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Abstract: This paper presents our autonomous driving (AD) software stack, developed to complete
the main mission of the contest we entered. The main mission can be simply described as a robo-taxi
service on public roads, to transport passengers to their destination autonomously. Among the key
competencies required for the main mission, this paper focused on high-definition mapping, vehicle
control, and vehicle-to-infrastructure (V2I) communication. V2I communication refers to the task
of wireless data exchange between a roadside unit and vehicles. With the data being captured and
shared, rich, timely, and non-line-of-sight-aware traffic information can be utilized for a wide range
of AD applications. In the contest, V2I communication was applied for a robo-taxi service, and also
for traffic light recognition. A V2I communication-enabled traffic light recognizer was developed, to
achieve a nearly perfect recognition rate, and a robo-taxi service handler was developed, to perform
the main mission of the contest.

Keywords: autonomous driving; HD map; disturbance observer; V2I communication

1. Introduction

The robo-taxi is drawing attention, as one of the most rapidly adopted services us-
ing autonomous vehicles. Although the introduction of robo-taxis is not as rapid as ex-
pected, large-scale tests are currently in progress—notably in the United States [1,2] and in
China [3–5]—some of which are open to the public, and in revenue service [6–9].

The main mission of the contest that we entered—the 2020 University Student Au-
tonomous Driving Contest—was to transport passengers to their destination autonomously;
in short: robo-taxi services on public roads. In line with how the robo-taxi is expected
to serve the public in the future, vehicles in the contest were expected to transport pas-
sengers between locations of their choice. The contest did not feature actual passengers
hailing from the street; their ride-hailing was instead simulated by tens of virtual calls for
a ride, broadcast over a vehicular communication system. In the contest, the vehicular
communication system was realized based on vehicle-to-infrastructure (V2I) technology, in
which the vehicles and roadside units (RSUs) served as communicating nodes, providing
each other with information for the robo-taxi service. Each call primarily consisted of
the pick-up and drop-off locations of the virtual passengers. The two-dimensional (2D)
distance between these locations was also provided by the call. The distance was factored
into points at which the vehicles could win by completing the mission. The points varied
according to the mission’s degree of difficulty. More points were awarded if the vehicles
completed more challenging missions that involved left turns, underpasses, roads missing
from the map, and lanes closed for construction: except for the lanes closed for construction,
these scenarios were considered to be static; the lane closed for construction, however, was
dynamic, and therefore the location of the lane closure was provided not by the map but by
the call. This is one of the actual uses of V2I communication, which is often referred to as a
roadwork warning. In consideration of all these factors, the vehicles were required to pick
up one of the available calls, and then leave for the pick-up location. None of the answered
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calls were allowed to be selected again, and the calls being responded to by other vehicles
could not be selected either. As the contest was held on public roads, the vehicles were
required to drive in accordance with the relevant traffic rules. For safety purposes, traffic
in and out of the contest site was restricted to 15 competing vehicles and several safety
vehicles from the contest organizer. The safety vehicles were deployed to mimic actual
traffic conditions, while supervising the competition at the site. If the vehicles violated
traffic rules, earned points were deducted. Ten times more points were deducted if the
violated traffic rule was a traffic signal, which was considered more stringent than any
other rules. Earned points were also deducted if the vehicles issued a take-over request
(TOR) to attendants, to evade unsafe situations. All the factors used to calculate the points
are listed with their corresponding weights (see Table 1). Accordingly, the vehicles are ranked
according to the points that they accumulated during the contest, which lasted for 1.5 h.

Table 1. Factors and their weights applied to calculate the points in the contest.

Points Factors Weights

earned by

Left turns +0.1
Underpasses +0.2

Roads off the map +0.4
Lanes closed for construction +0.5

deducted by

All traffic law violation
(except traffic signal) −0.1

Traffic signal violation −1
TOR −0.3

The following core competencies were required for vehicles in the contest to demon-
strate the robo-taxi service: mapping; localization [10–16]; path-planning [17,18]; vehicle
control [19–24]; and perception [25–28].

A kind of map needed to be created, often called a high-definition (HD) map, which
differs from conventional maps made for human drivers. The HD map created for au-
tonomous driving (AD) incorporates two different types of maps: a pointcloud map and a
vector map. These two maps commonly represent the geographical features required for
AD. Whereas the pointcloud map represents the three-dimensional (3D) shape of objects
in driving environments, the vector map represents their global position. The concerned
objects include road and roadside infrastructure, such as lane lines, stop lines, road bound-
aries, traffic signs, traffic lights, etc. The local pointcloud map is registered, as opposed to
the global vector map, generating the HD map. Therefore, the registered pointcloud map
can deliver a faithful representation of driving environments, with laser-sharp precision.

Localization refers to the task of determining the ego-vehicle’s current position and
orientation within the global frame. The registered pointcloud map can help the vehicle
in the localization. Prior map-based localization is performed by matching the scanned
pointcloud to the registered pointcloud in the prior map, which enables a positioning error
within several centimeters.

Path-planning can be regarded as an extension of localization, in that it requires the
current position of the ego-vehicle and the position of the goal location on the global frame.
The vector map can aid the vehicle in the path-planning. Global planning refers to the task
of finding a path towards the goal location. Static obstacles positioned within the vector
map are used as prior information to render the path optimal. The obstacles widely denote
driving environments that can increase the cost of traversal. For instance, when finding
the optimal path, left turns, underpasses, and roads off the map are not desired, because
of their higher cost. Local planning refers to the task of generating local trajectories based
on the global path. Indeed, the best trajectory must be drivable by the ego-vehicle and
collision-free from dynamic obstacles. The local planner is integrated with the behavior
planner, which leads the vehicle to the goal location safely and efficiently.
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The planned path is composed of an array of waypoints. Vehicle control enables
the ego-vehicle to follow the waypoints given by path-planning. The waypoint follower
generates a set of linear and angular speed references. The subsequent speed controller
generates a set of throttle, brake, and steering commands, to achieve the referenced speeds
that lead the vehicle to the next target waypoint within the next control cycle.

Last but not least, perception refers to the task of extracting relevant information from
driving environments to make a decision as to what to do next. Among the core com-
petencies required for the robo-taxi service, perception—which incorporates localization,
recognition, and V2I communication—must be the most computationally intensive.

Among the objects that need to be recognized in driving environments, traffic lights
are considered the most crucial for the vehicle to avoid collisions at a signalized intersection.
Therefore, a traffic light recognizer (TLR) must achieve an almost perfect recognition rate.
However, traffic lights are not easy to recognize, when only using a camera, because of
practical limitations [29,30]. For instance, when approaching adjacent intersections, if
multiple signal heads are detected simultaneously, it is difficult to decide which traffic light
to follow (see Figure 1a). The vector map can also be of assistance to the vehicle, for traffic
light recognition. As noted above, the vector map represents the global position of the
road infrastructure, including traffic lights. Using a robot operating system (ROS) package,
named ‘tf’, the current position of an onboard camera can be determined while localizing
the ego-vehicle. The tf keeps track of frames used in AD that change over time, such that it
can update the current position of the baselink frame relative to the map frame, and that
of the camera frame relative to the baselink frame. The current position of the vehicle is
determined based on the baselink frame, the origin of which is located at the center of the
rear axle. Accordingly, the 3D distance between the signal head and the onboard camera
can be estimated and projected onto an image plane. Therefore, the TLR need not scan
the entire region of the image plane; instead, it only scans the region-of-interest where the
next traffic light is expected to appear. Despite this supplementary measure to improve
the recognition rate, making it perfect is still elusive for the vision-based TLR, because of
practical limitations. For instance, when approaching an intersection, it is impossible to
recognize the next traffic light, if a signal head is occluded from the camera by high vehicles
immediately ahead of the ego-vehicle (see Figure 1b).
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Currently, a V2I communication-enabled TLR is gaining attention as a definitive
measure, because of its non-line-of-sight (NLOS) awareness. V2I communication is the
task of wireless-exchanging traffic information between the RSU and vehicles, eventually
making AD safer and more efficient. For example, the real-time signal phase and the timing
status of the corresponding traffic lights are broadcast by the RSU; V2I communication can
help the vehicle, in regard to traffic light recognition and behavior-planning, by providing it
with the remaining time of the current phase. Owing to its wide range of applications, V2I
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communication was employed for traffic light recognition and also for robo-taxi services in
the contest.

In this paper, we introduce our AD software stack, developed to complete the main
mission of the contest (see Figure 2). We utilized an open-source AD software platform,
Autoware, for rapid prototyping. Autoware can be described as a collection of ROS
packages in localization, perception, and path-planning modules [31–33]. Among the core
competencies required for the robo-taxi service, most of our efforts were centered around
the modules that Autoware does not support. Accordingly, this paper centers on HD
mapping, vehicle control, and V2I communication. The main potential contributions of
this paper are providing practical procedures for developing an HD map, longitudinal
speed controller, and the services implemented by V2I technology within the contest. The
developed procedures will be beneficial to all concerned, particularly to participants in
upcoming autonomous driving events all around the world. The hardware to implement
the developed AD stack is summarized in Table 2.
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Table 2. Hardware specifications of the AD system and its base vehicle.

Model Specifications

Base vehicle Kia SOUL EV 2018 30 kWh battery, 81.4 kW/285 Nm electric motor

Sensors

LiDAR Ouster OS1-64 64 channel, 120 m range, 3 cm accuracy

Camera FLIR Grasshopper3
GS3-U3-32S4C-C Color, 3.2 MP, 121 FPS at 2048 × 1536

GNSS JAVAD Delta-3 1 cm (horizontal), 1.5 cm (vertical) RTK accuracy

OBU VW400-OBU-BK WAVE/LTE/GPS modules,
CAN/Ethernet/Console/USB ports

Computers ZOTAC MAGNUS EK71080
ASRock DeskMINI 310

i7-7700, GTX 1080, 32GB RAM, 512 GB SSD
i9-9900, 32GB RAM, 2TB SSD

Vehicle control interface PolySync DriveKit Throttle/Brake/Steering controls

The remainder of this paper is organized as follows. In Section 2, we present the
development of an HD map for use in prior map-based localization. In Section 3, we present
the development of a disturbance observer (DOB)-based longitudinal speed controller, that
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is particularly robust against undesired torque variations at low speeds. In Section 4, we
present the development of a V2I communication-enabled TLR, to achieve a nearly perfect
recognition rate. We also present the development of a robo-taxi service handler (TSH), to
perform the main mission of the contest. Finally, we conclude this paper in Section 5.

2. HD Mapping

Localization refers to the task of determining the ego-vehicle’s current position, relative
to the global frame. AD begins with a localizer. Precise localization is a prerequisite of
safe and reliable navigation, particularly in urban environments, where the contest is held.
Despite the lack of established standards, it has been reported that the required positioning
error is at decimeter-level on highways [34]. On local streets, their road geometry makes
the required positioning error more stringent, such that it is down to near-centimeter-level.
In addition to road geometry, such as lane width and road curvature, vehicle dimensions
also need to be taken into account: this is because such positioning error levels are derived
to ensure that the vehicle remains within a lane during AD.

A near-centimeter-level positioning error can be achieved by employing a real-time
kinematic global navigation satellite system (RTK-GNSS). However, a GNSS localizer
requires a clear line-of-sight to the satellites. Therefore, actual positioning error levels are
susceptible to urban environments, especially in long tunnels or near tall buildings. We
instead used prior map-based localization, to achieve precise localization even in urban
environments [35]. Prior map-based localization, also known as a LiDAR localizer, is
achieved by matching the scanned pointcloud against the pointcloud in the prior map. In
the map-matching process, the small pointcloud generated by an onboard LiDAR roams
about the large pointcloud in the prior map. A certain position that gives the highest
level of matching between these two pointclouds gives the current position of the onboard
LiDAR and, in turn, that of the vehicle, relative to the map. The map should be relative to
the global frame, for determining the global position of the vehicle.

In this section, we introduce a procedure for map-building and subsequent map-
matching, to validate the created HD map. The following procedure provides a step-by-
step guide on how to transform raw pointcloud data into an HD map, for use in prior
map-based localization. We also discuss practical issues that occurred during the procedure
(see Table 3).

Table 3. List of issues that occurred during map-building. All the issues were solved in Step 3: Registration.

Issues Occurred in Step

A Pointclouds scanned, relative to the local frame. 1, 2

B Pointclouds ill-matched by
approximate_NDT_mapping package. 2

C Elaborated manual registration required. 3

D Registered but inaccurate pointcloud, due to large
coordinates. 3

2.1. Map-Building

The map-building procedure comprises laser-scanning, mapping, registration, valida-
tion, and annotation steps. The last step can be left out for localization, which would be
more significant to path-planning.

2.1.1. Laser-Scanning

We began map-building by laser-scanning the 3D shapes of objects in driving en-
vironments. The vehicle was driven smoothly and consistently around the contest site,
preferably in a closed loop. Rather than using dedicated mobile mapping systems (MMS),
a 64-channel LiDAR (OS1-64, Ouster), fixed on the roof of the vehicle, was used to col-
lect pointcloud data. The contest site consisted of a main street and several back streets
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(see Figure 3). While the contest site was laser-scanned in a closed loop, the scanned pointcloud
was rosbag-recorded. The rosbag is a logging format for storing ROS messages in files.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 23 

(see Figure 3). While the contest site was laser-scanned in a closed loop, the scanned 196 
pointcloud was rosbag-recorded. The rosbag is a logging format for storing ROS mes-197 
sages in files. 198 

2.1.2. Mapping 199 

200 

Figure 3. Contest site on the (a) topographic and (b) satellite maps. 201 

Subsequently, we selected a mapping package and ran it on the scanned pointcloud. 202 
Autoware provides two different types of ROS packages for map-building: 203 
NDT_mapping and approximate_NDT_mapping. As their names imply, both packages 204 
are based on normal distributions transform (NDT), which can be also implemented for 205 
map-matching. NDT is an algorithm that transforms a raw pointcloud into a grid-based 206 
representation [36-40]. The pointcloud in each grid cell is approximated with a multi-207 
variate normal distribution. The normal distribution provides a smooth piecewise rep-208 
resentation of the pointcloud with continuous first- and second-order derivatives. Using 209 
this representation, it is possible to apply numerical optimization methods for map reg-210 
istration. As a registration algorithm, NDT is fundamentally used to match one point-211 
cloud with another to organize the map. In contrast to approximate_NDT_mapping, 212 
NDT_mapping matches the last pointcloud against all previously matched pointclouds, 213 
producing a more precise and larger single map. In return for that, the mapping process 214 
is computationally costly and occasionally even unstable. According to the correspond-215 
ing ROS specification, even if the mapping process is complete, a single map larger than 216 
a certain size (1 GB) cannot be published. Since a mapping area, the contest site, is ex-217 
tensive, approximate_NDT_mapping was selected, which yields smaller yet less precise 218 
multiple maps. The issues A and B occurred in Step 2 and solved in Step 3. 219 

A. Pointclouds scanned relative to the local frame 220 
The current pointcloud map is based on the local frame, the origin of which is lo-221 

cated at the point where the onboard LiDAR started scanning. The local frame must be 222 
transformed into the global frame because the pointcloud map for use in prior 223 
map-based localization should be relative to the global frame. The global frame general-224 
ly uses the universal transverse mercator (UTM) system, which provides coordinates on 225 
a worldwide flat grid to ease the calculation of geographical positions. The UTM coor-226 
dinates divide the world into 60 north-south zones of 6° longitude wide. The origin of 227 
each UTM zone lies at the intersection of the equator and the central meridian of the 228 
zone. For instance, the UTM zone we are in is called UTM52N, which is between 126° 229 
and 132° east and between the equator and 84° north in the Northern Hemisphere. 230 

B. Pointclouds ill-matched by approximate_NDT_mapping package 231 
The matched pointcloud map is not sufficiently precise, which was revealed by 232 

loose ends between the first and last pointclouds (see Figure 4). Their ends must be tied 233 

Main street

Back street

(a) (b) 

Back street
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2.1.2. Mapping

Subsequently, we selected a mapping package, and ran it on the scanned pointcloud.
Autoware provides two different types of ROS packages for map-building: NDT_mapping
and approximate_NDT_mapping. As their names imply, both packages are based on nor-
mal distributions transform (NDT), which can be also implemented for map-matching. NDT
is an algorithm that transforms a raw pointcloud into a grid-based representation [36–40].
The pointcloud in each grid cell is approximated with a multivariate normal distribution.
The normal distribution provides a smooth piecewise representation of the pointcloud,
with continuous first- and second-order derivatives. Using this representation, it is possible
to apply numerical optimization methods for map registration. As a registration algorithm,
NDT is fundamentally used to match one pointcloud to another, to organize the map.
In contrast to approximate_NDT_mapping, NDT_mapping matches the last pointcloud
against all previously matched pointclouds, producing a more precise and larger single
map; the mapping process, however, is computationally costly and occasionally even
unstable. According to the corresponding ROS specification, even if the mapping process
is complete, a single map larger than a certain size (1 GB) cannot be published. As the
mapping area—the contest site—was extensive, approximate_NDT_mapping was selected,
which yielded smaller, yet less precise, multiple maps. The following issues, A and B,
occurred in Step 2, and were solved in Step 3.

A. Pointclouds scanned relative to the local frame.

The current pointcloud map was based on the local frame, the origin of which was
located at the point where the onboard LiDAR started scanning. The local frame had to be
transformed into the global frame because the pointcloud map for use in prior map-based
localization should be relative to the global frame. The global frame generally uses the
universal transverse mercator (UTM) system, which provides coordinates on a worldwide
flat grid, to ease the calculation of geographical positions. The UTM coordinates divide the
world into 60 north–south zones of 6◦ longitude wide. The origin of each UTM zone lies at
the intersection of the equator and the central meridian of the zone. For instance, the UTM
zone we are in is called UTM52N, which is between 126◦ and 132◦ east, and between the
equator and 84◦ north in the Northern Hemisphere.

B. Pointclouds ill-matched by approximate_NDT_mapping package.

The matched pointcloud map was not sufficiently precise, which was revealed by
loose ends between the first and last pointclouds (see Figure 4). Their ends needed to be
tied up, because the laser-scanning ended exactly where it started. A re-mapping process
was therefore required between each of the neighboring pointclouds.
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2.1.3. Registration (Re-mapping)

We then registered multiple local pointcloud maps into a single global pointcloud
map, on the basis of the vector map. The vector map of the contest site was provided
with respect to the origin of the UTM52N zone. Among a variety of road and roadside
infrastructure represented by the vector map, road marks primarily including lane lines
and stop lines were utilized in the re-mapping process. Such road marks in each pointcloud
map were manually registered with those in the vector map. This could be achieved
because the laser-scanned road marks in the pointcloud map were visible. In Step 2, ap-
proximate_NDT_mapping released multiple individual pointcloud maps, which facilitated
stitching them together piece-by-piece, on the basis of the vector map. In doing so, issues A
and B could be solved simultaneously. We used CloudCompare (CC) as a tool for manual
registration. As the vector map was originally SHP-formatted, it had to be converted to
TXT-format, to be readable from CC. For file format conversion, we used Global Mapper
(GM) alongside CC. During manual registration, issue C occurred.

C. Elaborated manual registration required.

It was difficult to accurately register such thin road marks, right from the beginning.
To make it easier, we first roughly matched relatively large and apparent landmarks in
the current pointcloud with those in the adjacent pointclouds. This helped to render the
floating pointcloud closer to its goal position. Manual registration was completed using
the iterative closest point (ICP)-based automatic registration offered by CC [41]. Despite
the absence of a fixed criteria for registration accuracy, an RMS error less than 0.5 was
considered acceptable. Automatic registration was specifically helpful in matching, along
with the z-axis, which was much tougher to register manually than the other axes. However,
we discovered that automatic registration could not always guarantee greater registration
accuracy. This was because the ICP could not function properly, which was related to the
large discrepancy between the two maps, in terms of the number of points. For example,
a lane line was expressed by dozens of points in the pointcloud map; however, in the
vector map, it was expressed by only two points. ICP iteratively minimized point-to-point
distances between two pointclouds. For map registration, ICP selected the closest points as
a correspondence, and calculated the transformation matrix between them. However, a
much greater number of points in the pointcloud map could not find their corresponding
points from the vector map (see Figure 5). Another challenge, which occurred in Step 3,
was issue D.
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D. Registered but inaccurate pointcloud, due to large coordinates.

In Step 3, the point coordinates were transformed relative to the global frame, based
on the origin of the UTM52N zone. Here, the global frame was identical to the world frame.
As a result, the magnitudes of the x and y coordinates were in the order of 105 and 106 m,
respectively, which were denoted as large coordinates. For instance, the coordinates of a
certain point in the transformed pointcloud at the contest site were 311,011 and 3,890,724 m,
respectively. In addition to the coordinates of the transformed pointcloud, its format needed
to be converted from TXT to PCD, using CC, which was compatible with Autoware. PCD is
a file format designed to store 3D pointcloud data. The field that a point had was specified
to the position in the 3D space (xyz) only. The color (rgb) was not necessary, because
the road marks could be identified using the difference in brightness. CC is designed
to reduce memory consumption by storing the point coordinates within 32-bits: namely,
a single-precision floating-point format. This is usually acceptable for points that are a
few kilometers (103 m) apart from the frame origin, in which case the precision can be
approximately a few micrometers (10−6 m). However, this is unacceptable for points that
are more than 106 m away. Importing such large coordinates within the 32-bits format is
subject to a precision of several centimeters or worse. In consequence, we observed that
the shape of the objects in the PCD-formatted pointcloud was misrepresented specifically
along with the y-axis (see Figure 6). So far, the map frame was corresponding to the world
frame. This meant that the map frame was relative to the origin of UTM52N zone; therefore,
the transformed pointcloud relative to the map frame had such large coordinates. As a
remedy for issue D, the map frame was moved nearby, while neglecting the world frame,
which meant that the origin of the global frame was shifted closer to the center of the
contest site; we named this as the map frame. The map frame minimized the magnitudes
of the point coordinates. Consequently, the point coordinates could be stored within the
32-bits format without compromising the positioning accuracy. Accordingly, the vector
map became relative to the map frame and, based on this, multiple local pointcloud maps
were matched and transformed, as described above. Although prior map-based localization
mostly depended on the LiDAR localizer, the GNSS localizer was also used to provide the
initial position of the vehicle. Thus, the coordinates of the initial position were in the form
of latitude, longitude, and height (llh). The LiDAR localizer started map-matching from
the initial position provided by the GNSS localizer. These two localizers had to be based
on the same frame. The GNSS localizer was modified to compensate for the coordinate
transformation, by transforming the global frame into the map frame when converting the
initial position from llh to xyz.
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2.2. Map-Matching

We validated the registered pointcloud map, the result of map-building, by map-
matching. Autoware provides two different types of ROS packages for map-matching:
NDT_matching and ICP_matching. These two map registration algorithms, NDT and ICP,
are compared in [42]. For prior map-based localization, the matching process needs to
be performed in a 3D space populated with dense pointclouds. The scanned pointcloud
is necessarily polluted by noise, owing to measurement errors, which are more serious
outdoors. The pointcloud in the prior map is often ill-matched with the scanned point-
cloud. This is possible if the concerned object actually changes after the map has been
made. Otherwise, the concerned object is occluded from the LiDAR by another object. To
make matters more demanding, the matching process needs to be performed in real-time.
NDT_matching was selected to satisfy all these requirements. NDT_matching usually
outperforms ICP_matching, in terms of computational efficiency and robustness.

The registered pointcloud map was evaluated using performance metrics that the
NDT_matching package provided (see Figure 7). These included fitness score, execution
time, and iteration number. It was found that the fitness score was maintained at a low
level during map-matching on the main street. However, the fitness score surged when
navigating through parked trucks or passing by a building under construction on the back
streets. This was because such objects were scanned by the LiDAR but were not present
on the prior map. The contest site was located within a new-town site, and construction
work was in full swing at the time the contest was held. Such ill-matched pointclouds are
a typical cause of NDT_matching failures. NDT_matching can also fail due to several other
causes and their interplay, such as incorrect initialization, and limited computational resources.
Regardless of the cause, localization failure undermines the overall reliability of AD, severely
and instantly. To prevent unsafe situations, we designed the TOR to be issued without delay,
if the performance metrics, mostly the fitness score, exceeded their thresholds.
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3. Vehicle Control

Vehicle control refers to the task of enabling the ego-vehicle to follow a given path. A
path in AD comprises an array of waypoints: namely, a discrete representation of the path.
The path is provided by path-planning, which is configured by global, local, and behavioral
planners. The global planner generates a path from the current location of the vehicle
to the goal location. Accordingly, the local planner generates drivable and obstacle-free
trajectories. The local planner is coupled with the behavior planner, to make a decision
against diverse traffic situations in which the vehicle might operate while heading for the
goal location. The generated trajectories are passed to vehicle control, so that they can be
realized with the vehicle.

Vehicle control is configured with the waypoint follower and velocity controller. As
an upper-level controller, the waypoint follower generates a velocity command that is
a pair of linear and angular speeds. Among the relevant ROS packages that Autoware
provides, pure_pursuit was selected. In every control cycle, pure_pursuit searches for the
closest waypoint towards the heading of the vehicle, determining the next target waypoint.
The target linear speed is predetermined by the local planner and, accordingly, the target
angular speed is calculated with the radius of curvature. The generated velocity command
is sent to a lower-level controller, which enables the vehicle to reach the next target waypoint
within the next control cycle. The velocity controller generates a set of throttle, brake, and
steering commands to achieve the velocity command to the vehicle.

Accordingly, we employed the third-party ROS package, which implemented the
velocity controller with two separate proportional–integral–derivative (PID) controllers,
for longitudinal and lateral speeds [43]. The longitudinal speed controller took two inputs:
namely, the velocity command from the waypoint follower, and the speed measurement
feedback from the controller area network (CAN) bus of the vehicle. The error between
the reference and actual speeds was minimized with the tuned PI gains, and accordingly
generated the throttle and brake commands in pedal depth (BPS). The lateral speed con-
troller also received the velocity command and steering wheel angle measurement feedback.
Based on a simple kinematic bicycle model, the angular speed in the velocity command
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was converted to an angle. Similarly, the error between the reference and actual angles
generated the steering command in torque.

3.1. Problem Statement

We observed that the PID-based longitudinal speed controller was good at tracking
the velocity command at intermediate speeds; however, with a zero-velocity command, it
could hardly stop the vehicle (see Figure 8). It was alleged that this problem was mainly
derived from creep torque. The creep torque is part of the traction torque produced by the
powertrain with an automatic transmission, such that a vehicle can creep forward. While
the traction torque is determined by the longitudinal speed controller, the creep torque is
produced irrespective of the throttle command. The creep torque is generated only if the
vehicle stops or moves at low speeds. Normally, the creep torque is maximized at near-zero
speeds, and then tapers off as it approaches a specific speed. However, the creep torque
profile differs from model to model. The problem we encountered was most likely to have
occurred because the traction torque generated to stop the vehicle was disturbed by the
creep torque applied to move it forward. The creep torque could be considered as external
disturbance, since it was not completely accounted for by the vehicle model implemented
in the longitudinal speed controller. In addition, external disturbance included changes in
the gross weight of the vehicle and the slope of the road.
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Figure 8. Problem of the PID-based longitudinal speed controller: (a) despite a zero-velocity com-
mand from 65 s, the vehicle did not stop, presumably due to (b) creep torque.

In this section, we present a procedure for developing the robust longitudinal speed
controller based on a disturbance observer (DOB). DOB-based control algorithms first
appeared in the late 1980s; since then, they have been applied to many applications,
and have achieved good tracking performance under external disturbance and model
uncertainty [44]. DOB-based control algorithms have also been applied to vehicle speed
control, and have achieved good disturbance-rejection performance [45].

3.2. DOB

The developed procedure consisted of vehicle model derivation, DOB-based controller
design, validation by computer simulations, integration, and validation by physical tests.
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3.2.1. Vehicle Model Derivation

First, we defined a longitudinal vehicle model, and experimentally identified its
parameters, which served as a nominal plant model in the DOB-based controller. The
model described the forces acting on the vehicle in the longitudinal direction. These
forces could be grouped into the tire force (forward) and resistance force (backward). The
resistance force was the sum of the rolling Froll , air Fair, and gradient Fgrad resistances, if a
road was inclined. The tire force Ftire was the traction torque generated by the powertrain.
Based on Newton’s second law, the imbalance between these forces yielded the longitudinal
vehicle acceleration:

ma = Ftire − Froll − Fair − Fgrad (1)

Equation (1) represents the plant model that described the longitudinal vehicle mo-
tion; however, it was difficult to completely characterize these forces, because of external
disturbance and model uncertainty. For instance, the resistance force changed with the
gross weight of the vehicle and the slope of the road. As observed with the PID-based
controller, the tire force was changed by the creep torque applied at low speeds.

The current controller was reinforced by the DOB as a corrective measure to prevent
or reduce such undesirable effects. The DOB is designed to lump external disturbance
and model uncertainty collectively, and to compensate for them in the feedback loop.
Accordingly, the vehicle model in Equation (1) was redefined with a lumped mass, resulting
in the nominal plant model:

mna = Ftire (2)

The first-order system in Equation (2) can be rewritten in the form of a transfer function as:

Pn(s) =
v(s)

Ftire(s)
=

1
mns

(3)

The lumped mass of vehicle mn in Equation (2), which involved all the resistance
forces, was experimentally extracted from the result of the vehicle acceleration test; Ftire
was directly calculated from the motor torque measurement, combined gear ratio, and
effective tire radius; a was estimated from the vehicle speed measurement, which required
signal processing to filter out noise. Consequently, mn was determined to be 1540 kg.
As mentioned previously, mn was obtained under specific conditions. Therefore, it was
not generally applicable—for example, at up/down-hill, with more payloads, and at low
speeds where the creep torque arose. Nevertheless, the DOB could function with mn under
a wide range of conditions; therefore, computationally expensive plant models were not
required.

3.2.2. DOB-Based Controller Design

Subsequently, we developed the DOB-based controller, by reversing the derived
nominal plant model to compensate for the disturbance. The structure of the DOB-based
controller was composed of two nested loops (see Figure 9). While the outer loop involved
a conventional PI controller, the inner loop involved a DOB.
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Within the inner loop, Pn(s) represented the nominal plant model of P(s); P−1
n (s)

indicated the inverse nominal plant model, that reversed the input and output of Pn(s);
Q(s) denoted the Q-filter, which was considered as a filter, because it was in the form of a
low-pass filter:

Q(s) =
a0

(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0
(4)

where τ was the time constant, and l was the relative order. In Equation (4), l was properly
selected, such that Q(s)P−1

n (s) could be a proper transfer function, in which the degree of
the numerator did not exceed the degree of the denominator. Hence, l was set to 1, as Pn(s)
was the first-order system. It was necessary to carefully determine τ, by considering the
complementary characteristics of the DOB. In principle, τ was inversely proportional to
the bandwidth of Q(s). Therefore, the smaller τ was, the higher the disturbance-rejection
performance, yet the smaller the sensor noise immunity the DOB obtained. In practice,
τ was selected between the sampling time and the natural frequency of the system. While
the lower limit was simply determined by the control cycle, the upper limit was typically
unclear. Therefore, it was safer to set τ as the near-minimum value that could satisfy the
lower limit, which was fixed at 0.1.

Within the outer loop, P(s) represented the actual plant model with uncertainty; up
and y denoted the input and output, respectively; C(s) represented the controller model
that minimized the error between y and the reference input, r. C(s) is designed for Pn(s),
meaning that it did not consider external disturbance and model uncertainty. Therefore,
the DOB within the inner loop was designed in such a way that the system, except C(s),
could behave like Pn(s). With the DOB, the system with C(s) could operate as expected.

3.2.3. Validation by Computer Simulations

We then validated the robustness of the DOB-based controller, using Simulink. The
structure of the DOB-based controller contained two subsystems: controller and vehicle:
the controller output the torque demand in response to the inputs of the reference and
actual speeds; the vehicle took the torque demand as an input, and output the actual speed.
As another input to the vehicle, the torque and weight variations were added, to simulate
external disturbance and model uncertainty, respectively.

In the vehicle subsystem, the actual plant, P(s), in the outer loop was modeled as
a first-order system. In this model, the equivalent rotational inertia of the vehicle was
calculated at the wheels (on the wheel-side):

J = mr2 (5)

where m was the vehicle weight, and r was the wheel radius. As required by the controller,
the torque demand, T, acting on the vehicle with J, caused the rotational acceleration of the
wheel, α. Integrating α, with respect to time, gave their rotational velocity, ω. Multiplying
ω by the wheel radius, r, finally yielded the linear velocity of the vehicle, v. As described
above, the longitudinal vehicle motion could be simply modeled; however, in reality, J was
subjected to model uncertainty, while T was susceptible to external disturbance.

By passing v through Q-filter Q(s) in the inner loop, the actual speed was then fed back
to the controller subsystem. The controller subsystem primarily consisted of the P controller
and DOB blocks. In addition, two rate-limiter blocks were applied to the reference speed
and torque demand. The rate-limiter limited the first derivative of the input, such that
the output could change no faster than the specified limit. In the P controller block, the
controller C(s) in the outer loop was implemented, which generated the torque demand.
In the DOB block, the nominal plant, Pn(s), is inversely modeled, in that the process in the
vehicle subsystem was reversed. The only difference was that the equivalent rotational
inertia of the vehicle was calculated for the electric motor (on the motor-side):

J =
mr2

G2 (6)
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where G was the gear ratio between the rotational velocities of the wheel and that of the
motor; subtracting it from T produced the observed disturbance, d̂. By passing d̂ through
Q(s) in the inner loop, another torque demand was generated, to compensate for the
disturbance. This was added to the torque demand generated by the P controller block,
finally yielding the resultant torque demand. To verify the robustness to the external
disturbance, a function defined by the creep torque profile was added to the resultant
torque demand.

In the simulation, ramp and constant functions were used to create the reference speed
profile. While tracking the reference speed profile, the DOB-based controller (P + DOB
controller) was compared to the PI controller, in terms of disturbance rejection performance.
The relevant parameters in each controller were tuned in advance, to show equivalent
tracking performance against the reference speed profile (see Table 4). We observed that
the two controllers exhibited an equivalent level of tracking performance at intermediate
speeds (see Figure 10). However, compared with the P + DOB controller, the PI controller
exhibited a larger tracking error at low speeds where the creep torque increased. This is
primarily because the integral term in the PI controller was not appropriate for effectively
reducing the external disturbance.

Table 4. Predetermined parameters of the controllers.

Controllers Parameters Value

PI
P-gain 200
I-gain 10

P + DOB
P-gain 200

Time constant of Q-filter (τ) 0.1
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controller, the vehicle could stop, despite creep torque.

3.2.4. Integration

Instead of hand-writing the code, we used Embedded Coder to auto-generate
C++ code from the Simulink model of the controller subsystem in the DOB-based controller.
It should be noted that the Simulink model of the vehicle subsystem was not subjected to
code generation, because the generated code was used with a physical vehicle. Embedded
Coder extended MATLAB Coder and Simulink Coder with advanced optimizations; for
instance, the generated code was compact, and executed efficiently, which is essential for
real-time computing in embedded systems.
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The generated code included the main, model, data, and utility files. The main file
(ert_main.cpp) controlled code execution by calling the entry-point function to step the
model for a base rate. The model file implemented the DOB-based controller in C++,
and its header file declared the model data structures and a public interface to the model
entry points. The data file contained model parameters to be calibrated. The utility file
defined the data types, structures, and macros required for the generated code. Owing to
Embedded Coder, we did not have to write the code; however, we were required to write
an ROS wrapper for the generated code, so that it could function with the associated ROS
packages, such as pure_pursuit. In the wrapping process, the header file that declared the
interface to the model was modified, to create a new ROS package called twist_controller.
The detailed process is introduced elsewhere, because it is not in line with the purpose of
this section.

3.2.5. Validation by Physical Tests

As observed in the prior computer simulations, the P + DOB controller maintained
a small tracking error over the entire speed range, because the DOB could estimate and
compensate for the external disturbance effectively (see Figure 11).
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Figure 11. Validation results of the DOB-based controller: (a) contrary to Figure 8, the vehicle could
stop; (b) with P + DOB controller, despite creep torque.

4. V2I Communication

V2I communication refers to the task of wireless data exchange between the RSU and
vehicles. With the data being obtained and shared, rich, timely, and NLOS-aware traffic
information can be utilized to enable a variety of benefits in AD.

Currently, two different wireless communication technologies exist: dedicated short-
range communication (DSRC) and cellular-V2X (C-V2X). A detailed comparison between
these two standards can be found in [46]. Essentially, both standards have almost the
same use cases in real-life applications. Whatever both sides claim, there are, as yet, no
side-by-side test results that prove that one outperforms the other. Initially, C-V2X seems to
offer greater performance; however, the range and latency of DSRC is more than sufficient
for the purpose of AD. Although C-V2X exhibits better long-term prospects, owing to a
lack of statistical evidence, related industries are faced with a difficult choice as to which
one to adopt in their communication infrastructure.

Reflecting such a transitional situation, both technologies were concurrently applied in
the contest for different purposes. While information related to the robo-taxi service—such
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as the pick-up and drop-off locations—was broadcast with C-V2X, information related to a
signalized intersection, at which vehicles in the contest might cross while heading toward
these goal locations, was broadcast by DSRC. In this section, we describe a procedure for
applying V2I technology to the TLR and a robo-taxi service handler (TSH).

4.1. TLR

There were 13 signalized intersections all over the contest site; therefore, the vehicles
were likely to cross them on the way to their goal locations (see Figure 12). At the inter-
section, the vehicles had to obey traffic rules, or else earned points were deducted. As
mentioned previously, if the violated traffic rule was a traffic signal, 10 times more points
were lost. A camera that was used for the TLR was substituted for the V2I communication
system, to achieve a nearly perfect recognition rate.
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Figure 12. (a) Locations of 13 signalized intersections in the contest site: (b) 13th intersection (J13),
represented with the intersection, lane, and signal group IDs.

Figure 13 shows a high-level physical representation of the V2I communication in-
terface. For traffic light recognition, packets were exchanged between the RSU at the
intersection and the on-board unit (OBU) in the vehicle, through DSRC, also known as
wireless access in vehicular environments (WAVE). The TLR packets were composed of
header and payload. The header contained information regarding the message type, device
(OBU) type, ID, and payload length. While the header length was fixed at nine bytes, the
payload length varied, depending on the amount of content in the message. The TLR
messages in the payload were decoded by UPER, to extract traffic signal information in the
J2735 format. The WAVE broadcasts of the SPaT message conveyed the real-time signal
phase and timing status for one or more intersections, whereas the MAP message transmit-
ted the complex intersection geometry required to decode the SPaT message. A new ROS
package, named V2I communication-enabled TLR (C-TLR), was created and added to the
perception module.
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4.1.1. Tasks

The C-TLR was required to decode the MAP message, to select a signal head that the
ego-vehicle had to follow. The C-TLR was also required to decode the SPaT message, to
extract the current phase and its remaining time from the selected signal head.

4.1.2. Inputs and Outputs

The C-TLR interfaced externally with the OBU, to receive the MAP and SPaT messages
from the RSU via WAVE, in order to accomplish the two tasks mentioned above. In the
MAP message, the intersection ID that the vehicle approached was taken as an input. In
the SPaT message, the real-time signal phase and timing status of the intersection were
accepted. The C-TLR interfaced internally with the local planner, to take the lane ID in
which the vehicle was located as another input. With the inputs of the intersection ID
and lane ID, the C-TLR internally output the signal group ID. The C-TLR output the
current phase of the signal group ID to the behavior planner, to transition the state of the
vehicle crossing the intersection accordingly; for instance, from FORWARD to STOPPING,
TRAFFIC_LIGHT_STOP, and TRAFFIC_LIGHT_WAIT.

4.1.3. Process

The process of the C-TLR can be summarized as selecting a signal head to follow, and
providing the signal phase and timing status to the behavior planner. A typical intersection
had a set of connected lanes, and each lane had a signal head that the vehicle in that lane
should follow. Thus, the current lane ID was required to select the signal head for the
vehicle. Originally, the lane ID had been identified by matching the location of the vehicle
with that of each lane. The location of each lane was provided with the MAP message with
respect to llh. The location of the vehicle had to provide lane-level accuracy. For this, a
GNSS localizer needed a clear LOS to the satellites; however, if the intersection was located
at urban environments, it was difficult to ensure the actual positioning error levels. It
was not necessary to obtain the lane ID from the MAP message with such difficulty, using
the vector map. With the lane ID published by the local planner, and the intersection ID
decoded from the MAP message, the signal group ID could be readily retrieved from the
predetermined table in the C-TLR (see Table 5 and Figure 12b). The current phase of the
selected signal group ID was then published to the behavior planner. Using its end time,
the phase was recalculated with the distance to the stop line and the velocity of the vehicle.
For instance, although the current phase was blue, the C-TLR could be set to red, if the
vehicle could not safely pass the conflict area of the intersection within the remaining time
at the current velocity.

Table 5. Signal group ID as a function of the intersection (from SPaT message) and lane (from vector
map) IDs. For lack of space, only three (J2, 12, and 13) out of 13 signalized intersections are presented.
The 13th intersection (J13) is in agreement with Figure 12b.

Input Intersection ID 10220 (J13) 10210 (J12) 10020 (J2) . . .

Lane ID 445 505 571 277 684 654 655 662 536 484 173 158 355 544
Output Signal group ID 11 7 8 1 1 7 7 1 1 4 5 8 10 10

4.2. TSH

V2I technology was not necessary for traffic light recognition, because the vision-based
TLR was still useful; however, it was essential for the TSH because, in the contest, virtual
calls for a ride were broadcast over the air.

As shown in Figure 12, the OBU that had been used for the TLR was also used for
the TSH. The TSH acted as a client, and connected to the server via LTE. The TSH packets
were also composed of header and payload, but the messages within the payload were
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different to those in the TLR packets. While the TLR messages, such as MAP and SPaT,
were general and standardized, the TSH messages were prepared for this contest only. As
listed in Table 6, 13 TSH messages were introduced by presenting the problem scenario.

Table 6. TSH messages and their key data.

Messages Key Data

request-access deviceId
access-permitted responseStatus, errorCode

vehicle-location-info latitude, longitude, speed
vehicle-location-error errorCode

taxi-call-list callDataList, irregularLocationList
(i.e., the location of the lane closure)

pre-empt-call requestCallId
call-matched responseStatus, errorCode

arrive-at-start-point latitude, longitude, speed
pick-up-completed confirmResult, errorCode
arrive-at-end-point latitude, longitude, speed
drop-off-completed confirmResult, errorCode
mission-completed confirmResult
mission-abandoned matchingCallId

4.2.1. Problem Scenario

The problem scenario of the robo-taxi service consisted of the following seven steps:

1. The server broadcast a ‘taxi-call-list’ message every second;
2. The client (TSH) had to select one desired mission from the received call list;
3. Once a mission had been selected, the vehicle sent a ‘pre-empt call’ message to the server;
4. The server checked if the selected mission was currently available, and sent a ‘call-

matched’ message to the vehicle;
5. If the selected call was matched, the vehicle departed to pick up virtual passengers.

At the starting point of the mission, the vehicle sent an ‘arrive-at-start-point’ message
to the server, and stopped for five seconds. The on-site supervisors directly checked
the behavior of the vehicle, and sent an ‘arrive-at-start-point-checked’ message to
the server through their mobile terminal. If successful, the server sent a ‘pick-up-
completed’ message to the vehicle. If not, a ‘mission-failed’ message was sent instead.
The vehicle had to revert to Step 2, and restart another mission. However, as a penalty,
the next mission could not be pre-empted for another 10 seconds;

6. Once the ‘pick-up-completed’ message had been received, the vehicle departed again,
to drop off virtual passengers. At the end-point of the mission, the vehicle transmitted
an ‘arrive-at-end-point’ message to the server, and stopped for five seconds. In the
same manner, the supervisors sent an ‘arrive-at-end-point-checked’ message to the
server. If successful, the server sent a ‘drop-off-completed’ message to the vehicle;
otherwise, the ‘mission-failed’ message was sent. As in the previous step, the vehicle
had to revert to Step 2, and resume with the penalty.

7. Once the ‘drop-off-completed’ message was received, the vehicle had to depart from
the destination within a minute. The supervisors sent a ‘depart-from-end-point-
checked’ message to the server. If successful, the server sent a ‘mission-completed’
message to the vehicle. Finally, the team acquired the points awarded for the com-
pleted mission, and the next mission could be pre-empted instantly in Step 2. If not, a
‘mission-failed’ message was sent. As in the previous step, the vehicle had to revert to
Step 2, and resume with the penalty.

4.2.2. Tasks

The TSH was required to select the optimal call by comparing 47 calls broadcast
from the server. The TSH had external access to the server to receive the call list. The
TSH internally communicated with the global planner, to evaluate the cost of traversal



Sensors 2022, 22, 7049 19 of 23

through the path within each call. The TSH was also required to decode the matched call,
particularly in terms of the locations of the pick-up, drop-off, and possible lane closure
between them. As these locations were provided in the form of llh, the TSH transformed
them into the map frame to communicate with the global planner. The global planner
generated the path based on the map frame where these locations were expressed as xyz,
with respect to the origin that was moved into the contest site.

4.2.3. Inputs and Outputs

The TSH interfaced externally with the server via LTE, and internally with the global
planner, to perform the two tasks mentioned above. For selecting a taxi call, the TSH
first took a ‘taxi-call-list’ message, as input from the server. As mentioned previously,
the call list consisted of 47 calls, each of which primarily contained the locations of the
pick-up, drop-off, and possible lane closure between them. These locations needed to
be transformed from llh to xyz. The TSH internally output the transformed locations, to
calculate the cost of traversal through the path in each call from the global planner. The TSH
took the calculated cost as feedback, and the cost function yielded the final cost. The cost
function used two more factors than the cost that the global planner provided, which were
the point and distance. The call with the lowest final cost was determined to be the mission
to be pre-empted. The TSH accordingly output a ‘pre-empt-call’ message to the server.
The TSH then took a ‘call-matched’ message as input, and decoded the matched call. As
mentioned previously, the transformed locations were represented as a set of points (xyz) in
the map frame. The pick-up and drop-off locations were defined by a single point, whereas
the lane closure location was defined by multiple points, thus, a plane. If the lane closure
location was included in the matched call, the number of its points was augmented, to help
the global planner generate a path that could avoid it more safely and efficiently. The TSH
output the processed locations to the global planner. When the vehicle reached the pick-up
or drop-off location, the TSH took an arrival notification as input from the local planner,
and relayed it with an ‘arrive-at-start’ or ‘end-point’ message to the server. After being
checked by the supervisor, the TSH finally received a ‘pick-up’ or ‘drop-off-completed’
message as input from the server.

4.2.4. Process

The process of the TSH was implemented primarily using a finite state machine (FSM).
The TSH comprised eight states, and the active state was determined based on 13 input
conditions that yielded a logical output. If the starting state was ‘request-connection’ state,
the active state was instantly shifted to the ‘get-connection-confirmed’ state, by sending a
‘request-access’ message to the server. If an ‘access-permitted’ message was sent back, the
active state was changed to the ‘select-call’ state; otherwise, the active state was shifted back
to the ‘request-connection’ state. In the select-call state, one desired mission was selected
out of 47 calls broadcast over vehicles in the contest. As described previously, each call was
evaluated based on a cost function with three different factors: point, distance, and cost.
The first and second factors were given by the server. The point varied, depending on the
mission’s degree of difficulty. In addition to the distance, left turns, tunnels, areas not on
the HD map, and lane closure between the pick-up and drop-off locations determined the
point. The distance given in the call was simply between the pick-up and drop-off locations.
However, the distance from the current location to the pick-up location also needed to
be considered. Moreover, the final cost could not be determined simply by the physical
displacement between the locations. For these reasons, the third factor was added, and
calculated using the global planner. The three factors were properly weighted, yielding the
final cost. The final costs of the 47 calls were sorted in descending order, and the call with
the lowest final cost was determined as the mission to be pre-empted. The active state was
shifted to the ‘get-call-confirmed’ state, by transmitting a ‘pre-empt-call’ message to the
server. If a ‘call-matched’ message was responded to, the active state was changed to the
‘pick-up-passenger’ state, where the vehicle departed to the starting point of the mission.
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If the desired call was already pre-empted, for instance, the active state reverted to the
‘select-call’ state, to pre-empt the call with the second-lowest final cost. When the vehicle
reached the pick-up location, the active state shifted to the ‘get-arrival-confirmed’ state, and
an ‘arrive-at-start-point’ message was sent to the server. The location of the vehicle was
double-checked by the on-site supervisors, and an ‘arrive-at-start-point-checked’ message
was subsequently sent to the server through their mobile terminal. If a ‘pick-up-completed’
message was sent back, it progressed the active state to the ‘drop-off-passenger’ state,
where the vehicle departed to the end-point of the mission. If not, it returned the active
state to the ‘pre-empt-call’ state, to restart another mission. When the vehicle reached the
drop-off location, similar to the ‘pick-up-passenger’ state, the active state shifted to the ‘get-
arrival-confirmed’ state, and an ‘arrive-at-end-point’ message was sent. In the same fashion,
the location of the vehicle was double-checked by the supervisors. If a ‘drop-off-completed’
message was received, it progressed the active state to the ‘mission-completed’ state. In
the final state, the supervisors checked if the vehicle had departed from the end-point of
the mission within one minute, and subsequently sent a ‘depart-from-end-point-checked’
message to the server. If a ‘mission-completed’ message was acquired, the started mission
was considered completed. The active state then regressed to the ‘select-call’ state, to
continue another mission. The described process is illustrated, using a sequence diagram
to show the interactions between objects in the sequential order (see Figure 14).
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5. Discussion

We entered the 2020 University Student Autonomous Driving Contest. The main mis-
sion was to transport passengers to their destination autonomously: in short, to implement
a robo-taxi service on public roads. In this paper, we have presented the AD software stack
developed to complete the main mission of the contest. Among the major developments
required for the main mission, this paper focused on HD mapping, vehicle control, and V2I
communication, which were not supported by Autoware. The methods we applied to each
of the developments are summarized in Table 7, with emphasis on their benefits.

Table 7. Comparison between the conventional and proposed methods.

Conventional Methods Proposed Methods Key Benefits

HD Mapping Dedicated MMS In-house developed
Can generate the HD (pointcloud) map at

no extra cost, using a LiDAR on the
vehicle, and open-source software.

Vehicle Control PI P + DOB
Can stop the vehicle smoothly, by

rejecting undesired torque variations at
low speeds (creep torque).

TLR Vision V2I communication Can achieve nearly perfect recognition
rate, due to NLOS awareness.

6. Conclusions and Future Work

Thanks to our successful developments, we finished 5th out of 15 teams in our first
contest. We would have done better, if there had been no problem with the vehicle. About
an hour after the start of the contest, the vehicle suddenly stopped, with an unidentified
alarm. We suspected that DriveKit, which acts as an integrated vehicle interface for full
by-wire control (see Table 2), was the cause of the problem, because removing it from the
vehicle solved the problem. DriveKit is a finished product, and thus it was not possible
to take immediate action. With this problem in mind, we have been designing our own
actuator, expecting free maintenance and possible upgrades for our specific needs.

Another problem we will address is related to the vehicle speed. Although the speed
limit in the contest site is 50 km/h, we could only drive up to 35 km/h on straight roads
and 20 km/h on curved roads. We have been applying a model predictive algorithm
into a waypoint follower to increase the maximum speed, since the current pure pursuit
algorithm is limited to low-speed maneuvers only. In addition, we need to analyze the
end-to-end latency over the AD software stack, to ensure a responsiveness that is as fast as
the increased speed.
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