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Abstract: With the development of maritime technology and equipment, most ships are equipped
with an automatic identification system (AIS) to store navigation information. Over time, the
size of the data increases, rendering its storage and processing difficult. Hence, it is necessary to
transform the AIS data into trajectories, and then simplify the AIS trajectories to remove unnecessary
information that is not related to route shape. Moreover, topographic information must be considered
because otherwise, the simplified trajectory can intersect obstacles. In this study, we propose an AIS
trajectory simplification algorithm considering topographic information. The proposed algorithm
simplifies the trajectories without the intersection of the trajectory and obstacle using the improved
Douglas–Peucker algorithm. Polygon map random (PMR) quadtree was used to consider topographic
information on the coast, and the intersection between topographic information and simplified
trajectories was efficiently computed using the PMR quadtree. To verify the effectiveness of the
proposed algorithm, experiments were conducted on real-world trajectories in the Korean sea. The
proposed algorithm yielded simplified trajectories with no intersections of the trajectory and obstacle.
In addition, the computational efficiency of the proposed algorithm with the PMR quadtree was
superior to that without the PMR quadtree.

Keywords: AIS information; PMR quadtree; Douglas–Peucker algorithm; trajectories simplification;
topographic information

1. Introduction

The International Maritime Organization (IMO) adopted the introduction of automatic
identification systems (AISs) to enhance the navigation safety of ships and protection
of the marine environment [1]. An AIS is a device that automatically transmits and
receives data between ships and AIS base stations, including static information (such as
Maritime Mobile Service Identity (MMSI) number, call sign, type, and length), dynamic
information (such as position, time, speed over ground, and navigational status), voyage-
related information, and short safety messaging [2]. AIS data can be used to generate traffic
networks [3,4], predict ship behavior [5–8] and trajectory [9,10], support maritime search
and rescue systems [11,12], detect fishing activity [13], create networks [14] and routes [15]
for navigation, and detect abnormal behavior [16–19].

In previous studies, knowledge was extracted from AIS data, and researchers com-
monly emphasized the importance of data preprocessing. There are challenges in extracting
knowledge from AIS data because it has limitations such as sensor error, volume of data,
incompleteness, and noise [2,20–23]. Among these preprocessing techniques, reducing the
number of AIS-data points to reduce storage and computation costs is significant. AIS
data are stored for periods of 5–100 s on the coast, and more than 100 million data points
are generated every day within areas with high ship traffic. Eliminating unnecessary data
points without losing information on the data has been studied in two directions: trajectory
simplification and event identification [18]. Trajectory simplification eliminates redundant

Sensors 2022, 22, 7036. https://doi.org/10.3390/s22187036 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22187036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4318-5212
https://orcid.org/0000-0003-1470-5768
https://doi.org/10.3390/s22187036
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22187036?type=check_update&version=2


Sensors 2022, 22, 7036 2 of 21

data points for representing the shapes while maintaining the overall shape of the trajec-
tory [24]. Event identification involves analyzing AIS data for identifying the ship’s arrival
and departure from ports, stop, and turn, and extracting the desired trajectory [25–30]. In
this study, we focused on trajectory simplification.

AIS trajectories simplification has been studied using line simplification methodol-
ogy [31]. Shi et al. [32], Ji et al. [33], and Qi and Ji [34] compared various algorithms
for simplifying AIS trajectories, including the choosing interval points, limiting vertical
distance, limiting angle, offset angle, grating, Douglas–Peucker (DP) [35], Opheim [36], and
Visvalingam–Whyatt algorithms [37]. Among these, the DP algorithm has been demon-
strated to have fewer errors and better performance compared to the others.

Most studies on AIS trajectories simplification are based on the DP algorithm [38].
In the DP algorithm, the threshold is the sole parameter that determines the shape of the
simplified trajectory. Therefore, methods for determining the threshold have generally been
studied. Etienne et al. [39] proposed a spatio-temporal DP algorithm to simplify the trajec-
tories and reduce the computation time. Muckell et al. [40] proposed an extended spatial
quality simplification heuristic (SQUISH-E) algorithm. The SQUISH-E algorithm simplifies
the trajectory by considering the errors caused by AIS data removal. Zhang et al. [31] deter-
mined the threshold of the DP algorithm using the size of the minimum ship domain as the
evaluation criterion. Li et al. [41] determined the threshold of the DP algorithm through
numerous experiments to ensure a good balance between AIS trajectory simplification and
visualization performance. Singh et al. [42] developed the scan–pick–move (SPM) algo-
rithm based on the DP algorithm. The SPM algorithm has lower computational complexity
compared to the DP algorithm. Zhang et al. [43] conducted a study to set the threshold
value on the basis of ship specifications. Zhao and Shi [44] extracted the data points at
which the angle changes in the trajectory using the course over ground (COG) information
from the AIS data. Huang et al. [45] proposed a GPU-based parallelization framework for
shortening the computation time of the DP and the kernel density estimation algorithms
for trajectory compression and visualization. Wei et al. [46] simplified the trajectories by
combining the sliding window technique that simplifies the speed and course data with
the DP algorithm. They used a threshold of 0.8 times the length of the ship, as proposed by
Zhang et al. [31].

Many studies have set a static value as a threshold, which causes the poor compression
quality of the trajectory. Recently, an adaptive threshold method responding to the condition
of each trajectory has been studied to solve this problem. Liu et al. [47] proposed an
algorithm that automatically generates the threshold value of the DP algorithm according
to the average distance of the trajectory. Tang et al. [48] proposed an algorithm that
identifies the turning points that rotate more than a certain angle and used them to change
the threshold. Ji et al. [49] proposed an adaptive grating algorithm that can dynamically
generate an appropriate threshold for each trajectory.

Although many studies have proposed AIS trajectories simplification methods based
on the DP algorithm, no studies have considered topographic information. The reasons
for not considering the information are twofold: First, there was no need to consider
topographic information because it simplified the trajectory at sea without islands or
obstacles. Second, the threshold of the DP algorithm was set to be small, and the number
of simplifications was minimized. Since the AIS data represent the locations that the ship
passed, a simplified trajectory to avoid obstacles can be generated if the threshold is set
small even without considering the topographic information. However, depending on
the user-defined threshold of the trajectory simplification algorithm, the intersection of
the trajectory and obstacle occurs, or many unnecessary data points remain because the
trajectory is not sufficiently simplified. Therefore, we propose the obstacle Douglas–Peucker
(ODP) algorithm that considers topographic information.

In the ODP algorithm, obstacle detection is combined with the DP algorithm. To
detect obstacles, the intersection of line segments and polygon (ILP) algorithm is used to
determine the intersection of a trajectory and obstacle because topographic information
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and trajectories are represented by polygons and lines, respectively. The DP algorithm has a
recursive characteristic to repeatedly perform simplification. Thus, in areas such as coastal
areas with many obstacles, the ILP algorithm further increases the computational burden.
To address this challenge, we utilize a grid-based technique. Typically, grid-based methods,
such as the K-dimensional tree, binary tree, quadtree, octal tree (octree), and R-tree, are used
to represent complex obstacle fields [50,51]. The size of the grid must be significantly small
to represent complex marine environments with the binary or K-dimensional tree [52].
However, these methods generate inefficient data storage, representing all areas with
redundant information in a large terrain. In particular, this is critical because the sea, which
contains large land masses over several kilometers, is the scope of the study. The quadtree is
widely used in the modeling of complex and large-scale environments such as land [53,54],
sea [55–57], earthquakes ground motion [58], flood [59], and tsunami [60]. Therefore, we
utilized a quadtree as the spatial data structure to efficiently store topographic information
and represent the free space.

The contributions of this study are summarized as follows: (1) A novel algorithm that
simplifies the AIS trajectories considering topographic information is proposed. (2) To
perform the ODP algorithm in a time frame, the ILP algorithm with the polygon map
random (PMR) quadtree is proposed. (3) The practical restrictions for navigation on
the coast are considered, and the effectiveness is demonstrated through testing in real-
world environments.

The remainder of this paper is organized as follows. In Section 2, an AIS trajectory
simplification algorithm considering topographic information is proposed. In Section 3, the
results are confirmed and analyzed by applying the proposed algorithm to AIS trajectories.
Finally, the conclusions and future plans are discussed in Section 4.

2. Methods

The ODP algorithm comprises three phases: (1) data preprocessing that removes out-
liers among the AIS data points and generates trajectories; (2) detecting the intersection of
line segments and the polygon using the PMR quadtree; (3) simplifying the AIS trajectories
using the DP algorithm considering topographic information.

2.1. AIS Data Preprocessing

Raw AIS data are difficult to use for analysis because the information from several
ships is mixed. Therefore, data classification is essential. AIS data contain static information,
such as MMSI number, IMO number, ship name, ship type, length, width, draft, and
dynamic information, such as latitude, longitude, speed, COG, speed over ground (SOG),
ship heading, and date (format: yyyy-mm-dd hh:mm:ss). Using the MMSI number, the
ship data were classified using the MMSI. Then, each ship data was divided based on the
berthing or anchoring, which means the ship was stopped for a certain period; this is called
a voyage.

For each voyage data, preprocessing was performed. First, AIS data were chronolog-
ically sorted to detect outliers, which means abnormal location information caused by a
system malfunction or data transmission error. Subsequently, data with SOG of three knots
or less were removed owing to the characteristics of the ship. When the ship is berthing or
anchoring, the SOG is nearly zero. Because the voyage with removed data did not equal
time intervals, it needed to be set with the same time interval. To have the same time
interval for the routes, resampling was performed. The resampling criterion was the AIS
data time interval. In this study, the time interval was set to 1 s, which is the minimum
time difference between two consecutive data points.
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2.2. ILP Algorithm Using Quadtree

We propose an ILP algorithm that efficiently reduces the computational burden by
using the PMR quadtree. A simple method to check the intersection of line segments
and polygons is to determine whether they are crossed for all line segments. Because
this method is time-consuming and inefficient, previous studies have proposed methods
to improve it; however, the proposed methods were difficult to apply for spatial data
of significantly large sizes [52–61]. Therefore, in this study, we propose an efficient ILP
algorithm using the PMR quadtree.

The tree is a data structure in which each internal node has a group of several sub-
nodes. Since the number of sub-nodes is set to the powers of 2 (2, 4, 8 . . . ), they are referred
to as a binary tree, quadtree, octal tree (octree), and so on. Among these trees, the quadtree
is widely used for topographic visualization and spatial processing. There are various
types of quadtrees depending on the input data format and splitting method. Generally,
there is a point region (PR) quadtree, used when the input data are points, and a polygon
map (PM) quadtree, used when the input data are lines. Since topographic information
is polygonal information composed of lines, a PM quadtree is suitable. However, the PM
quadtree has the limitation of being time-consuming for the quadtree creation because
points are included in the split conditions. To overcome this limitation, a PMR quadtree
that sets the splitting condition as a line is proposed. Because the PMR quadtree subdivides
the tree by inserting the input data one by one, the tree structure is rapidly created. Using
PMR quadtree, the execution time per input data is similar as the size of the input data
increases. Moreover, the CPU cost is smaller than that of other tree methods. In the previous
study, it was confirmed that the PMR quadtree yielded results similar to the those of other
tree methods, while producing the results at least five times faster compared to other tree
methods [62].

The PMR quadtree checks the condition of the node related to line segments consti-
tuting the topographic information and divides the existing node into four sub-nodes to
generate a grid map. The hyperparameters of the PMR quadtree are the splitting threshold
and maximum depth. The splitting threshold is the maximum number of line segments
required to divide the current node into sub-nodes; the maximum depth is a parameter for
limiting the number of divisions of the initial node. When a line segment is input, if the
related node exceeds the splitting threshold and the depth of the node does not exceed the
maximum depth, the node is split into four sub-nodes. A node that is no longer divided
is called a leaf node. Figure 1 depicts an example of creating a PMR quadtree, where the
splitting threshold was set to 1 and the maximum depth was set to 4. The line segments
constituting the polygon were input in the order of A–H. The initial node exceeds the
splitting threshold of 1 when line segment B is input. As shown in Figure 1a, the initial
node is split into northeast (NE), northwest (NW), southeast (SE), and southwest (SW)
nodes. When line segment C is input, the number of line segments in the SW node exceeds
the splitting threshold. Therefore, it is divided as shown in Figure 1b. Following this
method, the line segments D–G generate the quadtree, as shown in Figure 1c, and the line
segment H divides the nodes in Figure 1c as shown in the gray areas in Figure 1d.

The topographic information of the Korean sea consists of the coastline and more
than 2500 islands. Figure 2 shows the Korean sea expressed using the PMR quadtree. The
longitudinal and latitudinal boundaries of the quadtree were set as 125.1◦–129.8◦ E and
33◦–37.7◦ N, respectively. The splitting threshold was set to 2, and the maximum depth to
12. The area marked in Figure 2 is enlarged as shown in Figure 3.
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Figure 1. Example of polygon map random (PMR) quadtree generation: (a) Quadtree generated by 
line segment B; (b) Quadtree generated by line segment C; (c) Quadtree generated by line segment 
D–G; (d) Quadtree generated by line segment H. 

The topographic information of the Korean sea consists of the coastline and more 
than 2500 islands. Figure 2 shows the Korean sea expressed using the PMR quadtree. The 
longitudinal and latitudinal boundaries of the quadtree were set as 125.1°–129.8° E and 
33°–37.7° N, respectively. The splitting threshold was set to 2, and the maximum depth to 
12. The area marked in Figure 2 is enlarged as shown in Figure 3. 

Figure 1. Example of polygon map random (PMR) quadtree generation: (a) Quadtree generated by
line segment B; (b) Quadtree generated by line segment C; (c) Quadtree generated by line segment
D–G; (d) Quadtree generated by line segment H.
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The line segments of topographic information overlapping boundaries are stored
in the leaf node of the PMR quadtree. By using this characteristic, the intersection of a
trajectory and an obstacle can be determined.

The overall procedure of the ILP algorithm using quadtree is described by Algorithm 1.

Algorithm 1 Edge acquisition in quads intersecting with line

Input: root, p, q
Output: edgeSet

1: function LineIntersectPoly(p, q)
2: GetEdges(node, p, q, edgeSet)
3: for i = 1 to N //N is the number of edges in edgeSet
4: If edgeSet[i] ∩ (p, q) then return true
5: end for
6: return false
7: end function
8: function GetEdges(node, p, q, edgeSet)
9: if node.child 6= ∅ and node.edges 6= ∅ then

10: edgeSet.append(node.edges)
11: else
12: child = {NE, NW, SE, SW}
13: for i = 1:4 do
14: if node.child[i].bound ∩ (p, q) then
15: GetEdges(node.child[i], p, q, edgeSet)
16: end if
17: end for
18: end if
19: end function

An example of Algorithm 1 is shown in Figure 4. Figure 4 contains topographic
information within the longitudinal and latitudinal boundaries of 126.165◦–126.195◦ N
and 34.235◦–34.265◦ E, respectively. The total number of line segments was 600. Line
segments A (126.1793◦ N and 34.2353◦ E)–B (126.1754◦ N and 34.2647◦ E) were provided.
The boundaries of the quadtree (intersected quads) intersecting with the line segment A–B
are shown as the region shaded in pink in Figure 4. The topographic edges contained in
the quadtree intersecting with line segments A–B are shown in red. The ILP algorithm
using quadtree reduced the number of line segments for checking intersections from
600 to 13. The proposed algorithm drastically improved efficiency. Subsequently, the
proposed algorithm was used for the trajectory simplification algorithm considering the
topographic information.

2.3. Trajectory Simplification Algorithm Considering Topographic Information

The DP algorithm is a method for approximating an existing shape to a line, which
requires a threshold to simplify the line [35]. The existing DP algorithm simplifies the trajec-
tory without considering the topographic information. However, if there are complicated
coastlines or islands, topographic information must be considered. When the threshold
is small, there is no issue with simplification. However, as the threshold increases, the
trajectory is simplified as it intersects the obstacle. Therefore, we propose the DP algorithm
that considers the topographic information, as shown in Algorithm 2.
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Figure 4. Example of edges in quads intersecting with line.

Algorithm 2 ODP algorithm

Input: trj(trajectory), eps(threshold)
Output: s_trj(simplified trajectory)

1: function Obstacle_DP(trj, eps, s_trj)
2: n = trj.size()
3: index, dmax = PerpendicularGeoDistance (trj, trj[1], trj[n])
4: if dmax > eps or LineIntersectPoly (trj[1], trj[n])
5: result1 = Obstacle_DP (trj[1], trj[1] + index)
6: result2 = Obstacle_DP (trj[1] + index, trj[n])
7: s_trj = [result1 result2]
8: else
9: s_trj = [trj[1] trj[n]]

10: end if
11: end function

The ODP algorithm proceeds as shown in Figure 5. As shown in Figure 5a, the distance
between the generated line segment, connecting p0 and p14 (the blue dashed line), and the
point p7, which had the largest vertical distance (dmax) was compared with the threshold
(ε). Because it is greater than ε, p7 was fixed and two subtrajectories (p0–p7 and p7–p14)
were generated as shown in Figure 5b. Figure 5b illustrates that, in the trajectory from
p0 to p7, the maximum vertical distance was greater than ε; therefore, the trajectory was
divided into two subtrajectories (p0–p3 and p3–p7). In the trajectory from p7 to p14, the
maximum vertical distance was smaller than ε. However, the trajectory was divided into
two subtrajectories (p7–p9 and p9–p14) owing to the obstacle. Furthermore, in Figure 5c, it
can be observed that the trajectory from p0 to p3 intersects with the obstacle; therefore, it
was divided into two subtrajectories (p0–p2 and p2–p3). In other trajectories, the maximum
vertical distance was smaller than ε, and no intersection with the obstacle could occur;
therefore, the trajectories are simplified. Finally, as shown in Figure 5d, the trajectory from
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p0 to p14 was simplified to the trajectory from q0 to q5. A simplified trajectory does not
intersect with the obstacle.
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Figure 5. Route simplification using the ODP algorithm: (a) Check the original trajectory p0–p14;
(b) Check the subtrajectories p0–p7 and p7–p14; (c) Check the subtrajectories p0–p3, p3–p7, p7–p9, and
p9–p14; (d) Simplified trajectory q0–q5 simplified from the original trajectory (grey).

In the ODP algorithm (4th line in Algorithm 2), the perpendicular distance of a point
from a straight line on Earth is computed. As shown in Figure 6, a triangle comprising
points A, P, and H on the Earth is called a spherical triangle. In Equations (1) and (2), a and
h are distances (km); A and H are angles (rad); lPH and lAP are the distances (km) between
points P and H, and points A and P, respectively; R is Earth’s radius (km); θAH and θAP are
the azimuth angles (rad) between points P and H, and points A and P, respectively. The
sine rule of a spherical triangle is formulated as Equation (1) [63]. Because the angle H is
90◦, sin H = 1, and it can be written as Equation (2) considering the unit of distance. The
angle A is computed using the difference between the azimuth angles θAH and θAP.

sin a sin H = sin h sin A (1)

lPH = R·arc sin
(

sin
lAP
R

)
sin(θAH − θAP) (2)
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In Equations (3) and (4), θ is the azimuth (rad), l is the distance (km), φ is the longitude,
λ is the latitude, and ∆λ is the latitudinal difference between the two points. Equation (3)
is used for calculating the azimuth, and Equation (4) is the haversine distance equation for
calculating the distance between two points on Earth.

θ = arc tan 2(sin ∆λ cos φ2, cos φ1 sin φ2 − sin φ1 cos φ2)∆λ (3)

l = 2r·arc sin

(√
sin2

(
φ2 − φ1

2

)
+ cos φ1 cos φ2 sin2

(
λ2 − λ1

2

) )
(4)

2.4. Evaluation Metric

A trajectory can be evaluated using length loss, compression rate, and violations. The
length loss can be computed using the length of the original trajectory and the simplified
trajectory according to Equations (5) and (6).

L =
N−1

∑
n=1

dn, (5)

LengthLoss =
(

1− LS
Lo

)
·100, (6)

where dn denotes the haversine distance between two adjacent points on one trajectory. L
is the total length of the trajectory. LO is the total length of the original trajectory, and LS is
the total length of the simplified trajectory. The length loss can be computed using the ratio
of LO and LS.

The compression rate denotes how many points on the original trajectory were re-
moved and can be expressed as Equation (7).

CompressionRate =
(

1− NS
No

)
·100, (7)

where NO denotes the number of points on the original trajectory, and NS denotes the
number of points on the simplified trajectory.

The violations denote whether the simplified trajectory intersects the boundary of the
obstacle. The violations can be expressed as Equation (8).

violations =
N−1

∑
n=1

LIP(pi, pi+1), (8)

where LIP denotes Algorithm 1 LineIntersectPoly and pi is a point on the trajectory. When
the line of the trajectory intersects the boundary of the obstacle, LIP is true and 1. Otherwise,
LIP is false and 0. After LIP is performed on all line segments on the trajectory, violations
are the summation of all the LIP results.

3. Results

To verify the effectiveness of the ODP algorithm, experiments were conducted on
trajectories 1 and 2 in the Korean sea, as shown in Figure 7. The AIS trajectory set consists
of 10 trajectories with diverse departure and arrival. A sensitivity analysis on the threshold
(ε) of the ODP algorithm was conducted. In addition, we compared the performance of the
ODP algorithm with that of the existing DP algorithm. Finally, the computation time was
compared depending on whether the PMR quadtree was applied or not.
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3.1. Comparison of Quadtree and Uniform Method

In the quadtree method, many nodes are generated in areas with many obstacles;
otherwise, nodes are generated sparsely. Generally, the quadtree method can be compared
with the uniform method. Table 1 shows the simplification using the quadtree and uniform
methods for Trajectory 1. The number of edge comparisons means the number of intersec-
tions between the line segment of the obstacle and the trajectory when ODP is progressed.
The resolution of the uniform method should be set to 1024, based on the minimum node
size of the quadtree. The number of nodes generated by the uniform method is about
19 times more than when generated by the quadtree method. If the resolution is set to 256,
a similar number of nodes can be generated. However, the number of edge comparisons
increases greatly when performing ODP. Therefore, the quadtree method intensively creates
nodes in areas with obstacles, which can reduce the number of edge comparisons while
reducing the total number of nodes obtained from the uniform method.

3.2. Comparison of AIS Trajectory Simplification Results between the ODP and DP Algorithm

The ODP and DP algorithms were applied to all trajectories for comparison. Among
them, trajectories 4 and 10 were selected for sensitivity analysis because the environment
of these trajectories has many obstacles. Table 2 shows the results of the sensitivity analysis
of the threshold for trajectory 4. In the DP algorithm, the threshold is the maximum
perpendicular distance from the simplified line segment to the original trajectory. Since the
maximum perpendicular distance is similar to the radius of the ship domain, the size of
the ship domain can be used to determine the threshold [31]. The ship domain can be set
with various sizes and shapes depending on the navigation situation. In recent studies, the
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ship domain was up to 1 km with a complex shape [64]. Therefore, sensitivity analysis was
performed by setting the threshold up to 1 km.

Table 1. Comparison of the results obtained using the quadtree and uniform methods (Trajectory 1).

Method The Number of
Nodes

Minimum Node Size
(km)

The Number of Edge
Comparisons

Quadtree 55,534 0.407 95

Uniform
(256 × 256) 65,536 1.629 2534

Uniform
(512 × 512) 262,144 0.814 355

Uniform
(1024 × 1024) 1,048,576 0.407 95

Table 2. Comparison of the results obtained using the ODP and DP algorithms for trajectory 4.

ODP Algorithm DP Algorithm

ε (km) Length Loss
(%)

Compression
Rate (%)

Number of
Violations

Length Loss
(%)

Compression
Rate (%)

Number of
Violations

None 100.0 100.0 - 100.0 100.0 -

0.1 99.62 97.85 0 99.62 97.85 0

0.3 99.49 98.88 0 99.49 98.88 0

0.5 99.43 99.17 0 99.18 99.21 1

0.7 99.26 99.38 0 99.01 99.42 1

1.0 99.26 99.38 0 98.92 99.46 2

We set thresholds for ODP and DP to 0.1, 0.3, 0.5, 0.7, and 1.0 km. The length of trajec-
tory 4 is 242.49 km, and the number of points on trajectory 4 is 2420. In Table 2, the number
of violations represents the number of times the simplified trajectory intersects the obstacle.
Because the ODP algorithm is a modified DP algorithm, their simplification results were
similar. As the threshold increased, several data points in trajectory 4 were removed, and
consequently, the distance of the trajectory reduced. The simplified trajectories generated
using the ODP algorithm are shown in Figure 8. In all the results, the intersection of the
trajectory and obstacle was not observed.

Table 3 shows the results of the sensitivity analysis of the threshold for trajectory 10.
The length of trajectory 10 is 513.06 km, and the number of points on trajectory 10 is 5122.
Similar to the results for trajectory 4, it was confirmed that, as the threshold increased,
several data points in trajectory 4 were removed, and thus, the distance of the trajectory
also reduced. The simplified trajectories obtained using the ODP algorithm are illustrated
in Figure 9, which shows no intersection of the trajectory and obstacle.
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3.3. Comparison with Other Methods

To verify the usefulness of the ODP algorithm, it was compared with other sim-
plification algorithms, including the DP algorithm and the algorithm considering ship
behavior [46]. Table 4 shows the results of the ODP and other algorithms. In areas with
many obstacles, the DP algorithm and Wei et al. [46]’s algorithm show that violations occur
frequently. The ODP algorithm shows no violations in all cases. Since the ODP algorithm is
a DP-based algorithm, it was confirmed that the ODP results were similar to the DP results.
The compression rate of ODP was slightly higher than that of the DP algorithm because the
trajectory with obstacles was not simplified. For the same reason, the length loss of ODP
was slightly lower than that of the DP. In terms of length loss and compression rate, ODP
was generally better than the algorithm of Wei et al. [46].

Figure 10 shows the simplified trajectories generated using the ODP and DP algorithms
for trajectory 4 with ε = 1.0 km. Because the DP algorithm and the method of Wei et al. [46]
remove the data points without considering the topographic information, the simplified
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trajectory intersects the obstacles. As can be observed from Table 4, the larger the threshold,
the more violations the obstacle and trajectory cross. On the other hand, as shown in
Figure 10b–d, the ODP algorithm performed trajectory simplification without the trajectory
intersecting the obstacle. Since the ODP algorithm has the property of DP, it is better than
the method of Wei et al. [46] in the perspective of length loss and compression rate.
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Figure 11 shows the intersections of the simplified trajectory 10 and obstacles. As can
be observed from Table 4, the larger the threshold, the more violations the obstacle and
trajectory cross. Figure 11a–d shows the enlarged visualizations of the areas containing
intersections of the trajectory and obstacle. From these results, it can be concluded that the
DP algorithm and the method of Wei et al. [46] yield simplified trajectories intersecting the
obstacles, and the ODP algorithm yields simplified trajectories that do not intersect with
the obstacle. Similar to the results for trajectory 4, the ODP algorithm is better than the
method of Wei et al. [46] from the perspective of length loss and compression rate. From
these results, it can be concluded that the ODP algorithm is more practical and suitable for
navigation safety.
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Table 4. Results of ODP and other algorithms.

DP Wei et al. [46] ODP

Trajectory Length
Loss (%)

Compression
Rate (%)

Number
of

Violations

Length
Loss (%)

Compression
Rate (%)

Number of
Violations

Length
Loss (%)

Compression
Rate (%)

Number of
Violations

1 0.74 99.48 1 1.04 98.77 3 0.72 99.47 0

2 0.71 99.62 1 0.67 98.73 1 0.46 99.60 0

3 0.98 99.61 1 0.45 98.83 1 0.56 99.59 0

4 1.08 99.46 2 1.13 98.35 2 0.74 99.38 0

5 0.40 99.56 1 0.48 98.79 1 0.37 99.55 0

6 0.58 99.51 1 0.60 97.65 1 0.55 99.48 0

7 0.46 99.50 1 0.55 98.43 2 0.45 99.48 0

8 0.38 99.57 2 0.45 99.12 1 0.36 99.55 0

9 0.64 99.51 1 0.79 99.01 1 0.61 99.48 0

10 3.15 99.51 5 0.58 98.42 2 0.74 99.39 0
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3.4. Computation Efficiency of the ODP Algorithm with PMR Quadtree

Tables 5–7 show the computation times of the ODP algorithm with and without the
PMR quadtree for trajectories 1, 4, and 10. A typical ILP algorithm was used in the ODP
algorithm without the PMR quadtree. The computation time for each threshold presented
in Tables 5–7 is the average computation time for 10 repetitions. For ε = 1.0 of Tables 5–7,
it is shown that the ODP algorithm with the PMR quadtree reduced the computation time
by about 89% compared to that without; the ODP algorithm with the PMR quadtree is
superior to that without. Furthermore, it can be seen that the ODP algorithm with the PMR
quadtree yielded a more robust performance in terms of the computation time than that
without. Therefore, we can conclude that the proposed method is worth introducing in
practice because it has the most reliable performance.

Table 5. Comparison of the computational efficiencies of the ODP algorithms with and without the
PMR quadtree (Trajectory 1).

ε (km) ODP with PMR
Quadtree

ODP without PMR
Quadtree

Ratio (%)
(with/without)

0.1 6.4 169.3 3.78

0.2 6.2 115.1 5.39

0.3 5.8 87.1 6.66

0.4 5.6 75.1 7.46

0.5 5.4 66.6 8.11

0.6 5.2 59.5 8.74

0.7 5.2 55.2 9.42

0.8 5.0 50.4 9.92

0.9 5.0 45.8 10.92

1.0 4.9 43.8 11.19

Table 6. Comparison of the computational efficiencies of the ODP algorithms with and without the
PMR quadtree (Trajectory 4).

ε (km) ODP with PMR
Quadtree

ODP without PMR
Quadtree

Ratio (%)
(with/without)

0.1 6.9 180.1 3.83

0.2 6.4 127.7 5.01

0.3 6.0 99.4 6.04

0.4 5.8 78.6 7.38

0.5 6.0 68.3 8.78

0.6 5.4 62 8.71

0.7 5.6 55.7 10.05

0.8 5.2 51.6 10.08

0.9 5.0 47.4 10.55

1.0 5.1 46.1 11.06
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Table 7. Comparison of the computational efficiencies of the ODP algorithms with and without the
PMR quadtree (Trajectory 10).

ε (km) ODP with PMR
Quadtree

ODP without PMR
Quadtree

Ratio (%)
(with/without)

0.1 6.7 174.2 3.85

0.2 6.2 118 5.25

0.3 5.8 89.8 6.46

0.4 5.6 76.1 7.36

0.5 5.4 66.3 8.14

0.6 5.2 59.7 8.71

0.7 5.2 55.8 9.32

0.8 5.1 51.3 9.94

0.9 4.9 45.4 10.79

1.0 4.9 43.4 11.29

4. Conclusions

The AIS trajectory stores ship location information based on a time series. The longer
the storage time, the larger the size of the data. This renders it difficult to store and process
the data. Therefore, AIS trajectories simplification plays a pivotal role in the study of
maritime fields such as weather routing and safety navigation.

In this study, the ODP algorithm based on the DP algorithm was proposed. The
proposed algorithm simplifies AIS trajectories through the data preprocessing that removes
outliers and creates trajectories, checking the intersections of line segments and polygons
using the PMR quadtree, and the DP algorithm, considering topographic information.
We conducted experiments on real-world trajectories in the Korean sea to verify the per-
formance of the proposed algorithm. The experimental results indicated that the ODP
algorithm yielded simplified trajectories with no intersections of the trajectory and obstacle,
unlike the DP algorithm. In addition, the ODP algorithm with the PMR quadtree was up to
30 times faster than that without the quadtree. This result suggests that the performance of
the proposed algorithm is more effective in the Korean sea with complex topography.

Future studies can focus on extending our method in consideration of various infor-
mation on ships. The proposed method considered only the ship location based on AIS
trajectories. It is difficult to generate a simplified trajectory with a high compression ratio
and low distortion when the trajectory contains the rotation due to obstacles. To solve
this problem, it would be interesting to extend our method by considering the speed and
direction of the ship and extracting more meaningful AIS data points.
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