling control coatings (FCCs) are used to prevent the accumulation of marine biofouling
on, e.g., ship hulls, which causes increased fuel consumption and the global spread of non-indigenous
species. The standards for performance evaluations of FCCs rely on visual inspections, which induce
a degree of subjectivity. The use of RGB images for objective evaluations has already received interest
from several authors, but the limited acquired information restricts detailed analyses class-wise.
This study demonstrates that hyperspectral imaging (HSI) expands the specificity of biofouling
assessments of FCCs by capturing distinguishing spectral features. We developed a staring-type
hyperspectral imager using a liquid crystal tunable filter as the wavelength selective element. A
novel light-emitting diode illumination system with high and uniform irradiance was designed to
compensate for the low-filter transmittance. A spectral library was created from reflectance-calibrated
optical signatures of representative biofouling species and coated panels. We trained a neural network
on the annotated library to assign a class to each pixel. The model was evaluated on an artificially
generated target, and global accuracy of 95% was estimated. The classifier was tested on coated panels
(exposed at the CoaST Maritime Test Centre) with visible intergrown biofouling. The segmentation
results were used to determine the coverage percentage per class. Although a detailed taxonomic
description might be complex due to spectral similarities among groups, these results demonstrate
the feasibility of HSI for repeatable and quantifiable biofouling detection on coated surfaces.

Keywords: hyperspectral imaging; biofouling; spectral library; classification; fouling control coatings;
led illumination; pixelwise calibration

1. Introduction

One of the greatest threats to marine biodiversity on a worldwide scale is the global
spread of non-indigenous species (NIS) [1–3]. NIS are species of organisms that have been
introduced in regions outside of their natural range and natural dispersal potential [2,4],
mainly through ballast water or as hull biofouling [1,5]. Marine biofouling, or simply
biofouling, is defined in [6] as “the undesirable accumulation of microorganisms, plants,
and animals on artificial surfaces immersed in sea water”. Aside from globally spreading
NIS, biofouling on ship hulls also induces other negative effects, such as increased frictional
resistance, loss of maneuverability, and decreased fuel efficiency [6–8]. To help reduce
these problems, the shipping and other offshore industries apply fouling control coatings
(FCCs) [9] as top coats on various submerged artificial surfaces. The term FCC covers
different types of coatings utilizing different mechanisms to prevent biofouling on, e.g., ship
hulls. Two common types are self-polishing and fouling-release coatings. Self-polishing
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coatings contain biocides, which are released through controlled surface polishing and
inhibit or limit the settlement of biofouling [8,10]. Fouling-release coatings use low surface
free energy and high elasticity, which weaken the adhesion of biofouling and promote its
removal by the shear force of water [10].

The testing and evaluations of FCCs are done according to different standards, e.g., the
Naval Ships’ Technical Manual (NSTM) [11], Standard Test Method for Testing Antifoul-
ing Panels in Shallow Submergence (ASTM-D3623) [12], or European Chemicals Agency
(ECHA) [13]. These standards provide information about test conditions and procedures for
the evaluation of FCC performances. Despite having different approaches on how to evaluate
performances, a common denominator for the three standards is the manual assessment based
on visual inspection of coated test panels. This means that the basis for evaluation, e.g., a
biofouling pattern (NSTM), number/size, or coverage percentage (ASTM-D3623, ECHA),
comes from an examination performed by an investigator, usually an expert with notable
knowledge of local marine ecosystems and, therefore, is susceptible to latent subjectivity
and bias [14–16]. This subjectivity affects repeatability, as different examiners will inevitably
provide different coverage percentages even on the same sample. Furthermore, by being a
manual task, it is also time-consuming and prone to errors. In this sequence, the development
of new objective and repeatable methods for evaluation of the performances of FCCs is a
crucial step in the roadmap to minimize the spread of NIS and the emission of greenhouse
gases through increased fuel consumption [15,16].

Throughout the past decade, the use of image analysis, in conjunction with in-
creased access to computational power and developments in supervised classification
algorithms [17,18], have advanced many fields requiring object detection and identifi-
cation. Among these, biofouling evaluation has benefited from the implementation of
automated methodologies relying on image analysis to attain reliable and objective results.
In particular, a very recent application (of deep learning to underwater images of vessels)
demonstrated the feasibility and effectiveness of automated image analysis for biofouling
detection [15]. However, this approach was only semi-quantitative, providing a holistic
classification according to a three-level scale (no fouling; 1–15% coverage, 15–100% cov-
erage). In the context of FCC performance assessment, having finer information on the
coverage percentage of both biofouling as a whole (and with specific groups) is important
to support the development stages and the direct comparison between different coatings.
Attempting to increase the classification specificity, more detailed supervised models have
been trained, particularly support vector machines (SVMs) [19] and pixel classification
models [16]. In the former case, in situ and in vivo images were acquired and a spectral li-
brary was built with several classes (clean panel, algae, encrusting tunicates and bryozoans,
cnidarian polyps, and other fouling). Overall accuracy of 58% was achieved by the model.
In the latter case, biofouling was classified as microalgae, macroalgae, animals, and panel.

All of the aforementioned methods build upon RGB images and, therefore, confu-
sion occurs between different groups with similar hues and brightness [20]. Moreover,
the obtained specificity class-wise is restricted due to the limited information provided by
these techniques. In this paper, we explore and demonstrate the suitability of HSI as a tool
to detect and quantify marine biofouling on submerged coated surfaces. Hyperspectral
cameras integrate monochromatic imaging sensors with dispersive elements to combine
two-dimensional spatial information (x,y) and spectral information (λ) of a scene in a
three-dimensional data structure called a hypercube. This structure consists of a stack of
multiple 2D quasi-monochromatic images in which each slice is indexed to a well-defined
wavelength band. Four HSI architectures are broadly acknowledged according to the
acquisition scheme [21]: whisk-broom or point scan, push broom or line scanning, staring,
and snapshot.

Since the interaction between light from different bands of the electromagnetic spec-
trum and matter depends on the properties of the object, such as composition and geometry,
the scattered and fluorescent light captured within the field-of-view (FOV) carries informa-
tion about the scene [21]. These spectrally-rich data are suitable for classification purposes
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as they can be compared at the pixel level with known optical signatures of the desired
objects [22]. By increasing the number of channels from three to several tens, the amount of
information at the pixel level is remarkably extended. This way, HSI can resolve narrow
spectral fingerprints in the reflectance of target groups [23,24], which are otherwise missed
by conventional RGB cameras [25], as, for instance, chlorophyll-a (chl-a) absorption and
fluorescence [26]. These additional features can be used as bio-optical identification tools
to discriminate between biofouling classes and have been shown to improve classification
accuracy [20].

Despite being a well-established, mature, and widely employed technology for re-
mote oceanographic surveying from space and airborne platforms [27–29], underwater
deployment of hyperspectral imagers in marine media is a relatively recent endeavor.
Several in situ applications with high spatial resolutions (sub-mm [30]) have been propelled
by the advent of the first underwater push broom hyperspectral system developed by
Ecotone AS [31]. The potential of this technology has been demonstrated for microbial
biofilm quantification in intertidal sediments [30], mapping of benthic habitats, surveying
of ecosystems [20,22,25], and mineral exploration [32,33].

Imaging through water is challenging due to the inherent optical properties of seawater
that limit operations to the visible range of the electromagnetic spectrum [34], as strong
absorption outside this window largely reduces photon budgets. For the same underlying
reason, underwater HSI systems usually require active illumination from artificial light
sources to provide a sufficient signal-to-noise ratio (SNR). These light sources must cover the
full operational spectrum and be stable, efficient, compact, powerful, and spatially uniform,
to avoid local degradation of image quality [35]. Furthermore, since absorption by water
is wavelength-dependent, and adding scattering and fluorescent effects from suspended
matter, the measured spectra are distorted after propagation through the medium. Hence,
calibration is mandatory to eliminate these influences and retrieve an accurate estimate of
the reflectance spectrum of objects [33,36].

The aim of the present work was to develop an objective, repeatable, and time-efficient
system to evaluate the performances of FCCs with higher specificity class-wise when
compared to existing manual and RGB-based methods. To fulfill this goal, we developed a
lab-bench staring-type HSI system using a liquid crystal tunable filter (LCTF) as a spectral-
resolving element, justified by the stationary nature of the application. We also opted for a
LCTF due to the high imaging quality and swift tuning speeds [21]. A custom light source
with a novel design was built to achieve high and uniform intensity at an underwater
imaging plane and, thus, to fasten acquisitions. We built a spectral library of representative
biofouling species at the CoaST Maritime Test Centre (CMTC). In a two-step processing,
we applied the principal component analysis (PCA) to compare the collected signatures
and subsequently used them as the training set for a supervised machine learning model
for automatic classification. The accuracy of the resulting classifier was evaluated on a
model target with known ground truth. The classification performance was also assessed
in real panels previously exposed to seawater for several months to map the coverage
percentage of different biofouling groups. The developed method captured characteristic
spectral fingerprints of biofouling that were crucial to increase specificity class-wise and to
determine the respective coverage percentages present on coated surfaces.

This paper is structured as follows: Section 2 presents the developed HSI system,
which includes a novel uniform and intense LED light source, the sample collection and
measurement procedures, and the subsequent data analysis workflow to calibrate, classify,
and quantify biofouling. Section 3 reports on the results, and Section 4 closes with the
discussion and concluding remarks.

2. Materials and Methods
2.1. Test Site and Materials

The biofouling used in this work was obtained from the CMTC. CMTC is a floating
raft designed to enable multiple tests of both FCCs and anti-corrosive coatings. The center
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is located in Hundested Harbour, in the northern part of Zealand in Denmark. Biofoul-
ing at the CMTC is seasonal due to the coastal climate in the temperate climate zone,
with water temperature around 5–11 ◦C during spring. The seawater pH ranges from 7.5
to 8.0 and salinity from 14 to 20 ppt [37]. At the CMTC, the performances of FCCs are
tested using acrylic panels of standard sizes (200 × 100 mm2) that fulfill the minimum
requirements of the 100 cm2 test area established by the European Council of the Paint [38].
The panels are fixed in static frames in three vertical zones: atmospheric zone, splash zone,
and fully immersed.

To construct the spectral library, we collected samples of the most commonly observed
algae and animals for the period (early April) and in the geographical region. In total,
nine different species of algae and two types of animals were collected and transported
to the laboratory in boxes with seawater. The samples were firstly classified on a species
level using a reference catalog [39] and a digital microscope. Afterward, the samples
were measured with the HSI system to obtain the optical signatures. All the previous
measurements of biofouling were made in vivo and ex situ (i.e., in the lab) on the same day.
The collected and classified biofouling specimens are shown in Figure 1.

Figure 1. Biofouling species collected in Hundested and used to construct a spectral library.
The species were labeled using a reference catalog [39] and inspection under a digital microscope.

All the macroalgae can be grouped into three color classes (red or Rodophyta, green or
Chlorophyta, brown or Phaeophyceae), each one of these with distinctive photopigmentation
and, consequently, distinct reflectance and fluorescence spectrum [40]. Hence, the macroal-
gae species were grouped according to the colored frames in Figure 1 as green algae (Ulva
sp., Zostera sp.), red algae (Ceramium sp.), and brown algae (Petalonia sp., Scytosiphon sp.,
2 different subspecies of Desmarestia sp., Dictyosiphon sp., and Chorda sp.). Two different
approaches for the classifications of the algae were considered: a coarse grouping (grouping
algae into color classes); a fine grouping (identifying algae at the species level). The col-
lected animals were Balanus sp. (barnacles) and Mytillus sp. (mussels), and were considered
separately in both approaches.

Optical signatures of the standard acrylic panels were also obtained to allow the
detection of non-fouled/clean surfaces. Multiple panels were coated with different types of
paints and subsequently measured. Some panels had commercial underwater primers with
flat gray appearances, whereas others were coated with commercial polyurethane paint
(red, blue, white) with a partially glossy finishing.

2.2. Sensor

Since the panels are exposed to seawater in static underwater positions at the test site,
we decided to develop a staring-type HSI system with wavelength scanning performed by
a LCTF. This choice simplifies the setup, acquisition, and post-processing when compared
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to widely spread push broom systems, thereby allowing the implementation of a more
robust system with no mechanical moving parts. Furthermore, a system with no moving
parts is more robust to external sea conditions [35].

A schematic diagram of the developed system is shown in Figure 2. The system
operates in the visible range, from 420 to 730 nm, thus matching the optical transmission
window of water [34]. The system is subdivided into two subsystems: an imaging spectrom-
eter and an LED light source. To minimize the influence of background light, the system
is enclosed inside a box, with a hard board separation between the two subsystems to
minimize the direct coupling of stray light into the imaging segment.

Figure 2. Schematic diagram of the developed hyperspectral imaging (HSI) system. A light-emitting
diode (LED) was mounted on a cooling plate and coupled to a hollow tapered waveguide for light
mixing and angle-to-area conversion. The uniform output of the waveguide was collected and
re-imaged by an aspheric condenser lens (L) onto a coated panel mounted inside an aquarium filled
with water. An electron-multiplying charge-coupled device (EMCCD) imaged the panel through a
spectral-resolving and electrically-controlled liquid crystal tunable filter (LCTF). The hypercube was
reconstructed using a custom computer program by stacking the wavelength-indexed 2D images.

2.2.1. Imaging Spectrometer

The hyperspectral imager is a staring-type system with spectral splitting accomplished
by a factory-calibrated LCTF (Thorlabs, KURIOS-XL1/M). The LCTF was built from a
stack of alternating polarizers and birefringent liquid crystal plates with electronically-
controlled retardation that defines the transmitting wavelength band [41]. The filter has
an operating range from 420 to 730 nm with the wavelength-dependent full-width at
half-maximum (FWHM) increasing monotonically from around 6.8 to around 14.4 nm.
The center wavelength (CWL), λ, is adjustable through voltage in steps of 1 nm by an
external controller connected via USB to a computer, with switching times below 5 ms
between adjacent wavelengths. By design, the filter transmits polarized light and thus
transmission losses are minimized when the polarization of incoming light is parallel to
the transmission axis. In our system, the incoming light is mostly unpolarized, inducing
an added power loss of about 50%. In this case, the transmission increases with CWL
starting from around 0.72% to around 23.6% at the upper wavelength limit. To avoid
the use of a relay optical system or a large focal length lens (narrow FOV), the filter was
mounted on the object space (i.e., in front of the lens). A commercial camera objective lens
(Canon, EF-S 18–55 mm) collected the photons scattered at the surface of an object (panel
or biofouling). A low pass filter with a cut-off of 750 nm (Thorlabs, FESH0750) blocked
out-of-band infrared light.

To mitigate the effect of chromatic aberrations without focus adjustment, we opted
to set the lens with an f-stop of f/10.0. This allowed extending the depth of field without
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considerable degradation of the transverse resolution but at a cost of a decreased signal.
Moreover, since propagation occurs in water, the depth of field was further increased by a
factor nw ≈ 1.33 (nw being the refractive index of water), further reducing the influence of
chromatic effects on image quality.

To compensate for the low transmittance of the LCTF, the wavelength-indexed images,
I(x,y,λ), were formed on a highly-sensitive monochromatic Electron Multiplying Charge-
Coupled Device (EMCCD, Oxford Instruments, Andor Luca S). The sensor was cooled
down to −20 ◦C to minimize the dark current, and a real electron multiplication gain
of G = 20 was employed throughout all the measurements, as it was found to ensure
a good compromise between amplification (faster acquisition) without substantial SNR
deterioration from amplified dark current noise. The camera has a 2/3” format sensor with
a 658 × 496-frame resolution and 10 µm × 10 µm pixel size. A 14-bit radiometric resolution
alongside a 26,000 e− pixel well depth were pivotal to accommodate reflectance spanning
across high dynamic ranges in a single image without saturation or underexposure [41]
and, thus, a more accurate image depiction [26].

2.2.2. Led Illumination System

The evaluation of biofouling levels in underwater surfaces usually occurs in optically
shallow waters, both when inspecting ship hulls or fixed panels in a test site. In these
circumstances, a passive system is feasible using solar illumination, although the acquisition
speed and SNR become highly dependent on the ambient lighting conditions. To avoid this
and also compensate for the strong attenuation by the tunable filter, we decided to develop
an original high-power light source tailored for our specific application.

A white LED matrix (Cree, XLamp CM2550 4000 K CRI = 80) was chosen as the
emitting element owing to high conversion efficiency, high power, a small footprint with a
high fill factor, low cost, and extended stability. The LED was driven at 1.5 A/35 V and
the corresponding emission spectrum (Figure 3a) covered the full operating range of the
LCTF. The nominal unpolarized integrated flux was around 7700 lm (@ 85 ◦C), emitted
from a circular surface of 19 mm diameter and over a 115◦ viewing angle (near-Lambertian).
The chip was mounted on a cooling aggregate (Fischer, LAM 5 100 24, 0.27 K/W) using a
conductive thermal paste to ensure a steady operation point.

To avoid local degradation of the image quality arising from non-uniform irradiance
profiles [35] and to maximize power throughput to the panels, the LED was coupled to a
100 mm-long tapered hollow waveguide with an octagonal cross section of side 10 mm at
the input faceted and an inclination angle of around 2.5◦. The internal walls were coated
with highly-reflective polymeric foil (3M, DF2000MA) and the input light was mixed
through multiple internal reflections to generate a spatially uniform irradiance profile at
the output facet (Figure 3b). Furthermore, the change in cross-section resulted in partial
angle-to-area conversion [42]. Since the output light-emitting area increased, the projected
solid angle emerging from the light pipe decreased [43]. This geometry allowed to relax
the requirements for numerical aperture (NA) of the condenser lens required to image
the uniform near-field profile into the object plane located at the far field. An aspheric
condenser lens (Thorlabs, ACL7560U-A, D = 75 mm, NA = 0.61) was used for this task.
Through adjustment of the lens position along the optical axis, the imaging distance was
adjusted to obtain maximum uniformity and irradiance at the plane containing the target.
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Figure 3. LED emission profiles. (a) Measured spectrum of the LED lamp driven at I = 1.5 A,
which covers most of the visible wavelengths, thus overlapping with the LCTF transmission range.
(b) Normalized irradiance at the output facet of the octagonal tapered hollow waveguide as simulated
in ZEMAX (5× 107 analysis rays, 1000× 1000 pixels detector with 38 mm× 38 mm spatial dimensions,
at 0 mm from taper output, smoothing = 2). The Lambertian LED profile was mixed through multiple
internal reflections, generating a uniform irradiance pattern at the output facet.

The irradiance map at the surface of the panel was evaluated experimentally by imag-
ing a spatially and spectrally (i.e., color-neutral) uniform target through the system without
the LCTF. The target was positioned approximately one meter away from the condenser lens
back vertex to completely cover the camera frame while fitting the LCTF FOV. The power
was evaluated at the center of the frame with a power meter (S120C, Thorlabs), and was
extrapolated considering the relative intensities recorded in the frame. The results are
shown in Figure 4 alongside the normalized transverse profiles across the center of the
frame. The simulated profiles obtained in ZEMAX under the same conditions (distance to
panel, detector size, and resolution) are also shown for reference.

Figure 4. Intensity profiles at the target plane. On top, the ZEMAX simulations under conditions
mimicking the experimental setup: d≈ 1 m from the back vertex of the condenser, 191 mm × 144 mm
field of view (FOV), 656 × 498 pixels, 5× 107 analysis rays. On the bottom, the experimental results
obtained with a spatially and spectrally uniform target. The decreasing irradiance along the horizontal
(X) direction of the FOV was a result of the 15◦ tilt between LED and imaging system. Noise in the
top-hat section of the simulated profiles was a consequence of discrete ray tracing.
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To ensure optimal illumination of the panels, the lamp needed to be aligned with the
camera FOV. Considering the lateral offset between the camera and LED (bistatic system),
combined with the relatively short imaging distances, the light source was tilted at an
angle of around 15◦ relative to the imaging spectrometer. This resulted in an inherent non-
uniformity in the illumination across the horizontal (X) direction as the intensity follows an
inverse-square law with distance to the radiation source (decreasing intensity towards the
left of the frame). Nonetheless, we observed that the vertical profile was extremely uniform.
The estimated spectrally and spatially integrated power on the panel was 2.95 W from the
experimental map, compared with 4.26 W obtained through simulation. The discrepancy
in both total power and peak irradiance likely arises from coupling losses and propagation
losses in the waveguide, which were not modeled in the simulation.

2.3. Data Acquisition

The acquisitions were performed in a controlled environment with little artificial
background lighting so that the LED was the dominant light source. A cubic glass aquarium
with a 400 mm side was filled with water and the panels were mounted using a clamping
system perpendicularly to the optical axis of the camera and close to the back glass wall of
the aquarium to maximize the optical path in the water. The aquarium was slightly tilted
to prevent specular reflections at the air-glass-water interfaces from coupling directly into
the imaging system. The distance from the camera body to the panels was d ≈ 1.1 m, while
the distance from the aspheric lens output vertex was d ≈ 1 m. The panel distance was
set by both its size and the maximum acceptance angle of the filter of ±6◦, considering
the additional magnification induced by the refractive index mismatch at the flat air-water
interface (FOV reduction by a factor of nw ≈ 1.33). The objective lens was adjusted to a
focal length f ≈ 40 mm to maximize the panel size on the camera frame. For this focal
length, there was no visible vignetting by the filter due to its large clear aperture (CA,
35 mm). Both the LED and the camera were focused accordingly. The spatial resolution
was estimated at around 290 µm using a graduated target and the total spatial FOV was
191 mm × 144 mm, roughly matching the size of the panels.

The LCTF CWL was scanned in the full 420–730 nm range in 5 nm sampling steps,
originating hypercubes with 63 channels in total. As each wavelength band was acquired
in a single shot, the exposure times were individually adjusted for each channel to com-
pensate wavelength-dependent responses (e.g., LCTF transmission, water absorption, LED
spectrum), and thus improve the overall SNR while preventing under and overexposure.
This was crucial to safeguard good spectral reliability [44]. The images were captured using
the Andor SOLIS software and the total acquisition time was approximately 6.6 s under
the conditions reported herein. The acquisition time was mainly limited by the exposure
times at the extreme bands, namely λ < 440 nm and λ > 700 nm. For λ < 440 nm, the ex-
posure time was set by a combination of low LCTF transmission and low LED irradiance;
for λ > 700 nm, by a combination of stronger absorption in water, low LED irradiance,
and lower camera responsivity. For this reason, and since the SNR scales approximately
with the square root of the exposure time [41], the exposures at the edges were compara-
tively much larger than at the center bands. For reference, the exposure time employed
at λ = 430 nm was 500 ms, while 50 ms at λ = 500 nm, 15 ms at λ = 600 nm, and 250 ms
at λ = 730 nm. The resulting spectrum was, in practice, the convolution between the
instrument response function and the specimen’s actual reflectance spectrum. Due to the
finite size of the LCTF transmission curves at each CWL setting, one expects blurring of the
spectral features that can be partially corrected in post-processing through deconvolution.
For each channel, the same exposure was used throughout all measurements.

2.4. Spectral Data Processing and Analysis

After acquiring a full stack of 2D images indexed to the respective wavelength, the data
were processed in MATLAB with custom-built scripts. A simplified diagram representing
the workflow is presented in Figure 5. In the first stage, pre-processing was applied to
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crop the regions of interest (ROIs), convert intensity data to reflectance, and smooth the
obtained spectra. Afterward, a classifier was built using a supervised approach with a
spectral library as the training set. The classification accuracy was then evaluated using a
previously annotated test set as ground truth. The classifier could finally be applied to a
new calibrated hypercube to estimate the coverage of each biofouling class on the surface
of a panel.

Figure 5. Workflow for pre-processing, training of the model, and classification of fouled panels.

2.4.1. Pre-Processing and Reflectance Transform

The raw value obtained by a camera is a digital number that captures the recorded
photons and dark current over the integration time [45]. The intensity, I, at a pixel location
(x,y) in the monochromatic sensor and at a particular CWL setting of the LCTF, λ, can be
described as a function of the system and medium parameters (adapted from [41,46]):



Sensors 2022, 22, 7074 10 of 27

I(x, y, λ) = texp(λ)

(
Id(x, y) +

∫ ∞

0
Is(x, y, λ′)e−2α(λ′)dw R(x, y, λ′)Γ(x, y)τTF(x, y, λ′, λ)τO(λ

′)<(λ′) dλ′
)

(1)

where texp is the exposure time, Id is the dark current, Is is the light source spectral radiance,
α is the wavelength-dependent attenuation coefficient of water, 2dw is the total optical path
length in water (two-way propagation), R is the spectral reflectance at the surface of the
target, τTF is the transmission function of the LCTF at the CWL λ, τO is the transmission of
the objective lens, and < is the spectral responsivity of the camera. A function Γ(x, y) is
introduced to represent the optical transformation between coordinates in the panel plane
and coordinates in the imaging space, which includes refraction at the air-glass-water inter-
faces. Although the integral is performed over all wavelengths (variable λ′), the spectral
confinement is implicit both in the LCTF transmission function and the sensitivity range
of the camera. This description is valid under the following assumptions: all parameters
are constant over a time interval corresponding to the camera exposure time; there is no
extinction in the optical path in the air; the underwater optical path is approximately the
same in both directions, 2dw, and absorption is homogeneous (i.e., no spatial dependence);
the lenses transmission is constant over its CA as well as the responsivity across the pho-
tosensitive area of the camera; contribution from diffuse and Fresnel reflections from the
air-glass-water interfaces is negligible (tilted interface).

To reliably use a hypercube for hyperspectral analysis and to make it externally consis-
tent [36], an accurate estimation of the surface spectral reflectance is required. This quantity
is an intrinsic property of the objects and it is independent of the illumination source,
properties of intervening water volume, and imager parameters. Therefore, this quantity
can be used for global comparison. The reflectance values, R(x, y, λ), were recovered from
the raw intensity signal, I(x, y, λ), using a two-point calibration procedure to cancel out the
system and medium parameters in Equation (1). Ideal lighting conditions are commonly
assumed [47], for which the measured irradiance from an object is considered independent
of its position within the FOV. However, in the presented system, the tilt in the LED relative
to the camera/target induces spatial inhomogeneities at the imaging plane. Furthermore,
the filter transmission is not uniform across its CA. As a consequence, a flat field correction
was required. This pixel-wise correction ensures that differences in reflectance were solely
a result of local differences in the surface properties of the target and that all pixels were
directly comparable.

Calibration was performed using a reflectance standard with well-known proper-
ties. In this case, a calibrated Lambertian reflectance target with a spatially and spec-
trally homogeneous diffuse reflectance of Rre f ≈ 10% was used (SphereOptics, RTI-010,
200 mm × 250 mm) that fills the full FOV. Three full hypercubes must be acquired at the
same exposure time [45]: a hypercube of the scene to transform into reflectance values,
I(x, y, λ); a hypercube of the reference standard (bright field cube), Ire f (x, y, λ); a dark
current hypercube (dark field cube), Id(x, y, λ), obtained by blocking the incoming light
completely. Both the reference standard and the fouled panels were submerged at the same
imaging plane. The transformation from camera counts to reflectance is then determined by:

R(x, y, λ) = Rre f (λ)
I(x, y, λ)− Id(x, y, λ)

Ire f (x, y, λ)− Id(x, y, λ)
(2)

assuming that all surfaces behave as Lambertian scatterers [26]. The position-specific
transform models described by Equation (2) were computed at pixel level from the same
location in each of the three cubes [36].

After calibration, the reflectance spectra of the pixels were low-pass filtered using a
second order [48] Savitzky–Golay filter with a window size of nine channels (i.e., 45 nm) [49]
to smooth the signals without substantially changing the fine spectral features (Figure 6).
All subsequent processing was performed on the smoothed, cropped, and reflectance-
transformed hypercubes.
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Figure 6. Example of labeling procedure for Ulva sp. and “gray panel” samples. On the left,
annotated pixels selected from rectangular regions of interest (ROIs) of the hypercube. On the right,
the raw reflectance spectra and respective smoothed spectra. For representation simplicity, each
curve represents the average within a ROI, although all enclosed the individual pixel signatures
were added to the dataset. The reduction of noisy features through low pass filtering is noticeable
(e.g., gray panel at 450 nm); broadband spectral features are preserved. Intra-species variability is
visually noticed when comparing the dense multi-layer patch on the top left with the light green
section in the center.

2.4.2. Signature Collection (Training Set)

For supervised classification tasks, a set of known and properly labeled optical sig-
natures is required as an input to train the algorithm and produce a classifier that can
be applied to new data a posteriori. For this purpose, a spectral library (end members)
was built by independently acquiring the hypercubes for the typical biofouling specimens
collected from the CMTC. The samples were first identified, to assign a correct class and
build the predictor, and then attached to a panel to be measured by the HSI system. Since
each pixel contains a full reflectance spectrum, the information in each hypercube amounts
to tens of thousands of spectra. Therefore, from the calibrated hypercubes, several ROIs
containing multiple pixels were selected for each specimen to account for intra-species
variability (e.g., due to differences in density, orientation, development, and health status),
obtaining a more robust dataset. Similarly, several pixels were gathered for the coated
panel classes to account for surface heterogeneity. All enclosed pixels were then annotated
with a class label and added to the library. The annotation process underlying the con-
struction of the spectral library is shown in Figure 6. The total number of spectra in the
library were collected from a total of 16 hypercubes and amounted to 438,657, divided
between the 9 different algae species, the two animals, and the 6 differently-colored panels.
Detailed information about the sample distributions among classes is provided in Table S1
in Supplementary Material.

2.4.3. Principal Component Analysis

Prior to the training of the neural network, an exploratory PCA [50] step was per-
formed on the collected reflectance data to assess spectral similarities and differences
between the selected classes. PCA is a multivariate statistical analysis that performs a
linear transformation of the spectral signatures, so that most of the variance in the dataset
is captured in the first principal components (PCs). This step allows for reducing the di-
mensionality and complexity of the dataset. Assuming that neighboring bands are usually
highly correlated and yield redundant information about the scene [51], redundancies
could be discarded by selecting the most important spectral features among the 63 vari-
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ables/wavelength channels. This way, the total amount of data available for training of the
classification model and, consequently, the processing times could be reduced. For repre-
sentation purposes, a total of N = 2000 data points were randomly selected within each class
(with the exception of the barnacles for which the total number of samples was considered).
PCA was then applied to the standardized data (mean-centered and with normalized
variance) and the results represented in biplots.

2.4.4. Classification: Neural Network

A classifier was trained using supervised machine learning to map an input spectrum
to a specific biofouling class [21]. This group of algorithms learns and trains from a correctly
labeled dataset to predict outcomes on unforeseen datasets, i.e., in newly measured panels.
The constructed spectral library was used as a training set paired with the corresponding
labels as desired response values.

In this work, we employed a wide neural network (WNN) for the classification task.
When large training sets are available, as in this case, neural networks can yield powerful
representation capabilities and prevent overfitting [52], while showing superior accuracy
compared to SVMs [53]. The training was performed using the "Statistics and Machine
Learning Toolbox" in MATLAB [54], more specifically the "Classification Learner" app.
The model parameters were set as follows: single hidden layer with 100 neurons; ReLU
activation function; regularization parameter λ = 0; standardization of data active; five-
fold cross-validation. We limited the dimensionality of the data using PCA to reduce the
training time [53] and overfitting, thus improving the model generalization to new data.
Only the PCs explaining 99.99% of the variance were considered, which corresponded to
18 out of 63 features. In these conditions, the accuracy from cross-validation within the
training dataset was around 99%. Hyperparameter optimization was left outside the scope
of this publication.

After training the model, the resulting classifier could then be applied to a new hyper-
cube to assign a unique class to each pixel and produce a segmented image. Subsequently,
the coverage percentage of each biofouling class could be evaluated. Because PCA is
applied prior to training, the new hypercube samples need to be transformed into the same
PCA space prior to classification.

2.4.5. Testing and Classification Accuracy

The model’s capability of predicting new and unseen input data was tested using a
dataset comprised of spectral samples that have not been used for training and collected
from a spatially disjoint target (i.e., hypercube) to avoid the possible impact of correlated
neighboring pixels on the results [55]. The performance of the WNN classification model
was evaluated using accuracy as a figure of merit. The test dataset was externally collected
from a model target constructed by attaching several biofouling specimens collected at
CMTC to a coated panel (Figure 7). A total of seven different types of algae, similar to
the species used for training (but different samples) were utilized: two green, one red,
and four brown algae. The algae species were Ulva sp., Zostera sp., Ceramium sp., Petalonia
sp., Scytosiphon sp., Desmarestia sp., and Chorda sp. (see Figure 1). Due to shape factors, no
mussels were included in the model target as its attachment proved impractical. Likewise,
no barnacle samples were added due to their strong adherence to a surface, which made it
impractical to transfer them to the model target. A test set of 41,502 spectra was sampled.
Its distribution is disclosed in Table S1 in Supplementary Material.
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Figure 7. Image of the model target constructed by attaching biofouling collected at the CoaST
Maritime Test Centre (CMTC) to a panel coated with a commercial underwater primer. In (a),
the RGB image where two algae from different groups are encircled (brown in black circle, green
in red circle) to demonstrate that different classes can sometimes depict similarities in color. In (b),
the labeling of the measured hypercube to generate the ground truth. In (c), the segmented image
resulting from the application of the wide neural network (WNN) classifier to the hypercube.

The obtained calibrated hypercube of the artificially generated model target was
labeled using the same procedure as in Section 2.4.2 (Figure 7b) to generate the ground
truth against which the classes predicted by the classifier could be compared to generate a
confusion matrix and evaluate the overall accuracy. The latter was calculated by dividing
the trace of the matrix by the sum of its elements (total number of samples). For each
class, the true positive rate (TPR), or sensitivity/recall, was calculated as the ratio between
the number of correct classifications (diagonal element, or true positives) and the total
sample points of the class in the ground truth (sum of the corresponding row, i.e., of
true positives and false negatives). The false negative rate (FNR) was determined by
FNR(%) = 100− TPR(%). The two previous values are presented to the right of the
confusion matrix. The positive predictive value (PPV) or precision for each class is presented
below the error matrix alongside the false discovery rate (FDR). The former is the ratio
between the true positives and the sum of the true positives and false positives for the
considered class, i.e., the sum of the respective column of the confusion matrix. Similarly,
the FDR is related to the PPV through FDR(%) = 100− PPV(%).

2.4.6. Evaluation of Real Fouled Panels

To test the developed method on a real case scenario with intergrown biofouling,
the classifier was evaluated on two coated panels that had been exposed at CMTC for a
period of more than a year. Both panels were coated with a white commercial polyurethane
paint with no fouling control properties and were fully covered with algae, mussels,
and barnacles. As the panels were heavily fouled, we decided to evaluate them for different
simulated states of biofouling. We started by acquiring the hypercube for the fully fouled
panels, and then gradually scrapped some of the fouling to reproduce different degrees of
fouling and to expose some of the underlying coated panel. Three states were measured:
fully fouled, medium-fouled, and low-fouled panels. As the biofouling on the panels
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was intergrown, the WNN classification was only evaluated qualitatively through direct
comparison with a visual inspection of the corresponding color images.

3. Results
3.1. Spectral Library

The mean spectra for the coarse groups of the fouling classes are shown in Figure 8.
The total number of pixels spectra averaged per class is disclosed in the title of each subplot.
The shaded areas represent the standard deviation.

Figure 8. Mean signatures from the spectral library used as the training set for the WNN model
with the coarse groups of algae. The shaded regions represent the standard deviation. For the algae
signatures, the vertical gray bars indicate chlorophyll-a (chl-a) absorption bands; for the red algae,
the blue vertical line indicates the in vivo satellite band absorbance peak of chl-a. For the latter
classes, an inset is also shown with a zoom-in on local absorption minima. The total number of pixels
sampled per class is disclosed in the title of each subplot.

All algae specimens are photoautotrophs and some optical fingerprints in their spectra
are inversely related to absorption by light-harvesting pigments [56]. Two local reflectance
minima were prominent in all the green, brown, and red spectra at 450 ± 10 nm and
665 ± 15 nm (highlighted by the vertical gray bars). These features coincide with the
in vivo peak absorption of chl-a, a primary photosynthetic pigment present in all these
organisms, and are consistent with past measurements on the red [26] and green [49] algae.
Moreover, an additional weaker minimum was observed at 615 ± 15 nm in red algae
previously linked to a satellite band absorbance peak of chl-a [57]. The reflectance peak
observed at 720± 15 nm was a superposition of autofluorescence from chl-a (dominant) [58]
and elastic scattering. This peak was more accentuated for red algae likely due to a greater
chl-a content. Regarding absolute values, all the algae have a visibly dark appearance and
thus relatively low reflectance values across the full spectrum (<16% when the fluorescence
peak is disregarded). Green algae exhibit a reflectance peak at 545 ± 10 nm, consistent with
their color. Brown algae exhibit a peak at 570 ± 10 nm and a flatter spectrum with lower all-
around reflectance. Red algae exhibit two reflectance peaks at 590± 10 nm and 640± 15 nm.
The spectral features and reflectance levels obtained herein are similar to those observed
for other red [26] and green [40,59] algae, indicating an accurate calibration procedure.

Color-neutral organisms, particularly mussels, barnacles, and white/gray panels, have
a relatively constant reflectance across all wavelength channels. As expected, the white
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panel samples show higher reflectance values among all the endmembers (around 45%),
while mussels constitute the lower-reflecting object (≈4%). A slight increase in reflectance
from mussels was observed as wavelength increased, linked to the slightly brownish color
of these organisms (see Figure 1). Very few barnacle samples were collected (N = 632)
due to the lack of isolated samples at the CMTC. For these, we observed a small dip at
665 ± 15 nm and a peak at 720 ± 15 nm that clearly signal the presence of chl-a in the
collected spectral samples. This might be an indication that the barnacles were either
mixed with algae (e.g., on their surface) or the presence of large chl-a content in the aquatic
medium that distorted the real signature. The remaining panels had broadband reflectance
peaks at the wavelengths that match their colors: 455 ± 10 nm for both blue panels, and 645
± 15 nm for the red panel. The blue FCC panel also had a local maximum at 720 ± 15 nm.
Since this was a commercial FCC, its formulation is undisclosed and the origin for this peak
was unclear. We speculate that it stems from additives in the coating.

3.2. Principal Component Analysis

The PCA results are displayed in Figure 9. Biplots with the 95% confidence ellipses
for each class are presented alongside the loadings for the first four PCs that explain,
87.54%, 10.23%, 1.26%, and 0.70% of the total variance in the spectral signatures within the
dataset. PCA highlights spectral differences and similarities among samples. In the biplots,
point clusters indicate close spectral relations, and non-overlapping ellipses might be
interpreted as spectrally-distinguishable groups [47]. The loadings quantify the importance
of each independent variable, i.e., each wavelength channel, to each PC: larger loading
values indicate a larger relative importance of a specific wavelength to the considered PC,
with negative values meaning a negative correlation. To support the discussion, we only
show a selection of the biplots that better demonstrate spectral differences among classes.
On the bottom two biplots, only the classes that are not distinguishable on the top two are
shown, to facilitate intelligibility.

In general, the PCA biplots disclosed that most classes had distinct optical signatures
and could be mostly discriminated based on reflectance spectra alone. All the panels were
completely distinguishable from one another and from the fouling classes when PC1 was
plotted against PC2 (Figure 9a), with exception of the “Blue FCC Panel” that overlaps with
the confidence ellipse of “Mussels”. Nonetheless, the two were completely distinguishable
when PC3 was plotted vs. PC4 (Figure 9d). This was a valuable indicator since one of the
key tasks for a biofouling monitoring system is to discriminate clear (panel exposed) from
the biofouled surface.

Barnacles and mussels were also spectrally distinguishable from the other classes,
with the exception of green algae. However, by plotting PC1 vs. PC3 for only these
three classes (inset in Figure 9b), one observed that, although the ellipses overlapped,
the datapoints did not. This meant that the three classes would likely be separable to
some extent. The underlying reason is that the confidence ellipses are representative of
normal distributions. Nevertheless, for the green algae, two different species were sampled.
Similarly, for the mussels, both dark and brown specimens were sampled, thus skewing
the distributions.

Regarding the algae groups, the spectral similarities were larger, particularly due to
the characteristic fingerprints from chl-a in all specimens. Following the same reasoning as
before, the datapoints for green and red algae groups have almost no overlap in the PC1
vs. PC2 biplot (see inset in Figure 9a), although there was substantial overlap between
the respective confidence ellipses. The ellipses and some datapoints for red and brown
algae overlap in all graphs, but the superposition was only slight when PC3 was plotted
vs. PC4 (Figure 9d). Among all classes, brown and green algae were expected to introduce
the biggest confusion in classification, as there was an overlap between datapoints and
ellipses in all the biplots. When considering the first four PCs, the overlap was smallest
in the PC2 vs. PC3 biplot (Figure 9c). We observed, in some instances that the brown
algae considered in this study had a greenish appearance. For example, the Chorda sp.
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sample region marked by a black circle in Figure 7a was considered brown algae but had a
green-like appearance towards the filaments on the edge, resulting in misclassification as
green algae in the segmented image. Likewise, the Zostera sp. marked by a red circle was
a green algae, but some regions were darker than others and were confused with brown
algae. This is a possible justification for the spectral similarities between these classes.

Figure 9. Principal component analysis biplots (a–d) and loadings (e) of the first four principal
components (PCs). The displayed biplots are, in order: (a) PC1 vs. PC2, (b) PC1 vs. PC3, (c) PC2 vs.
PC3, and (d) PC3 vs. PC4. The ellipses represent the class-specific 95% confidence interval, with the
longest axis along the direction with the largest variance within each group [47].

Another observation from the biplots was that some of the classes exhibit larger intra-
class variation in spectra, reflected in more dispersed cluster of points. In particular, red
and green algae were the categories that stood out, also indicated by the broader standard
deviations in Figure 8. For the green algae, two species were sampled, but for the red
algae only one species constitutes the dataset, so the justification does not lay solely on
inter-species differences. This was also a result of the effort to sample ROIs depicting
distinct perceived reflectance within each species, to make the classifier more robust to
intra-species variability.
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Concerning the loadings, for PC1 they were equally distributed across all wavelengths,
meaning that all channels carried similar weight. Considering that PC1 has been associated
with brightness [26,60], one can hypothesize that reflectance intensities were the main
discriminatory feature. As for the remaining PCs, some wavelengths appeared to explain
spectral differences among classes more than others. For instance, in PC3 (green curve in
Figure 9e) the wavelengths around 550 nm and above 700 nm (chl-a fluorescence) seemed
to have a strong positive influence, while the wavelength contribution to the variance
seemed to be negatively correlated to chl-a absorbance (peak absorption bands match the
location of the minima in the loadings). Therefore, there was a clear indication that the
fingerprints associated with chl-a were key to distinguishing between algae and non-algae
classes. Further pigment analysis is needed to assess the nature of the PCs since PCA serves
only as an exploratory tool [49].

From this analysis, misclassifications were expected between classes that overlapped
in the biplots, especially between brown algae and red/green algae. Outliers also curtail
classification accuracy. Although the presented analysis was restricted to four PCs, we
decided to reduce dimensionality while preserving a number of PCs justifying >99.99%
of total variance (18 out of 63 PCs) prior to training because smaller spectral features that
could be crucial for classification would be preserved by considering higher PCs. This was
particularly relevant for classes demonstrating similarities in the optical signatures.

3.3. Classification and Coverage Estimation
3.3.1. Model Target

The classifier performance was assessed by presenting it with unknown (i.e., previ-
ously unseen) hyperspectral data acquired using a custom-built model target. The accuracy
of the WNN model was quantified by comparing the labeled ground truth (Figure 7b) with
the prediction of the model on the test dataset. The segmented image with the unique
classes assigned by the trained WNN model to each pixel is shown in Figure 7c. The con-
fusion/error matrix obtained by comparing the true and predicted classes is presented
in Figure 10.

Figure 10. Error matrix for the WNN classification of the model target with ground truth in rows and
predictions in columns. The true positive rate (TPR), or recall, and false negative rate (FNR) for each
class are presented on the side; the positive predictive value (PPV), or precision, and false discovery
rate (FDR) are presented below. No mussels or barnacles were present in the model target.
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The overall accuracy of the WNN classifier in the model target was around 95.1%
(see Figure 10). All the differently colored panels were merged under a single class “Panel”
for the purpose of classification since, in practice, the central task was not to discriminate
panel colors but rather the percentage of clear surface. On top of it, the color of the panels
was well-known prior to submersion. The total training time for the model was around
800 s, while the time it took to classify the 430 × 177 pixels segment of the hypercube was
around 135 ms (averaged from 500 measurements).

In terms of individual classes, the PPV for the panel category was almost 100% while
the TPR was 99.2%. These results disclosed that the panels could be almost completely
isolated from fouling with negligible false positive and false negative counts, which is in
line with the observations from the PCA. Among the algae classes, the brown algae was the
one depicting the smallest PPV at 81%, with 607 and 835 pixels being mistakenly classified
as green or red algae, respectively. Its TPR, however, was around 96.4%, with 199 of the
pixels being misclassified as mussels. The confusion between brown algae and the other
two algae classes had already been signaled in the PCA analysis. For both the green and red
algae, the PPV was above 98%, meaning a negligible narrow rate of false positives. The TPR
for the green algae class reached an estimate of 94.2%, skewed by the misclassifications as
brown algae. Similarly, the TPR for the red algae was 90.8%, suffering from additional false
negatives arising from misclassification as mussel. Confusion between red and green algae
was negligible, supporting the previous remark in PCA that, although ellipses overlap,
the points were mostly distinguishable (non-normal distributions). As mentioned, no
barnacles nor mussels were included in the test set as attachment to the model panel was
not viable.

For the evaluation of biofouling on a coated surface, knowledge about the coverage
percentage of algae and animals, as well as percentage of clean panel are essential metrics.
From the classification results obtained with the WNN model, the coverage percentage for
the different classes was calculated as the ratio between the pixels in each class and the total
number of pixels. The coverage maps for each class estimated by the classifier on the model
target are shown in Figure 11. The coverage of the model target was determined to be
16.66% of green algae, 19.66% of brown algae, 25.26% of red algae, and 36.63% of the panel.
The WNN model wrongly classified 0.69% as mussels and 1.09% as barnacles. From the
segmented image in Figure 7c, one notices that most of the misclassification occurs at the
edges of each object. We speculate that this was mainly due to mixed signatures between
two overlapping objects, as for instance panel and algae, which changes the compound
spectra and creates confusion in the classification step.

To evaluate the impact of dimensionality reduction on the classifier performance, we
trained a new model under the same conditions but without applying PCA (i.e., using
the 63 available variables). While the total training time increased to around 4800 s,
the average classification time slightly decreased to 123 ms since the data no longer needed
to be transformed into the PCA space prior to classification. Accuracy-wise, the overall
accuracy decreased to around 85.8% indicating overfitting. Therefore, by employing a more
restricted dataset size-wise, it was possible to reduce training times and enhance the overall
model accuracy.

3.3.2. Fine Classification

A supplementary classifier was trained to ascertain to which extent the model could
discriminate algae species even among the same color class and provide a more detailed
description taxonomy-wise. A new neural network with the same parameters was trained
with training and test sets annotated according to the fine grouping (species labels presented
in Figure 1). The samples were collected from the same ROIs. The new spectral library,
confusion matrix, and coverage per species after classification with the new model are
presented in Supplementary Material Figures S1–S3, respectively.
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Figure 11. Maps of each category obtained by the WNN classification on the model target, including
coverage percentages. The underlying image was obtained by selecting three RGB bands from the
hypercube. The overlay indicates the pixels classified as the corresponding class.

The overall accuracy with the new species-specific classifier dropped to 81.5% on the
model target. The TPR and PPV for the panel class remained mostly unchanged, as well
as those for Ceramium sp. (only red algae in the sampled set). On the other hand, there
was substantial confusion between algae species within the same color group. For instance,
among the green algae, the Ulva sp. demonstrated the largest PPV and TPR, at around
80.9% and 91.5%, respectively. Nevertheless, the number of false negatives for the Zostera
was considerably high and the TPR amounted only to 12.4%. As for the brown algae, similar
confusion was observed among the different species. The TPR and PPV peaked for the
Ceramium sp. at 93.7% and 99.5%. The PPV for all other species was below 50%, meaning
that the number of false positives surpassed the number of true positives. The Petalonia sp.
was overall the species displaying worse classification potential, with a TPR and PPV of
only 2.5% and 19.4%, respectively.

These results demonstrate that the species within each group of algae in the current
dataset were relatively indistinguishable. This outcome was expected since the classification
was based purely on reflectance spectra alone and the species shared common pigmentation
and characteristics resulting in very similar signatures. Further information, for instance,
morphology, is needed for accurate taxonomic classification at the species-level.

3.3.3. Real Targets

Figure 12 shows the RGB image and respective classification with coverage estimation
after application of the WNN classifier to a medium-fouled panel. The trained model
estimated that the dominant biofouling groups were brown and red algae, with coverage
of 41.81% and 38.92%, respectively. Only around 11.81% of the underlying white panel was
exposed. The less prevalent species on the panel were, mussels, barnacles, and green algae
covering only 3.70%, 2.28%, and 1.49% of the considered panel surface, respectively. An-
other panel subject to the same exposure at the CMTC was evaluated and the segmentation



Sensors 2022, 22, 7074 20 of 27

results are documented in Figure S4 in Supplementary Material for three distinct states
of biofouling.

Direct visual comparison between the RGB and segmented images indicated a rel-
atively reliable and accurate identification of panel pixels. As for the other classes, red
and brown algae seemingly dominated the panel surface. Red algae dominated mostly
the bottom left portion of the panel, and the more evident specimens marked with red
circles in the RGB image were correctly identified. Brown algae were dominant on the
top and right, which matches visual observations. Because the algae grow intertwined,
some regions were harder to identify with the naked eye. Green algae were mostly present
in the boundary regions, and those too were quantified by the model. The two mussels
at the center-right of the panel were properly classified. Nevertheless, some pixels at the
top were misclassified and should instead be attributed to the brown or red algae class,
similar to the observations with the model target. Lastly, the detection of barnacles seemed
to be an error in the classification, most likely due to the distorted endmember signature.
Although visible traces of prior presence of barnacles were identified, they were not directly
present in the imaged panel.

Figure 12. Classification and coverage percentage of biofouling for a medium-fouled panel obtained
from using the WNN. On the leftmost side, the RGB image of the panel taken with a commercial
camera is shown. Some of the red algae detected under visual inspection of the panel are encircled to
qualitatively compare with the classification with the WNN model.

4. Discussion and Conclusions
4.1. Staring-Type Hyperspectral Sensor

In the present paper, we explored the feasibility of using HSI for biofouling assessment
in submerged panels. A staring-type system was implemented using a LCTF as the spectral
resolving element motivated by the static nature of the application. The biggest downside
of our HSI system was the low LCTF transmittance that led to overall longer acquisition
times. As a counteraction, we used an EMCCD alongside a high-power lamp designed to
tailor our application. The implementation of an active system also allowed to compensate
for extinction due to propagation in water.

A white LED element was chosen as the centerpiece of the illumination system since
it met the requirements for high stability, high energy efficiency, a long lifetime, and a
small footprint [35]. A novel design combining a tapered hollow waveguide for mixing
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the emission profile and reduction of the angular spread of the light cone, with a high-NA
condenser lens, was used to accomplish high-power and uniform illumination of the panels.
A slight non-uniformity arising from the horizontal tilt of the LED lamp was corrected with
a flat-field pixelwise calibration step. In the future, a second LED lamp similar to the latter
can be implemented symmetrically to correct the non-uniformity and double the irradiance
levels (and, thus, reduce the acquisition times). Proper uniform illumination is crucial to
avoid local degradation of image quality due to over- or underexposed regions that induce
errors in the measured spectrum and, consequently, in classification.

Reported underwater HSI systems have mostly employed near-Lambertian light
sources, particularly halogen [47] or LED [44] lamps. With our novel design, the angular
distribution of the light source could be narrowed while still preserving uniform illumina-
tion. The peak irradiance across the FOV of the camera at the target surface was estimated
to be of the order of 120 W/m2. For reference, simulations demonstrated that the inten-
sity would have decreased six-fold in case the aspheric condenser was not used. This
demonstrates the relevance of having focused or collimated light sources to increase the
backscattering signal levels and thereby allow for faster acquisitions.

Compared with push broom systems, the main advantage of our staring-type imager
is the possibility to independently adjust the exposure time for each wavelength channel to
maximize SNR. Since a good SNR is critical for high spectral reliability [44], underexposed
regions must be avoided to ensure that the hypercube has a higher dynamic range. On the
other extreme, overexposure disrupts linear transformations. In push broom systems, all
wavelength channels are acquired simultaneously with a common integration time. This is
particularly problematic if the LED spectrum is not tailored to ensure a nearly flat spectral
response of the full system since, for instance, absorption in water is stronger towards the
red. This is the case in [47], where wavelength bands above 691 nm and below 470 nm
are rejected due to low SNR, as well as in [26] for λ < 450 nm. The rejection of these
bands potentially eliminates vital spectral fingerprints from the analysis (in our case this
would reject the chl-a absorption peak at 450 nm and autofluorescence at >700 nm). In our
system, the exposure times near the limit bands were simply increased to increase the
SNR (SNR ∝ texp). Notwithstanding, this led to longer acquisition times. The sum of the
exposure times for the full hypercube acquisition herein was around 6.6 seconds; if the
bands <470 nm and >691 nm were ignored, this time would have decreased to around
1.9 seconds.

The biggest comparative downside of our system is the considerably worse spectral
resolution. The FWHM of the employed LCTF was between 6.8 and 14.4 nm, while under-
water push broom systems can achieve maximum spectral resolutions of 0.5 nm [22]. This
means that, under our system, narrow spectral features appear smeared out. Nonetheless,
spectral features from solid and biological targets are, in general, relatively broad-banded,
in contrast to sharp well-defined features observed from gases [61]. Accordingly, our
results indicate that fine spectral resolution might not be needed to discriminate relevant
biofouling species at the group level according to the spectrum. However, finer spectral
resolution might be needed for more detailed taxonomic analysis and identification.

4.2. Spectral Library of Biofouling Species

A library of spectral signatures was constructed for representative biofouling species
collected at the CMTC. The raw spectral data were calibrated to convert digital counts into
reflectance values, and thus correct for wavelength-dependent system and propagation
medium parameters. Characteristic imprints arising from absorption and autofluorescence
of chl-a pigments were observed in the spectral reflectance signatures of all algae species
and played an important role in the classification step.

During this stage, and to make the classification model more robust and accurate,
it is important to account for intra-species variability in the optical signatures due to
differences, among others, in density and health status. For this reason, a large amount
of spectra needs to be collected which constitutes a very time-consuming task. Moreover,



Sensors 2022, 22, 7074 22 of 27

an accurate calibration procedure is also fundamental since trustworthy and consistent
signatures are required for rigorous classifications. Due to the non-uniformity of the
illumination and LCTF transmission over the CA, a pixel-wise calibration was applied to
simultaneously perform a flat-field correction and reflectance conversion, thus making all
the pixels directly comparable.

A standard with quasi-100% reflectance is often used as the reference for the calibration
(e.g., spectralon or polyethylene [47]). However, it has been argued that this is not strictly
required [36,45]. Considering the low reflectance of most biofouling organisms and that
the standard needs to be imaged under the same exposures as the hypercubes, we opted to
use 10% reflectance standard to maximize the dynamic range. Equation (2) generalizes the
transformation to reflectance for an arbitrary reflectance standard. The obtained red algae
signatures (Figure 8) are comparable with a past study [26], both quantitatively (absolute
reflectance) and qualitatively, despite the differences in reflectance standards used for
calibration (10% vs. 99%). This suggests that our calibration procedure was accurate.

4.3. Supervised Classification of Submerged Biofouled Panels

The overall objective of this study was to develop a technique to detect, classify,
and quantify biofouling on coated surfaces and, thus, generate an objective and repeatable
method to evaluate the performances of FCCs. Using the spectral library as dataset to
train a WNN model allowed us to map the distribution of the different classes on new
panels (only requiring a measured and calibrated hypercube). The accuracy of the classifier
was tested on a spatially disjoint model target with known ground truth to evaluate its
performance. The overall classification accuracy of the WNN classifier was estimated to be
around 95%. The recall rate was superior to 90% for all classes, with a minimum of 90.8% for
red algae and a maximum of 99.2% for the panel class. The precision was above 98% for all
classes besides for brown algae which registered a rate of 81.0%. This indicates that, when
grouped according to color categories, the macroalgae can be correctly classified to a great
extent with our HSI system. The classification capabilities were also tested in real fouled
panels and a comparison of the segmented images with direct visual inspection of color
images revealed a substantial agreement. Whatsoever, the accuracy was not quantified as it
would require correct identification of the species on the panel for ground truth, which was
difficult to determine with the naked eye due to the intertwined growth.

Concurrently, when we considered a separately-trained neural network with more
detailed description of the classes taxonomy-wise, the overall accuracy on the model target
dropped to 81.5%, driven by substantial confusion among algae species within the same
color group. Even within the same taxon, the algae color can change, so the collected
spectra are not unequivocally linked to a particular species. This indicates that mapping
independently each algae species with high-accuracy and without extra information besides
the spectrum might prove a difficult task. Furthermore, in the maritime context, the number
of species that can be observed is very large and taxonomy is highly complex, so a species-
based approach is expected to scale poorly [15].

Classification on real panels was in line with qualitative observations under visual
inspection. There were, however, some ambiguities at the boundary regions of the panel,
even to the naked eye. Because the settlement of biofouling is a gradual and dynamic
process, the build-up on the panel occurs in different stages [62]. Hence, throughout
the biofouling growth process and until the organism reaches a stage in which it mostly
dominates the pixel spectrum, one can expect to have mixed pixels signatures that are a
combination of panel and organism spectra (that also change according to its status). Since
the training dataset only includes sample points for both clean panels and fully grown
macroalgae, these mixed pixels introduce confusion in the WNN classifier (see for instance
the region marked with a red circle in the panel coverage image). To improve the accuracy
of the model and circumvent confusion, the dataset needs to be further expanded to include
algae in different stages of development.
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When compared with RGB camera-based systems [15,16,19], HSI extends the spectral
information to tens of wavelength channels. This way, characteristic biofouling fingerprints
that would otherwise be missed by color cameras were resolved. This was crucial to increase
the classification specificity, allowing us to go beyond the semi-quantitative classification
in a three-level holistic scale proposed in [15] for vessels. Among the most prominent
spectral features herein, the absorption and autofluorescence signatures of chl-a revealed
central to discerning algae from non-algae. In the context of evaluating the performances
of FCCs, having more granular detail about the coverage percentage of both biofouling as a
whole and specific groups is valuable to support the development stages and the direct
comparison between different coatings. Thus, our system permitted the quantification of
coverage of the clean panel, three groups of algae (green, red, brown), and two animals
(mussels and barnacles). These coverage percentages can stand alone as evaluations of
performances or can be combined with existing evaluation standards for the performances
of FCCs, such as the ECHA [13]. Using [19] as a reference, the accuracy of an underwater
RGB camera combined with an SVM model was, overall, 58%, with the TPR peaking at
75% for the tunicates. Our HSI system combined with the WNN model accomplished an
overall accuracy of 95%, with a minimum TPR of above 90% for red algae. Although the
classes considered were distinct, the discrepancies were regarded as a good indicator of the
advantages of HSI compared to RGB cameras.

The advantages of the developed staring-type HSI come at the expense of some
drawbacks. Primarily, the acquisition of multiple spectral bands inevitably means longer
acquisition times (in this case, 63 images vs a single snap-shot required with a color camera).
To soften integration times and fasten the throughput, we combined an EMCCD with a
high-power LED lamp to boost photon-budget. Having acquired a full hypercube, WNN
classification occurs virtually instantaneously, taking sub-second times to assign a class
to every pixel in the frame. Therefore, HSI is still compatible with agile measurements
required to unlock large area analysis. The LCTF addition also means a bigger footprint
and a more expensive system.

All the processing, analysis, and classification were purely based on spectral features.
No spatial contextualization was considered. Nevertheless, one can take advantage of the
spatially-rich information retained by 2D imaging sensors in HSI and incorporate it into
the model to support classification. Since the shape is usually an important identifying
element, a spectral-spatial classifier with enhanced specificity and accuracy can be built
to simultaneously consider morphological and spectral information. The implementation
of these additional features into a classifier requires more advanced models, often deep
convolutional neural networks [52,63], which try to mimic human visual recognition.
A study ought to be carried out to evaluate the most suited algorithm, as it has been
demonstrated that it has the potential to affect the classification outcome [26], followed
by an optimization procedure to fine-tune the model parameters. This was left out of the
scope of this pilot study.

All the results were obtained from in vivo measurements in a controlled environment
as this was a pilot to study the feasibility of spectral imaging applied to the evaluation
of marine coatings. In the future, the sensor ought to be submerged and tested in situ
to include the effects of increased water volume and, therefore, increased absorption,
scattering, and fluorescence from dissolved organic matter and suspended chl-a, which will
certainly degrade the SNR and contrast [26]. For underwater deployment, a hermetically-
sealed housing is required with a dome port to correct the magnification due air-glass
window-water refractive index mismatch. The system can be fixed to an underwater
platform observing the panels at a constant distance and within a consistent FOV.

Overall, the application of HSI for biofouling assessment is a novel contribution to
the automated description and evaluation of the performances of FCCs. The proposed
technique combined with a novel light source with high uniformity and power can swiftly
and reliably produce maps of the biofouling coverage per class on panels that can after-
ward be analyzed to produce objective assessments. This pilot study demonstrated that
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HSI is a superior alternative to current imaged-based methodologies, both specificity and
accuracy-wise, due to the extended spectral information. Moreover, since the procedure
is automated, it can accomplish objective and repeatable evaluations when compared to
traditional methods. Hence, HSI has the potential to replace manual or photointerpretation
techniques that are time-consuming and have, up until this point, depended on specialized
human examiners with their inherent subjectivity [14–16]. As a result, this powerful tool
has the potential to provide valuable information that will facilitate the task performance
evaluations of FCCs, both on spatial and temporal scales. Moreover, HSI is a remote
sensing technology and therefore non-destructive by nature, so in situ and in vivo mea-
surements are possible without interfering with the fouling dynamics. Besides improving
the comparability between FCCs, the categorized output will also inform about preferen-
tial growth of biofouling classes. This system can therefore provide information on the
fouling dynamic that will be crucial to support the R&D of new environmentally friendly
FCCs. Further developments will permit higher throughput and more comprehensive
classification taxonomy-wise that will further deepen the level of detail of the assessments.

Supplementary Materials: The following supporting information can be downloaded at https://
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