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Abstract: Virtual reality, driverless cars, and robotics all make extensive use of 3D shape classification.
One of the most popular ways to represent 3D data is with polygonal meshes. In particular, triangular
mesh is frequently employed. A triangular mesh has more features than 3D data formats such as
voxels, multi-views, and point clouds. The current challenge is to fully utilize and extract useful
information from mesh data. In this paper, a 3D shape classification network based on triangular
mesh and graph convolutional neural networks was suggested. The triangular face of this model
was viewed as a unit. By obtaining an adjacency matrix from mesh data, graph convolutional neural
networks can be utilized to process mesh data. The studies were performed on the ModelNet40
dataset with an accuracy of 91.0%, demonstrating that the classification network in this research may
produce effective results.
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1. Introduction

With the rapid development of 3D data-capturing devices, 3D data collection has
become more convenient and faster. Three-dimensional data are foundational to computer
graphics and computer vision, and it contains a wealth of geometric, shape, and scale
information. The use of 3D models is increasing in daily life, such as in autonomous
driving [1,2], virtual reality, and remote sensing mapping [3], all of which require advanced
processing [4] and analysis of the collected 3D data. The study of how to effectively classify,
identify, and segment 3D models is a hot topic at present.

As computer vision and deep learning have developed rapidly, the study of 3D shapes
has shifted from handcraft features [5,6] to deep learning methods. Three-dimensional
shapes are available in various representations such as voxels, multi-view, point cloud and
polygon meshes, as shown in Figure 1. Early convolutional neural networks have made
great strides in the classification of 2D images, but they cannot be applied to unstructured
data. MVCNN [7] used the deep learning algorithm on 2D images under a multi-view of
the 3D model and obtained the classification results of 3D shapes. However, the multi-
view lacked depth information and could not describe the 3D spatial characteristics of
objects well. Recently, graph convolutional neural networks have achieved good results
on point cloud classification tasks. DGCNN [8] uses the edge convolution module to
learn topological features of point clouds by graph convolutional networks, which can
better capture local geometric information and achieve better results, but with too many
training parameters.

Voxel, multi-view, and point cloud are currently used more frequently than mesh data
in most 3D model classification techniques. The point cloud lacks surface information on
the objects and is disorganized, having few connections between its points. Information
will unavoidably be lost during the voxelization process of 3D models, and large resolutions
will necessitate large amounts of memory. Issues with feature learning based on multi-
view and voxel data include significant 3D feature loss and numerous processing stages.
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Mesh data include information about features including vertices, edges, faces, corners,
and normals. Mesh data are more descriptive of objects than other types of data, and it is
now being investigated how to effectively extract information from mesh data and to fully
utilize it. Based on the advantage of graph convolutional neural networks [9] excelling
at processing non-Euclidean structure data, this paper proposes a 3D model classification
network based on graph convolutional neural networks combined with triangular mesh,
which can learn the features of 3D models directly and achieve the classification of 3D
models. The ModelNet40 [10] dataset is used to test the model, and the results for 3D
model classification are promising.
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Figure 1. Point cloud, voxel, and polygon mesh representation of 3D models. 
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Figure 1. Point cloud, voxel, and polygon mesh representation of 3D models.

2. Related Works

Several methods have been proposed for obtaining features in mesh data. Jiao et al. [11]
used several metrics such as dihedral angles, edge angles, and eigenvectors of the vertex
normal tensor matrix to identify feature point, feature edge, and feature edge directions.
Kim et al. [12,13] calculated the maximum point set to represent the feature points of
the 3D mesh by using the average geodesic distance function. Hu et al. [14] proposed a
global rarity to describe global saliency: the rarer the part on the 3D mesh, the better the
characteristics of the entire mesh.

The following is an introduction to related work on 3D model classification using
deep learning.

Multi-view: Initially, scholars represented the projections of the model from different
perspectives as 2D images and then used convolutional neural networks to process the
projected images. The MVCNN [7], GVCNN [15], and VMVCNN [16] methods transform
the 3D model into 2D images obtained by shooting in different view cases and extract-
ing image features to perform the classification. Zhang et al. [17] proposed an effective
recognition model based on multi-view convolutional neural networks. Qi et al. [16] added
azimuth and elevation angle change features to the training set to improve the performance
of the classification model based on the MVCC. Gao et al. [18] systematically evaluated the
performance of deep learning features in view-based 3D model retrieval. Projection from
multiple angles leads to a lack of global information perception and is difficult to apply in
scene segmentation and object detection tasks.

Volumetric: A volumetric occupancy grid is often used in order to represent the en-
vironment state as a 3D mesh. Zhang et al. [19] proposed to convert point clouds into
regular voxels and to then input them into convolutional neural networks for feature
extraction. Riegler et al. [20] transformed the point cloud into an octree format to extract
features. Maturana et al. [21] proposed VoxNet, which incorporates voxels and multi-
views. Wu et al. [10] developed a 3D-ShapeNets model that handles voxelization directly.
Kd-Net [22] constructed the point cloud into a kd-tree and then classified the points. The
spherical CNN [23] projects 3D meshes onto closed spheres, confirming spherical convolu-
tion’s effectiveness in point cloud classification. In comparison with the original model, the
voxelized model has a low resolution, which leads to a significant loss of information.
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Point clouds: PointNet [24] and PointNet++ [25] network models directly process point
cloud data. PointNet can learn from disordered point clouds but ignores the extraction
of local features. PointNet++ considers local features of point clouds but ignores the
connection between points, and the operation of aggregating point set features is time-
consuming. Li et al. [26] proposed PointCNN so that the input order of the point cloud
does not affect the convolution operation.

Graph: According to the definition [9,27] of convolution in the graph, this calculation
method [28,29] has been employed on point clouds. Simonovsky et al. [30] proposed a
network edge ECC applied to any graph structure using maximum sampling to aggregate
vertex information. However, there is a problem of high computational cost. KCNet [31]
orders local point clouds using graphs and aggregates local features through graph convo-
lution. DGCNN [8] provides a dynamic graph edge convolution module that improves
the network’s ability to obtain local features, ignoring the vector direction between points,
resulting in some information loss. Point GCN [32] recycled edges of the graph within each
layer, avoiding unnecessary point cloud grouping and sampling. Grid-GCN [33] proposed
a module to reduce theoretical time complexity and to enhance space coverage.

Based on the excellent performance of graph convolutional neural networks in pro-
cessing unstructured data, in this paper, we propose a 3D shape classification network that
combines the features of mesh data. The 3D model is represented as a graph in the model
and leverages graph convolutional networks to enhance local feature extraction. The next
section describes in detail the model proposed in this paper.

3. Methods
3.1. Overview

We propose a 3D shape classification network based on triangular mesh features and
graph convolutional neural networks. Figure 2 shows the flow chart of the algorithm
proposed in this paper. The flow chart consists of two parts, one is the simplification and
feature extraction of the mesh data, and the other is the 3D shape classification based on
graph convolutional neural networks.
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Figure 2. Algorithm flow chart. (After feature extraction of the faces, they are input to the classification
network for aggregated vertex information and then pooled to obtain global features. Finally, the
classification results are output.)

Triangle meshes are a common way to display 3D models, which consist of three parts:
vertices, edges, and faces. A face refers to a triangular face formed by interconnecting three ad-
jacent vertices in the mesh data. The triangular mesh data can be defined as M = (V, F), where
V =

{
Vi
∣∣Vi ∈ R3} denotes the set of points and F =

{
fijk =

(
vi, vj, vk

)
∈ V, i 6= j, j 6= k

}
de-
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notes the set of faces. Triangular mesh data are better equipped to describe 3D models than
other data types such as voxels, multi-views, and point clouds. Furthermore, the explicit
connection feature of the mesh makes it easier to extract the adjacency matrix of the mesh.

We should simplify the original input 3D model mesh data to obtain a model with
no more than 1024 faces. In order to combine the data from nearby vertices, the face is
supplied into the model. Multi-scale local feature splicing and pooling then produces the
classification results. The model for mesh processing and classification is described in
full below.

3.2. Processing Mesh

The triangular mesh contains a rich set of features that can effectively represent the
geometric environment. We will extract three initial features from the mesh as the input to
the classification model. The three initial features are shown in Figure 3.
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vectors from the center point of the triangle to the vertices.

We presumed that the meshes representing the 3D models are manifolds [34], that
each edge in the mesh is only connected to one or two faces, and that each triangular
face is connected to no more than three other triangular faces. We transform the mesh
data into a list of faces, treating the face as the sole unit. The list can be used to find each
face’s adjacency index. A face is filled with its own index if it connects with less than three
other faces.

Because the coordinates of the three vertices of the face are known to be A, B, and C
in the original data, we can obtain the coordinates of the center point of the face and the
corner by using Equations (1) and (2).

O =


xO = (xA + xB + xC)× 1

3
yO = (yA + yB + yC)× 1

3
zO = (zA + zB + zC)× 1

3

(1)

eOA =


xe = (xA − xO)
ye = (yA − yO)
ze = (zA − zO)

(2)
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3.3. Model Design

The graph convolutional neural networks are capable of processing unstructured data.
The graph features will be learned using the spectral domain graph convolutional neural
network proposed by Kipf [9] in this paper. Supported by spectral graph theory, the kernel
of the neural network is defined by a filter for graph signal processing, giving it a better
filtering capability. The input of the graph convolutional network consists of two parts:
First, a feature description xi for each node i, which denotes the N ×M feature matrix (N
denotes the number of nodes, and M denotes the number of features of the input). The
second is the adjacency matrix of the graph. (Construct the adjacency matrix using the
adjacency relationship between faces.) The value of each element in the adjacency matrix
can be calculated by Equation (3).

A[i, j] =
{

1, (vi, vj) ∈ E(G)
0, (vi, vj) /∈ E(G)

(3)

Suppose that there are L layers of graph convolution and that l denotes the current
number of layers. H(l) denotes the output of layer l. A. denotes the adjacency matrix of the
graph of N nodes (A /∈ RN×N), so each graph convolutional layer neural network can be
represented by the nonlinear function Equation (4).

H(l+1) = f (Hl , A) (4)

For a graph convolutional neural network to retain information about the nodes, each
node needs to be connected to itself. Next, normalize A by D−1/2AD−1/2, where D is the
degree diagonal matrix of the nodes and A=A+IN (IN is the unit matrix). The propagation
equation of the graph convolutional neural network can be expressed as

H(l+1) = σ
(

D−
1
2 AD−

1
2 H(l)W(l)

)
(5)

Equation (5) shows that constructing the graph’s adjacency matrix is the key to using
graph convolution. In this paper, the adjacency matrix and the degree matrix can be built
by the connection relationship with the face. The graph convolution can be applied to the
mesh data.

Before inputting the face features into the graph convolutional network for aggregation,
the center point features and the corner vector features need to be processed separately.
Referring to the method in MeshNet [35], rotational convolution is used to process the
corner vectors of the triangular face, which only works on two corner vectors at a time.
Figure 4 shows the diagram of rotational convolution. Suppose that a, b, c are the vectors
of a face from the center point to the three angles and define its convolution output as
Equation (6). Finally, the output is passed through the fully connected layer to obtain a
feature with a length of 64.

a⊗ b + b⊗ c + c⊗ a (6)

where ⊗means a convolution operation and (a, b, c) ∈ R3.
The O ∈ RN×3 denotes the center point feature of the face. Increasing the center point

feature to 64 dimensions through a fully connected layer results in obtaining the center
point feature dimension as O ∈ RN×64. We connect the convolutional output of the corner
vectors with the features of the center points to obtain the high-dimensional features and to
input them into the graph convolutional neural network for feature aggregation.
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Figure 4. Rotational convolution schematic. A, B, C represent the three vertices of the triangle, O is
the center point of the triangle, and the curved arrow outside the triangle represents two adjacent
angle vectors for convolution operation.

In this paper, a two-layer graph convolutional neural network is used. We input the
high-dimensional features into the first layer of graph convolution to obtain the information
on aggregated first-degree neighboring vertices. Then, after the activation function, the
output features go through the second layer of graph convolution to obtain the information
of the aggregated second-degree neighboring vertices. The information of the aggregated
first-degree neighboring vertices and the aggregated second-degree neighboring vertices
are stitched together to obtain multi-resolution features, as shown in Figure 5. Degree = 1
denotes the aggregation of first-degree neighboring vertices, and degree = 2 denotes the
aggregation of second-degree neighboring vertices.
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ing schematic. Purple represents the information features of the aggregated first-degree neigh-
boring vertices and blue represents the information features of the aggregated second-degree
neighboring vertices.
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The multi-resolution features are passed through a fully connected layer (1024) to ob-
tain higher-dimensional features, and the information redundancy in the high-dimensional
space facilitates the subsequent global pooling operation. In order to obtain the global
features, global fusion of the extracted features is required. Max pooling is a nonlinear
feature fusion function that is insensitive to the order of elements, and we take the max
pooling operation on graphs for graph data. The output features are subjected to max
pooling in order to obtain global features, and then, the classification results are obtained
through the fully connected layer (512, 256, and 40) and the Softmax layer.

4. Experiments and Results

We conducted experiments to prove the usefulness of our classification model on
ModelNet40 [10]. Table 1 shows the parameter settings for model training. We used the
PyTorch 1.10.1 (Soumith Chintala, America) deep learning framework and Python 3.6
(Guido van Rossum, Holland). Hardware configuration: CPU: Intel Xeon Platinum 8259CL,
GPU: Tesla T4 with 16 G of video memory.

Table 1. Training parameter setting.

Optimizer Lr Batch Weight Decay Epoch

ADAM 0.001 128 0.0005 250

Many research institutions have opened datasets with 3D models, and we will apply
the model proposed in this paper on ModelNet40 for the classification. ModelNet40 has
40 different 3D shape models with 12,311 CAD models, including their mesh information,
of which 9843 models are used as the training sets and 2468 models are used as the test sets.
Before conducting the experiments, each model needs to be simplified to 1024 faces. If the
number of faces is not enough, the existing faces are randomly selected to be filled, which
normalizes the model to the unit ball centered at the origin.

Table 2 shows the experimental results of the model in this paper on the ModelNet40
dataset. The overall accuracy is the accuracy of the classification of all 3D models in
the dataset, and the mean class accuracy is the average of the accuracy of each category.
The overall accuracy of the proposed method compared with existing methods in this
paper is 6.3% higher than 3D ShapeNets, 8% higher than VoxNet, and 0.3% higher than
PointNet++. We proposed to make full use of the mesh data information by extracting
the center points and corner vectors of the faces, which can enhance the ability to describe
the local information by considering the spatial position of the faces in the 3D model, the
structure of the faces themselves, and the adjacency relationship between the faces. The
experimental results show that the model proposed in this paper effectively captures local
information from triangular meshes. The classification accuracy of the model in this paper
can achieve better results on the representation based on a triangular mesh.

Table 2. Comparison of classification results on ModelNet40.

Model Representation Overall Accuracy (%) Mean Class
Accuracy (%)

MVCNN [7] view 90.1 79.5
VoxNet [21] volume 83.0 85.9

PointNet [24] point 89.2 86.2
PointNet++ [25] point 90.7 -

Kd-Net [22] point 90.6 88.5
SO-Net [36] point 90.8 -

Momenet [37] point 89.3 86.1
LKPO-GNN [38] point 90.9 88.2

ReebGCN [39] point 89.9 87.1
Ours mesh 91.0 89.1
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Furthermore, we also experimented with the model of this paper on the ShapeNet
dataset [40], which has 16 classes with 16,881 shapes. For the ShapeNet dataset, the overall
classification accuracy of this paper’s model is 90.8%, which has the potential to achieve
good classification results.

An analysis of the spatial complexity and time complexity of the model is shown
in Table 3. We used params (number of parameters) to represent the spatial complexity
and FLOPs (floating operations conducted for each input sample) to express the time
complexity. The classification method proposed in this paper uses only two layers of
convolutional neural networks, thus reducing the number of parameters of the model. The
point cloud-based classification task algorithm is the most efficient among other data types.
The proposed method can achieve comparable results with the point cloud-based method
in terms of spatial complexity and time complexity. Therefore, the method proposed in this
paper is concise and effective.

Table 3. Space complexity and time complexity for classification.

Model Params (M) FLOPs (G)

PointNet [24] 3.48 0.44
PointNet++ [25] 1.48 -

Kd-NET [22] 7.44 -
MVCNN [7] 60.00 62.06

Ours 1.47 1.61

Table 4 compares the classification effects of the model using GCNs with a different
number of layers. The overall classification accuracy of the model was 90.2% when using
one-layer GCN; the best performance was achieved when using two-layer GCN with an
overall classification accuracy of 91%; and the classification ability of the model started to
decrease when using three-layer GCN, with an overall classification accuracy of 86.8%. The
performance of the model decreased again when using the four-layer GCN, with an overall
classification accuracy of 83.6%. The essence of GCN is aggregating neighbor information.
Every time the node’s features are updated, they aggregate the information of higher order
neighbor nodes for any node in the graph. As the number of GCN layers increases, once a
certain threshold is reached, the nodes covered by each node converge to the full graph
node. This leads to a significant reduction in the diversity of the local network structure of
each node, which is very detrimental to the nodes’ feature learning. Therefore, we use the
two-layer GCN classification model in this paper.

Table 4. Comparisons of overall accuracy when using a different number of GCN layers. We use the
ModelNet40 dataset.

Model
GCN Layers

1 2 3 4

Ours 90.2% 91.0% 86.8% 83.6%

To investigate the effect of the number of faces in the 3D model on the classification
accuracy, we re-simplified the dataset to obtain four kinds of 3D model datasets, with
the number of faces being 512, 1024, 2048, and 4096, and input them into the network for
the classification experiments. We list the classification results as shown in Table 5. The
experimental results show that an increase in the number of faces of the 3D model results
in a little improvement in the accuracy of the classification. However, a large number of
faces consumes a large amount of computer memory and computing time. To guarantee
the network performance and computation speed, we choose to simplify the model to
1024 faces for the experiment.
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Table 5. Classification results with a different number of faces on ModelNet40.

Number of Faces 512 1024 2048 4096

Accuracy 90.3% 91.0% 90.8% 91.0%

To analyze the effectiveness of each module in our classification model, we designed
ablation experiments to compare the accuracy of ModelNet40 classification under different
combinations of modules. Center Module refers to the center point feature of the face and
the subsequent fully connected layer. Corner Module refers to the corner vector feature of
the face and the rotated convolution layer behind it. GCN refers to the graph convolutional
neural network, and after removing the GCN, we pass the initial features directly through
the fully connected layer. Table 6 shows the results of the ablation experiments. The
experimental results show that only using grid features for classification is not effective,
but the addition of the GCN module can help improve the transmission of information in
the network and can capture local features better. Finally, we can obtain shape descriptors
that have rich features.

Table 6. Classification results of ablation experiments on ModelNet40.

Center Module
√ √ √

Corner Module
√ √

GCN
√ √

Accuracy 91.0% 89.6% 87.8%

5. Conclusions

In this paper, we proposed a 3D shape classification network that combines the features
of mesh data and is capable of learning the mesh data directly. By examining the mesh
data’s features and by generating an adjacency matrix based on nearby faces, the graph
convolution can be applied to the mesh data. Our model is better able to capture 3D model
features because of the benefits of using graph convolutional neural networks to analyze
non-Euclidean data. The experimental results prove that the classification model in this
paper is lighter in terms of the number of parameters and has a better classification effect.
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