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Abstract: This work presents the design of a wireless acoustic sensor network (WASN) that monitors
indoor spaces. The proposed network would enable the acquisition of valuable information on the
behavior of the inhabitants of the space. This WASN has been conceived to work in any type of indoor
environment, including houses, hospitals, universities or even libraries, where the tracking of people
can give relevant insight, with a focus on ambient assisted living environments. The proposed WASN
has several priorities and differences compared to the literature: (i) presenting a low-cost flexible
sensor able to monitor wide indoor areas; (ii) balance between acoustic quality and microphone
cost; and (iii) good communication between nodes to increase the connectivity coverage. A potential
application of the proposed network could be the generation of a sound map of a certain location
(house, university, offices, etc.) or, in the future, the acoustic detection of events, giving information
about the behavior of the inhabitants of the place under study. Each node of the network comprises
an omnidirectional microphone and a computation unit, which processes acoustic information locally
following the edge-computing paradigm to avoid sending raw data to a cloud server, mainly for
privacy and connectivity purposes. Moreover, this work explores the placement of acoustic sensors
in a real scenario, following acoustic coverage criteria. The proposed network aims to encourage the
use of real-time non-invasive devices to obtain behavioral and environmental information, in order
to take decisions in real-time with the minimum intrusiveness in the location under study.

Keywords: wireless acoustic sensor network; low-cost sensor; meshed network; acoustic quality;
real-time signal processing; Raspberry Pi; acoustic signal processing

1. Introduction

Humans are everyday more used to coexisting with technological devices, even in
private environments such as homes. When a home is provided with a set of sensors that
enable the automation and monitoring of different day-to-day actions, it can be categorized
as a smart home, with a special focus—but not exclusively—on ambient assisted living
applications [1]. Nonetheless, the same sensors can be applied in other environments such
as private homes, hospitals, universities, students’ residences or nursing homes for different
purposes. However, and especially for specific segments of the population, privacy becomes
a key issue when accepting those devices [2]. Actually, for a technological system to be
accepted, it should be perceived by the users as non-intrusive and non-obtrusive, terms
defined in [3]. Mainly, a system is perceived or not as intrusive or obtrusive depending on
eight different dimensions: physical dimensions, usability dimensions, privacy dimensions,
function dimensions, human interaction dimensions, self-concept dimensions, routine
dimensions and sustainability dimensions. In summary, the devices should (i) be of
reduced dimensions and be integrated with the architectural aesthetic, (ii) be easy to use,
(iii) not reveal more information than the user is willing to share, (iv) not affect the personal
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relationships of the people using them or make them feel treated differently, (v) not make
the people feel anxious about not being able to afford the device in the future.

Most of the users of smart devices believe that their personal raw data gathered by
sensors should not be shared with third parties such as ISPs (Internet Services Providers) [4],
especially when thinking of sensitive groups, such as old people, children or teenagers.
Furthermore, the study in [5] shows the most recent trends in the technical challenges to
face attacks and prevent vulnerabilities in networks, especially from an industrial point
of view. Based on those requirements and recommendations, and in this regard, the edge
computing paradigm has emerged as a powerful tool to perform the signal processing in the
sensing nodes to avoid unnecessary transmissions of sensitive raw data. Edge computing
refers to moving the computation load and/or storage of data of a system closer to the
source in which the data is generated [6]. In this sense, this computation is performed in
edge devices, which are composed of computing units connected to sensors that gather
data. Besides other advantages, such as faster response times or bandwidth cost savings
(achieved by sending processed data instead of raw data), data safety and privacy are also
key issues to be taken into account when deciding to use an edge-computing architecture
in front of a cloud-based system.

From a communication point of view, the edge nodes may use wired (such as Ethernet)
or wireless (such as WiFi or 2G, 3G, 4G or 5G cellular networks) communication protocols
depending on the intrinsic characteristics of the scenario in which they would be deployed
and the desired features of the network [7]. Another parameter to consider is the amount
of data that has to be sent in order to integrate the information required in the central
node; this volume of information changes depending on the application, the size of the
network and the final goal of the evaluation of the acoustic data collected and processed.
These features also involve the desired speed, the distance between nodes, the number of
supported devices, the covering area of near technologies (e.g., cellular antennas) and the
budget constraints, among others, in order to design the best possible network to satisfy
the requirements of the problem under study.

Following this paradigm, this paper presents a meshed Wireless Acoustic Sensor
Network (WASN), which consists of a network composed of microphones (i.e., the sensors
of the edge devices) and computing units spatially distributed over an indoor environ-
ment, capable of monitoring noise levels and detecting certain predefined acoustic events.
Specifically, the paper covers the conception of the network since selection and set-up
of the hardware of the sensing nodes (including the selection and the calibration of the
microphones) and the wireless communication protocol between them, to the comparison
of different models of 3D printed boxes to protect the computing units of each node while
preventing overheating. The proposed system should fit any indoor environment that aims
to measure noise levels or detect acoustic events.

One can find several contributions in the literature focused on the design of low-
cost acoustic sensor networks to solve several different requirements, depending on their
application. Those contributions can range from a simple WASN design [8], to a system
already capable of executing, in real-time, several algorithms and uploading the results in
the cloud [9]. The goal of the proposal presented in this paper, which clearly differs from
other proposals in the literature, is to obtain the most precise acoustic sensor network with
the lowest possible cost, assuming that precision, in this stage, stands for both the precision
of acoustic measurements and future acoustic event detection algorithms. For this purpose,
the requirements of both data collection hardware design and computational capabilities to
develop signal processing algorithms have been considered. The precise comparison of our
approach with regards to other proposals in the literature is widely discussed and detailed
in the Discussion section of this paper (Section 6). Focusing more on the details and the
proper contributions of this work, the most relevant issues presented in this paper are:

1. The design of a general-purpose Wireless Acoustic Sensor Network, focusing on the
design of the sensing nodes using a commercial computing unit and microphone.
Different commercial computing units have been evaluated in terms of cost and
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capabilities. The selected computing unit is capable of performing edge-computing
calculations, which enables acoustic signal processing to be carried out in the sensor
without the need to send raw acoustic data to the cloud. Regarding the microphone,
three different options have been evaluated in terms of cost, linearity and calibration
capabilities. The plug-and-play selected option enables omnidirectional data to be
obtained without the need for an external Analogue to Digital Converter.

2. The conception of a wireless meshed network topology to communicate the sensing
devices in a Local Area Network (LAN), maximizing the coverage area of the network
without using external hardware such as a router or a range extender. For this purpose,
a real-world test has been carried out in a scenario composed of three rooms and one
terrace, with a long distance among nodes. A comparison between using a direct
connection from nodes to a central unit or a meshed topology has shown that the
latter option enables us to drastically reducing the number of frames lost during
the experiments.

3. The design of a coverage (i.e., a protecting 3D-printed box) to protect the hardware
and also ensure that such hardware does not overheat, causing the computer unit
to stop working in the worst situation. For this purpose, different models of custom
3D-printed boxes of different shapes and materials have been compared. In the
experimental evaluation, identical stress tests have been carried out using different
models of boxes. The results show that the physical design of the box greatly affects
the temperature value reached in the sensor.

The remainder of this paper is organized as follows: first, Section 2 explores the
main relevant related works in the field; then, Section 3 explains how the hardware of the
WASN has been conceived, including: (i) the design and assembly of different commercial
elements for each sensing node, (ii) the acoustic calibration process carried out to guarantee
heterogeneity among nodes and (iii) the design process of 3-D printed boxes to protect
the hardware. Next, Section 4 explains the physical and logical topology of the WASN,
together with several tests and experiments that guarantee the correct functioning of the
sensing nodes in a real-world environment. Section 5 details how should our approach be
deployed in a new scenario. Section 6 discusses the resulting WASN, comparing it to other
approaches. Finally, Section 7 concludes the paper, discusses the main findings of the work
and explains the future work directions derived from this research.

2. State of the Art

Nowadays, in the literature, several designs of WASNs can be found, all of them
with different strengths and weaknesses, depending on their goal and focus in terms of
application. One can find networks for indoor localization purposes, or WASN to be
deployed in a big city such as New York to evaluate the LAeq and even try to detect certain
pretrained events. In the recent years, there has been an increase in health concerns together
with advances in sensing technologies. These have led WASNs to take a predominant
place amongst the tools to survey around the acoustic health of the population living in
urban areas [10], and also to monitor the biodiversity conservation in forests [11]. Not only
in outdoor environments, but also at home, several WASNs have been tested to include
networks on indoor environments to promote ageing at home with high quality of life [12]
in the ambient assisted living paradigm, promoting active and healthy ageing at home.
The advantage of WASN against other monitoring systems is that they respect the privacy
of the users more than other technologies [13] (e.g., video surveillance), especially when
the raw acoustic data are processed in the proper sensor, so that only labels travel to
other nodes.

The number of connected nodes, as well as the distance and connectivity between
them, is another of the issues that varies substantially depending on the application; finally,
the computational capability of each of the nodes and the central server—if there is one—
usually defines the requirements list of these kind of designs, especially when conducted
using commercial hardware pieces. Several projects can be reviewed that have developed
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sensor networks that attend to different features and categories. In the context of the
IDEA project [14], Domínguez et al. [15] propose the usage of low-cost nodes (with a
cost of around EUR 50) to monitor outdoor environments that actively auto-check the
frequency response of the microphone of each node by embedding a low-cost speaker
that generates a periodical frequency sweep. Another example of an outdoor acoustic
sensor network is the MESSAGE project, which is explained in [8]. In their work, Bell and
Galatioto present the results obtained on a WASN of 50 nodes in which, apart from a noise
detector module, each node incorporates traffic count and chemical sensor modules, using
a microcontroller with low processing capabilities to do so. Regarding indoor WASNs,
the homeSound project [1,12] proposes a network architecture with several sensing nodes
that send their information to a concentrator node composed of a GPU with parallel
computing capabilities, and later, the same team developed a new sensor with low-cost
capabilities and more possibilities of real-time algorithm computing [16].

WASNs have been understood as a group of wireless microphone nodes spatially
distributed over either an indoor or outdoor environment. The design has to take into
account the scalability of the network, the delay of the acoustic signal, the synchronization
of the nodes and the decision of where the computing of the data is conducted—if either in
the cloud or locally in the sensors [17]. The low invasiveness of these systems made them
more attractive for indoor applications, where patients or users are explicitly involved [18],
especially when there is a clear intention of health monitoring or remote health tracking.
Nevertheless, these sensors can also be used for surveillance applications when taking care
of the elderly or disabled people [19]. In [18], the authors present an acoustic event detector
system focused on a low-cost platform, recording and processing the sounds indoors.

The requirements of the latter applications both in indoor and outdoor environmental
projects have led the priorities of the designs into three main issues: the low cost of the
sensor design, the acoustic qualities of the designed sensor and the connectivity of the
nodes, especially when there is no predetermined network to enable the link of all the
nodes. Redundancy of sensors is one option to avoid false alarms in detection and improve
the quality of the measurements collected. There is the idea of long-lasting networks,
with lower maintenance, and in this sense, high quality—but low cost—microphones
gather together good accuracy in the measurement stage and also lower incidences while
working real-time. Finally, connectivity and ensuring that no information is lost in the
data gathering to enable the central node to take decisions and activate warnings if needed
is a crucial focus nowadays. In this sense, the reader can find an exhaustive review of
the last trends of WASN design in [20]. Several examples can be found in [21] for the
well-known project Sounds of New York [22,23], or [24], which maximizes network lifetime
using coverage sets by means of designing its schedule.

After the work conducted by Alías et al., another contribution has appeared in the
literature, which is worth mentioning for its similarity to the network proposed in this
paper: Arce et al. [9] present a highly-scalable wireless acoustic sensor network that
can monitor urban environments by recognizing a given set of sound events or classes.
The nodes are based on Raspberry Pi (RPi) devices that do not only have the capability of
recording the environmental sound but also to recognize different sound events by means
of Convolutional Neural Networks (CNNs). Running the classification algorithms locally
in the node has not modified substantially the results of accuracy compared to cloud-based
solutions, proving that the local computation of deep learning is a good and feasible option
for WASNs. Despite [9] having done all their tests in an outdoor environment, their proposal
could be adapted for an indoor scenario. For this purpose, the connectivity would have to
be reviewed and improved, in order to guarantee the coverage in all the rooms inside a
house, a hospital, an university or a library (among others). The proposal of the WASN
presented by Arce et. al. in [9] will be further compared to the approach presented in this
paper to detail the essential contributions of the proposed WASN, especially orienting the
comparison to three items: (i) low cost of the devices, (ii) acoustic quality of the microphone
and raw data collection and (iii) ensured connectivity between nodes.



Sensors 2022, 22, 7032 5 of 23

3. Sensor Design

Monitoring an acoustic environment requires a reasonable quantity of reliable acoustic
sensors to gather samples of the acoustic landscape of the place. For these applications,
the sensors should meet the following requirements:

1. Continuous measuring: each sensing node must be capable of measuring continu-
ously and without being interrupted, to avoid sample loss.

2. Maximum semblance between devices: To obtain comparable metrics (in terms of
measured noise level but also in terms of temperature response, speed and reliability),
all the sensing nodes of the network should be as similar as possible among them.
Additionally, they should be calibrated prior to their deployment, to ensure that the
results that they are supplying are comparable.

3. Low cost: The price of each node of the network must be moderate to ensure the
deployment of many sensors. This way, a wider area can be covered. For this work,
a node is considered as low-cost if its price per unit is around EUR 100 or less, which is
considerably low compared to Class-I commercial measuring sensors (which typically
have a unitary price higher than EUR 1000 [25]).

4. Scalability: It is not only the price that limits the number of sensors that can be
deployed over a certain area; other factors must be considered as well. For instance,
adding nodes to the network should be as fast as possible, as human resources are
usually needed for this task.

5. Remote connectivity to access each node: for monitoring purposes, addressing soft-
ware failure or checking the status of the nodes, each node of the network should
be accessible remotely. Occasionally, the physical location in which the sensors are
deployed is not easily accessible to the technicians in charge of managing the sensing
nodes. For this reason, remote access to the nodes becomes crucial when deploying
a wireless network in a real-operation environment. However, it must be taken into
account that despite having remote access to the nodes, there are problems that still
must be solved physically, such as hardware failure (e.g., the microphone or the
computing unit breaks and must be replaced).

The remainder of this section explains the different elements that compose the nodes
of the proposed WASN and how have they been assembled.

3.1. Computing Unit of the Sensor

After an exhaustive evaluation of the available single-board computing units of the
market, Raspberry Pi has been selected as the main computing platform for each individual
node. Raspberry Pi meets all the requirements mentioned in Section 3 (ability to measure
continuously, price lower than EUR 100, easy deployment and enables remote connection).
A more exhaustive explanation on what platforms have been studied and discarded (such
as Hummingboard [26], Cubieboard5 [27], Jaguar One [28], Banana Pi [29], PcDuino4 [30]
or Beaglebone Black [31]) can be found in our preliminary work [16]. In general terms,
these boards were discarded either due to their lack of a WiFi module, because they had
features not required for this project (having, hence, a higher price) or because their online
support community was not as big as the one offered by the chosen computational unit.

Among the different Raspberry Pi models, Raspberry Pi Model 4B (Broadcom BCM2711,
Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz) with 4 GB RAM has been selected.
As the main storage unit, a 64 GB SD card containing Raspberry Pi OS Lite is used. This
model allows the connection of peripherals (such as microphones) through USB 3.0 connec-
tors. Moreover, as the board presents both wired (e.g., Ethernet) and wireless (e.g., WiFi or
Bluetooth) connectivity, it offers flexibility for WASN deployments in different scenarios.

The capabilities of this board enable the performance of real-time signal process-
ing [25]. To test to what extent the hardware is able of performing state-of-the-art acoustic
signal processing, the board has been evaluated with a script that performs the follow-
ing computations:
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1. Acquires acoustic samples at a rate of 44,100 Hz with a bit depth of 16 bits.
2. Every 1 s, it calculates the Equivalent Loudness Level (Leq) and calculates the spectro-

gram of the 1-second window audio.
3. After evaluating these two acoustic features, the spectrogram is used as an input of a

Convolutional Neural Network (CNN) (i.e., MobileNet V2 [32], which occupies 8.8
MB of RAM) to perform acoustic event classification.

All the enumerated steps are carried out in less than 1 s using the selected Raspberry
4 model. MobileNet V2 has been selected as the classification algorithm as it is a CNN
that has been specifically designed to be deployed in mobile or resource-constrained
environments, as in the case of a WASN. Actually, MobileNets are architectures conceived
for computer vision tasks that use depthwise separable convolutions, which are a type of
convolutions lighter than regular convolutions. Depthwise separable convolutions split
the computation into two steps: they first apply a single convolutional filter per each input
channel (R, G, B) and then a pointwise 1 × 1 convolution to combine the output of the
previous convolutions. This technique enables light-weight deep neural networks to be
built [33]. In the case of spectrograms, as R, G and B channels do not have a relevant
meaning except for visualization purposes, the spectrograms have been treated as greyscale
images by replicating the same spectrogram to the three input channels, as typically done
in the state-of-the-art audio classification tasks.

The main difference or novelty between MobileNet V2 compared to the first version
of MobileNet is the incorporation of a type of layer named “inverted residual with linear
bottleneck”. These types of layers enable us to use fewer parameters than the first version
of MobileNet [32].

3.2. Microphone Selection and Test

Three models of USB electret microphones were initially considered. An advantage of
these types of microphones—compared to other microphone types such as Micro Electro
Mechanical systems (MEMS)—is that they do not require an external Analogue-to-Digital
Converter (ADC). Moreover, as they are plug-and-play devices, they do not require the
installation of drivers. These two facts together make the set-up of sensing nodes in a
WASN easier, contributing to the scalability of the system.

The three specific models that were considered and evaluated are: Gyvazla (Gv) [34],
Sandberg streamer model 126-19 (Sb) [35] and Saramonic SR-ULM10 [36]. Nevertheless,
the SR-ULM10 was discarded because its gain cannot be adjusted, thus avoiding a proper
calibration process, which is required in this prototype. These microphones were chosen
based of technical specifications and cost per unit. While on the technical side the three
models are comparable according to their manufacturers, the price per unit varies somewhat
more. Specifically, the cost varies between EUR 10.99 and EUR 39. Furthermore, Gyvazla
microphone is the cheapest and Saramonic SR-ULM10 the most expensive. In addition,
the Sandberg streamer microphone model costs about EUR 29.

Two microphones of each model were compared to assess whether there are substantial
differences between microphones of the same model. First, they were calibrated using a
calibrator (Brüel and Kjaer 4231) emitting a 1 kHz tone at 94 dB. In order to avoid clipping,
the sound card input gain for the Gyvazla microphones was adjusted through the alsamixer,
which is a graphical mixer program that allows one to adjust the volume and set-up sound
settings in Linux. Specifically, it was set to 60% (15.0 dB) for the Gv1, and to 77% (22.5 dB)
for the Gv2. Conversely, the default input gain was used for the Sandberg microphones
(100%, −2.0 dB). Then, a calibration factor was computed for each of the four microphones,
(i.e., the number that the recorded waveform of the calibration tone should be multiplied
by to obtain 94 dB). The obtained factors are shown in Table 1.
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Table 1. Calibration factors obtained for the different microphones.

Gv1 Gv2 Sb1 Sb2

1.922717 1.733560 2.103515 1.911244

After the calibration process, different measurements were made to evaluate the
linearity of the microphones. To this end, a loudspeaker Electro-Voice (ELX200-10) was
used to emit 1 kHz tones with different reference levels, from 50 dB to 99.2 dB, in 10 dB
steps. The tested microphones together with a free-field reference microphone (G.R.A.S.
40 BF) were placed at 1.5 m from the loudspeaker. This distance was chosen following the
ISO 3382-2 [37]. Testing the linearity of microphones is important to see how they respond
regarding to the level to which they are exposed. This gives an idea of the reliability of the
measured level, regardless of whether the microphone sensitivity has been adjusted using
the typical 94 dB calibration tone at 1 kHz. The results of the test are shown in Table 2 and
pictures to show the set-up in the anechoic chamber are shown in Figure 1.
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Table 2. Microphones linearity measurements.

Reference Signal Level Tone at 1 kHz

Background Noise 50 dB 60 dB 64 dB 74 dB 84 dB 94 dB 99.2 dB

Gv1 57.2 58.3 63.0 66.2 75.7 85.6 95.6 98.2
Gv2 57.0 57.5 61.7 64.9 74.3 84.2 94.2 97.2
Sb1 34.6 49.7 60.1 64.1 74.1 84.2 94.1 98.4
Sb2 36.0 49.5 60.0 64.0 74.0 84.0 94.0 97.8

If linearity performance shown in Table 2 is compared between the two models
considering only the values above the background noise, the Sb microphone results in a
better one. While the maximum deviation obtained with the Sb model is 1.4 dB (for 99.2 dB
reference level), meaning that we measured 97.8 dB instead of 99.2 dB ; for the Gv model,
a deviation of 3 dB was measured (for 60 dB reference level), meaning that we measured
63 dB instead of 60 dB. If the results acquired between microphones of the same model
are compared, levels obtained from Gv1 and Gv2 showed differences of about 2 dB for
most of the reference levels. In contrast, the maximum difference between Sb1 and Sb2 is
0.6 dB only and just for one of the reference levels (99.2 dB). In addition, the background
noise levels measured for the Sb model are noticeably lower than those measured for the
Gv microphone. This background noise comes mainly from the electrical noise of the
microphone together with the USB adapter. After analyzing the results listed in Table 2

Figure 1. Set-up to measure the linearity of the two selected USB microphones. (a) Set-up with
the speaker, the reference microphone and the evaluated microphones in the anechoic chamber.
(b) Reference microphone (central microphone) and evaluated USB microphones (surrounding the
central microphone) in the anechoic chamber.

Table 2. Microphones linearity measurements.

Reference Signal Level Tone at 1 kHz

Background Noise 50 dB 60 dB 64 dB 74 dB 84 dB 94 dB 99.2 dB

Gv1 57.2 58.3 63.0 66.2 75.7 85.6 95.6 98.2
Gv2 57.0 57.5 61.7 64.9 74.3 84.2 94.2 97.2
Sb1 34.6 49.7 60.1 64.1 74.1 84.2 94.1 98.4
Sb2 36.0 49.5 60.0 64.0 74.0 84.0 94.0 97.8

If linearity performance shown in Table 2 is compared between the two models
considering only the values above the background noise, the Sb microphone results in a
better one. While the maximum deviation obtained with the Sb model is 1.4 dB (for 99.2 dB
reference level), meaning that we measured 97.8 dB instead of 99.2 dB; for the Gv model,
a deviation of 3 dB was measured (for 60 dB reference level), meaning that we measured
63 dB instead of 60 dB. If the results acquired between microphones of the same model
are compared, levels obtained from Gv1 and Gv2 showed differences of about 2 dB for
most of the reference levels. In contrast, the maximum difference between Sb1 and Sb2 is
0.6 dB only and just for one of the reference levels (99.2 dB). In addition, the background
noise levels measured for the Sb model are noticeably lower than those measured for the
Gv microphone. This background noise comes mainly from the electrical noise of the
microphone together with the USB adapter. After analyzing the results listed in Table 2
along with the ease of the calibration process, Sandberg streamer microphone model has
been chosen.
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3.3. Sensor Enclosure

For the enclosure of the components, a 3D box has been designed. The reason to design
a box to cover the sensing node is twofold. On the one hand, it protects the computing unit
in case of falls. On the other hand, it protects it from undesired manual disconnections of
the different components (such as the USB microphone, the SD card or the power supply)
and, moreover, protects the user from touching the computing unit when it is working at
elevated temperatures. However, designing an optimal box that enables protection without
interfering with the ventilation and heat dissipation of the computing unit is not trivial.
In this section, different designs together with their associated overheating problems and
solutions are introduced, assuming that no extra ventilation and heat dissipation was
desired due to its high interference with audio gathering, and extra consumption and cost.

To evaluate the temperature behavior of different set-ups, identical stress tests have
been carried out under the same ambient temperature (21 ◦C) which has been verified
using a DHT11 (manufactured by Sain Smart, Delaware, USA) [38] temperature sensor.
The tests, which were conducted with an exhaustive software from the stressberry (pypi
v0.3.3) [39], consisted of the following steps:

1. Measuring the temperature for 1 h without stressing the RPi (i.e., relax period).
2. Measuring the temperature for 2 h stressing the RPi (i.e., stress period).
3. Measuring the temperature for 1 h without stressing the RPi (i.e., second relax period).

Figure 2 shows the results of the stress tests conducted over the computing unit with
different set-ups (i.e., with and without heat sinks and with different covering boxes).
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Figure 2. Temperature responses in time of the RPi using different setups (heat sink and enclosure)
when performing a stress test.

The temperature of a RPi 4B without any type of heat sink (i.e., naked device) has been
taken as a reference (see Figure 3a).
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(a) (b)

Figure 3. Raspberry Pi 4B without (a) and with (b) heat sink. (a) Raspberry Pi 4B without heat sink.
(b) Raspberry Pi 4B with heat sink.

It can be appreciated that the RPi reaches 75 ◦C when it is under stress. It suffers an
increment of 54 ◦C compared to the ambient temperature. Furthermore, during the first
relax time previous to the stress, it works at 45 ◦C and, after the stress, it practically reaches
the 45 ◦C in an hour.

In order to help the RPi work under better conditions, an aluminium heat sink was
placed on top of the RPi (see Figure 3b). This heat sink could not include a fan as it would
affect the measurements of the microphones. As is known, the bigger the surface of the heat
sink, the more dissipation it shows. For this, the selected heat sink covers all the Raspberry
Pi. The results with this heat sink are shown in Figure 2. As it can be observed, it starts
with 42 ◦C as baseline temperature when it is not under stress. Practically, it is the same
initial temperature as when the RPi is naked. In the stress phase, it reaches 60 ◦C; which
means an increment of 39 ◦C regarding the ambient temperature. After the stress, after an
hour, it is capable of reaching back the 42 ◦C. Compared to the test where the RPi has no
heat sink, the heat sink achieves a reduction of 15 ◦C when stressed.

Using 3D modelling with SketchUp, multiple boxes (exposed in Table 3) have been
created. These boxes are meant to contain all the hardware inside. They have been printed
using Polylactic Acid (PLA), known for its low thermal conduction (0.13–0.16 W/m·◦C),
which enables us to keep the enclosure cold and retain the temperature. All the boxes can
be closed using a metric 4 (M4) screw.

Table 3. Name of the created boxes, printing material, dimensions and the acronym used to iden-
tify them.

Box Material Dimensions (X × Y × Z) Acronym Figure

Large Non-holed PLA 146 × 171 × 74 mm LNP Figure 4a
Small Non-holed PLA 81 × 129 × 64 mm SNP Figure 4b
Small Slot-holed PLA 81 × 129 × 63 mm SSP Figure 4c

Small Honeycomb-holed PLA 86 × 116 × 140 mm SHP Figure 4d
Small Honeycomb-holed TPU 86 × 116 × 140 mm SHT Figure 4d

The first created model had the shape of a completely hermetic box, LNP (see
Figure 4a). This box would contain the RPi device and a power connector (such as a
5V mobile charger). It has two holes; one for the microphone and another one for the wire
to power the RPi. Even though the box was functional, once printed, it was observed that
the size of each sensing node would be too big to fit an indoor environment, which could
lead to the perception of intrusion or obtrusion once deployed [3].
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(a)

(b)

(c)

(d)

Figure 4. Boxes’ designs. Perspective view of the assembled box, top view of the base and perspective
view of the cover. (a) Large Non-holed PLA box (LNP). (b) Small Non-holed PLA box (SNP). (c) Small
Slot-holed PLA box (SSP). (d) Small Honeycomb-holed PLA box (SHP) or Small Honeycomb-holed
TPU box (SHT).
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Aiming to reduce the dimensions of the box, the SNP (see Figure 4b) box was created.
In this second approach, the connector to power the RPi was placed outside the box. This
way, a wire would be connected directly to the RPi port. Thanks to these, the box contains
only the RPi device, which enables us to reduce its dimensions considerably (from 146 mm
× 171 mm × 74 mm to 81 mm × 129 mm × 64 mm). However, as it can be observed in
Figure 2, this box obtained worse thermal conditions for the RPi. For this reason, aiming
to reduce the temperature of the RPi, the SSP box (see Figure 4c) was designed. It has
the same design as the SNP box, but the cover is thinner and slot-holed. As the air flows
upwards when it is warmed, the holes are placed in the highest part of the box. Also, there
are holes at the base to enable the entrance of fresh air.

After this third design, some temperature tests revealed that the RPi has better tem-
perature conditions if it works vertically. Therefore, the SHP (see Figure 4d) was created
containing the RPi placed vertically inside the box. This box is honeycomb-holed in order
to avoid using supports while 3D printing and, therefore, avoid useless PLA and faster
printing. Furthermore, in this design, the support for the microphone is changeable, as we
noticed that printing it with Thermoplastic Polyurethane (TPU) material allows to better
adapt to the microphone to the box, compared with the same support printed with PLA.
This is thanks to the flexibility of the TPU.

The last box model is SHT (see Figure 4d), printed using a TPU, which is a thermally
conductive, electrically insulating plastic model Ice9TM Flex (4 W/m·◦C) from TCPOLY [40].
Our original hypothesis was that it would help to dissipate the temperature from the RPi
due to its thermally conductive properties. However, as shown in Figure 2, it has worse
results than the one printed with PLA.

Figure 2 illustrates the temperature of the RPi out and inside the boxes. As shown,
the SNP box (brown line) obtains the worst results, followed by the LNP box (navy line).
Actually, these two boxes reach higher temperatures than the naked RPi (grey line). This is
due to the lack of holes in the box, causing a lack of proper ventilation. The SSP box (red
line) is the first design that obtains lower temperatures than the naked RPi. Therefore, we
appreciate that the effect of holing the cover is important.

Additionally, the purple line illustrates the effect of using the same box (i.e., SSP box),
but placed vertically. Results show that the RPi temperature decreases about by 5 ◦C.
This way, authors designed the SHP box, which allows a better placement of the RPI and
more ventilation.

The last three lines of the graph obtain similar results: the green line belongs to SHT,
the orange line belongs to SHP and the pink line belongs to the RPi with the heat sink and
without any type of coverage. As can be appreciated, the effect of the boxes SHT and SHP
is almost negligible, as the temperature when protecting the RPi with these two designs
remains almost the same.

To conclude with this section, we have demonstrated that the best thermal conduction
box is the Small Honeycomb-holed. Regarding the building materials of the boxes, to choose
between using PLA or TPU from TCPOLY [40], authors considered that PLA is the cheapest
option (1 kg costs EUR 10–20, in front of EUR 203.88 of 1 kg of the TPU from TCPOLY) and
obtains practically the same results as if the RPi was with just the heat sink outside of a
box; with a difference of 2 ◦C only. For all these, the selected box is SHP.

3.4. Assembly of the Nodes

After the different components of the WASN nodes were selected, each node was
assembled to contain:

• Single-board Computer: a Raspberry Pi Model 4B of 4 GB RAM with an SD card of
64GB and a heat sink.

• Microphone: An omnidirectional electret condenser microphone [35] with a flat
frequency response between 50–18,000 Hz, a maximum sampling rate of 96 kHz/24 bit
and a Signal-to-Noise ratio (SNR) of 84 dB. The microphone is connected to the
Single-board computer using a USB 3.0 port.
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• A 3D-printed designed box: The box integrates the microphone sensor and the com-
puting unit into a single element. Additionally, it offers protection against falls or
undesired manual disconnections of the elements that compose the sensor.

• Power supply: a 5V-3A charger with USB-C connector powers the system.

Figure 5 represents a sketch of the integration of the elements that compose each node
as a low-cost sensor prototype. The characteristics of the protection box make this sensor
suitable for indoor environments.

Figure 5. Conceptual integration of the hardware elements of the sensor. The 3D model of the
Raspberry Pi has been retrieved from [41].

4. WASN Design

Once all the nodes are assembled and integrated into their boxes, there are two types
of network topologies that should be designed prior to the deployment of the network
to allow connectivity between devices. The first one is the physical topology, which
refers to the physical location of nodes in the scenario that is aimed to be sensed. This
topology will be dependant on the specific location where the network is to be deployed.
The second one is the logical topology, which refers to the architecture of the communication
mechanism for all nodes in a network. If all the potential scenarios are similar in terms
of size and distribution, this topology can be shared between different scenarios. This
section explains the design of these two types of topologies for the proposed WASN using
a real-world scenario.

Real-time acoustic mapping, which is one of the many purposes that a WASN could
have, has been selected as a tool to evaluate the proposed approach. These maps are tools to
monitor remotely the amount of sound present at different points of a specific environment.
The scenario has been tested with the proposed WASN for a relatively long period (about
1 year and 3 months). The main goal of the experiment was to monitor an area composed
of three rooms and a terrace. A sketch map of the area in which the WASN was deployed is
shown in Figure 6. In this example, the bathroom was not monitored due to privacy and
sensor proximity to water and humidity.

4.1. Physical Topology

To design the physical topology of the network (i.e., where the acoustic nodes will
be located), it must be considered that in large spaces—more than 10 m2 scenarios (e.g.,
room 1 in Figure 6)—several sensors are required, as different areas can generate diverse
pressure levels. In this case, at least one sensor per activity area (where an activity area
refers to a part of the room that usually produces a similar and meaningful type of sound,
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such as a television or a piano) in the room is required for correctly mapping the sound in
contrast of a small space (e.g., rooms 2 or 3 in Figure 6) where one microphone is enough to
capture a representative value of the sound level of the room. Although the microphone
pattern of the proposed sensor is omnidirectional, given that the node and microphone are
mounted in the protection box, it is recommended to position the microphone in corners or
walls targeting the sound activity zone.

Despite having tested the prototype in a single location, the design of the Wireless
Acoustic Sensor Network is invariant to the deployment characteristics. The only part that
is dependent on the environment is the final location of nodes in the areas to be monitored.
The design of the WASN consists of:

• Nodes: N number of sensors identical to the ones described in Section 3.4, located in
strategical places to sense the environment. In the proposed prototype, uninterrupt-
edly, each node sends the acoustical level measured over a programmable period of
time to the core of the network.

• Core: A single Raspberry Pi 4B per network that acts as a gateway. The purpose of this
node is to receive data from all the synchronized nodes and upload them to the cloud,
where a graphic representation of the acoustic map could be visualized. Centralizing
the nodes allows fast remote management accessing through the core. It is important
to place the core next to the router of the indoor space and do a wired connection to it
to minimize connectivity problems. This node does not compute any measurement by
itself, and it does not need any microphone.

Figure 6. Example of WASN deployment in an indoor space.

An optimized database for Internet of Things (IoT) is required to save all the nodes’
data in each programmable period. A potential IoT platform could be Thingspeak, imple-
mented and used in this project, which is an IoT analytics platform service that allows the
user to aggregate, visualize and analyze live data streams in the cloud [42].

4.2. Logical Topology

As explained in Section 4.1, nodes send data to the core node. As wireless modules,
RPi includes Bluetooth and WiFi 2.4 GHz and 5 GHz modules. To choose one or another,
the distances and difficulties different nodes may face in order to send the data must be
considered. As this work focuses on indoor environments, these difficulties will be long
distances and walls of different materials and thicknesses. Taking that in mind, WiFi has
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been selected due to its bigger range of connectivity compared to the Bluetooth module
integrated into the RPi. Additionally, the 2.4 GHz band has been chosen over the 5 GHz one,
given that the connectivity range from the first one is 46 m (150 feet) in front of the 15 m
(50 feet) offered by the second one. These distances are valid for indoor environments [43].

There are two ways to send data to the core:

• Direct connection: Each node connects directly to the core and sends its data.
• Using other nodes: A node uses the connectivity of another node to send its data.

This topology is called a mesh connectivity [44]. With n being the number of devices
in a mesh network, then each device must be connected to n − 1 number of devices.
The total number of links can be calculated using the following equation:

Total number of links, L =
n · (n − 1)

2
(1)

In such networking, the nodes can create and update their links automatically. There-
fore, in case a route to a node becomes disabled, the network will automatically rebuild
a new route through another radio node so that the information can still reach its
destination [45].

The connectivity performance of the WASN was tested according to the following
configuration. The nodes were programmed to compute the sound equivalent level (Leq)
every 20 s. Equation (2) shows how to calculate the Leq. In the equation, Leq represents
the sound equivalent level (in dBs), p0 is the reference pressure level (which was set to
20 µPa), pA are the samples of the measured pressure levels, and N are the number of
samples—which depend on the sampling rate and the amount of time of equivalent level
to be calculated.

Once the Leq values of 20 s were calculated in each node of the WASN, the level (in
dB) was sent to the core. Then, the core aggregated the values from the five nodes and sent
them to the thingspeak cloud platform.

Leq = 10 · log

[
1
N

·
n=N

∑
n=0

(pA(n))2

(p0)2

]
(2)

A first deployment of the WASN was carried out following the direct connection
strategy. In this strategy, all the nodes send their data directly to the core, without interme-
diate steps.

Due to the architectonic features of the scenario in which the system was deployed,
some frames were lost when using this approach, especially the nodes S4 and S5, which are
the ones that are physically located further from the core. Moreover, the connection with the
node S5 was lost after 12 days of operation. Therefore, a mesh connection was implemented.
We used [46] to configure such a mesh in the RPis. Figure 7 shows a schematic of the logical
network configuration. As it can be seen, the mesh uses the network 192.168.199.0/24
where each node has the IP 192.168.199.X, where X represents the node number plus 100.
On the other hand, the core has the IP 192.168.199.1 inside the meshed network.

On the private network created by the router, the core has a DHCP IP (in Figure 7,
192.168.0.47). This network (192.168.0.0/24) contains the rest of the devices (such as
computers, smartphones or tablets). Therefore, the mesh network is only available and
used by the nodes of the WASN (i.e., RPis). In case a device outside the meshed network
wants to communicate with a RPi inside the meshed network, it has to do it through the
core device.



Sensors 2022, 22, 7032 15 of 23

Figure 7. Example of a logical network design with five nodes (in red), one core (in yellow) and one
router (in green).

When a node needs to send data to the core, it will jump from one node to another
one as many times as needed to reach the core. For instance, in Figure 7, S4 does not have
direct connection to the core, but it can reach the core using multiple paths, the fastest ones
being the following four: 1. S4-S2-S1-Core 2. S4-S5-S3-Core 3. S4-S1-S3-Core 4. S4-S1-Core

The fastest path is the fourth option, as it only has two jumps to reach the core.
The third one will probably not be used, as S1 will receive the data and will send them
directly to the core. Although, in case S1 does not have connectivity to the core, it can send
the data to S3. Once the core receives the data, it will forward it to the router and, lastly,
the router will forward it to the Internet.

The percentage of frames received by the platform during the experimental evaluation
in the real-world deployment is shown in Table 4. It can be observed that the mesh strategy
achieves better results (Table 4) than the direct connection, with a percentage of received
frames higher than 98% for S5 and higher than 99% for the other nodes. Nevertheless,
the connection with S5 was lost after 9 days of operation. To solve that issue, a weekly
reboot of S5 was programmed using crontab. This way, the loss of connectivity of S5 was
avoided and a percentage of 99% was achieved as it can be observed in the third row of
Table 4.

Table 4. Percentage of frames received by the Thingspeak platform from the nodes (S1–S5) of the
WASN. The first row corresponds to the percentages obtained with a direct connection between the
nodes and the cores. The second row depicts the values with the mesh connection and the third
row shows the percentages achieved when a weekly reboot of S5 was programmed. The values in
parentheses correspond to the number of days sensor S5 sent data before losing the connection.

Days Frames Received in Thingspeak (%)
S1 S2 S3 S4 S5

Direct WiFi 199 98.26 97.42 99.27 86.25 76.97 (12 d)
WiFi mesh 90 99.37 99.22 99.95 99.95 98.28 (9 d)
WiFi mesh + reboot S5 40 99.97 99.95 99.81 99.87 99.07

5. WASN Deployment Methodology

This section details the steps that must be followed for the installation of the proposed
WASN once the analysis of the area to be monitored has been carried out and the position
and number of acoustic nodes have been determined. Specifically, this section will explain
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how to (1) initially deploy an acoustic wireless sensor network and (2) add more nodes to
an active system.

5.1. Installation of the Core Node

As the core acts as the gateway between all the sensor nodes of the local area network
and the Internet, it has to be configured first to establish the connection to the rest of the
sensors in a later time. To do so, the next steps must be followed:

1. Core assembly: First of all, the heat sink must be integrated to the Rpi. Then, the Rasp-
berry must be placed in the designed box. As this is the core node and will only be
used as a gateway, this node will not need a microphone.

2. Core wiring: the Raspberry should next be plugged into a power source near the
router to enable an Ethernet connection between the Raspberry and the router.

3. Connection to Ethernet: Once done, an Ethernet wire should be passed through a
hole in the cover of the box and, next, must be connected to the RPi. The box can be
closed with a M4 screw.

4. Connection to the mesh: The core must, then, create a private network and connect
to it through WiFi (following the steps of [46]). Additionally, a static IP must be
configured, enabling the nodes to send data to it.

5. Connection to an external database: The core node must be configured to send
processed data to an external database (e.g., Thingspeak). The bytes sent to the
cloud would depend on the application. For the proposed project in this paper (i.e.,
the generation of a noise map), the bytes to be sent would be the Leq levels calculated
in the rest of the nodes and a timestamp.

5.2. Installation of New Nodes in an Active System

The process to add nodes to the acoustical network is systematic and can be done
whenever a new sensor is required. Note that the system needs a minimum of one node to
work. Steps to add a node are described below:

1. Node assembly: Place the heat sink on top of the Raspberry, connect the microphone
to the central unit and put both components inside the box. The assembly must look
as it does in Figure 5.

2. Node wiring: Plug the node to the power source. The box can now be closed with a
M4 screw.

3. Static IP configuration: connect the running node to a computer using an Ethernet
cable to set up the WiFi mesh with an unused IP and static DHCP and obtain the WiFi
MAC address (following the steps of [46]).

4. Update the core node: add the MAC address of the node to the configuration file of
the core so it recognizes the new node as part of the mesh using its MAC.

5. Microphone calibration: calibrate the microphone to 1 kHz, 94 dB and set the cali-
bration factor to obtain a referenced sound pressure level.

6. Discussion

This section aims at comparing the proposed approach to WASN designed in other
works. For this purpose, Table 5 illustrates the main differences between the sensing
nodes between three big research projects (FIWARE-based WASN [9], SONYC [23] and
MESSAGE [8]) and the approach presented by the authors, first in the previous work of [16]
and in the present work.
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Table 5. Comparative table of different WASNs. The last row represents the approach proposed in
this paper. The last column indicates the price per node of each node of the network. Unavailable
(N.A.) or missing prices have not been included in the table.

WASN Microphone Connectivity Computing
Unit Power Price

MESSAGE Condenser ZigBee Microcontroller D Battery or N.A.
2013 [8] microphone + GPRS PIC18F4620 external power

(around EUR 5) connection

SONYC Custom WiFi direct Tronsmart 120 V outlet EUR 81
2017 [23] MEMS connection MK908ii + PSU

to router (EUR 50)

P. Arce et al., miniDSP WiFi mesh Raspberry Pi Battery EUR 191
2021 [9] UMIK-1 OLSR 3B (EUR 20)

(EUR 140) protocol (EUR 31)

Ginovart et al. LYM00002 WiFi direct Raspberry Pi 5 V–3 A EUR 78
approach (EUR 11) connection 3B+ charger
2021 [16] to router (EUR 37) (EUR 12)

Proposed Sandberg WiFi mesh Raspberry Pi 5 V–3 A EUR 120
approach 126-19 HWMP 4B-4GB charger

2022 (EUR 29) protocol (EUR 64) (EUR 12)

6.1. Microphone

The type of microphone mostly used for acoustical WASN is condenser or condenser-
electret according with the comparison made in Table 6. The microphone integrated in
the presented work increases the frequency response from previous prototypes [16] and
enables to obtain more frequency resolution for event detection algorithms meanwhile has
less deviation in SPL measurements. It is observed in Table 6 that the author proposal is the
only plug-and-play electret microphone that offers calibrated SPL values and has a lower,
price with a cost of EUR 29, compared to the other plug-and-play microphone [9] with
a significant cost of EUR 140 as of September 2022. In addition, if the sizes of these two
microphones is compared, the one selected in this work is significantly smaller, resulting
in a smaller sensor. Another aspect to take into account is the signal-to-noise ratio (SNR)
of the microphones. Furthermore, the SNR obtained by the proposed microphone is low
enough so as not to mask the sounds to be monitored. Even though MEMS microphone
technology has improved over the year, one of the main problems with this typology of
microphones is the electrical background noise that they generate (see [47]).

Table 6. Comparative table of different microphones implemented in each WASN. The last row
represents the approach proposed in this paper.

WASN Microphone Frequency
Response Calibration Plug and

Play

MESSAGE 2013 [8] Condenser 20 Hz–20 kHz Yes No

SONYC 2017 [23] MEMS 10 Hz–10 kHz Yes No

P. Arce et al., 2021 [9] Electret 20 Hz–20 kHz No Yes

Ginovart et al., 2021 [16] Condenser 20 Hz–16 kHz Yes Yes

Proposed approach Electret 50 Hz–18 kHz Yes Yes
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6.2. Connectivity

Regarding connectivity, it is worth mentioning that our previous approach [16] and the
approach presented in this work are the only ones from the table designed to be deployed
in indoor environments. The rest of the approaches were designed for outdoor WASNs.

As it can be observed in the table, MESSAGE [8] is the only one that uses ZigBee
to connect the nodes. Such connectivity protocol can also be used for indoor spaces.
However, adding such a protocol involves using an external antenna, which would increase
the cost of the proposed nodes. Moreover, ZigBee is a widely used protocol in indoor
spaces (mainly in home automation), but each maker can use it in different ways, causing
incompatibilities among them. Furthermore, ZigBee has a 256 Kbps throughput, compared
to the 600/54 Mbps throughput that can be achieved using WiFi [48]. For these reasons,
authors consider WiFi a better option, as it is integrated into the Raspberry Pi computing
unit. This way, no additional costs per node are required. Considering that there is a
linear relation between the cost of the nodes and the final cost of the WASN, reducing
costs per node is of great importance in terms of scalability. Additionally, the selected
connectivity technology (WiFi) enables achieving faster throughput, which is beneficial for
real-time applications.

Regarding the comparison of direct WiFi connections to meshed connections, Table 4
has demonstrated that there is a better performance when using a mesh network, compared
to a direct WiFi connection. Therefore, the presented meshed approach is more suitable for
the proposed application than the approaches designed for the SONYC project [23] and
our previous approach [16].

The work presented by Arce et al. [9] uses a mesh connection as well. In this case, they
use the Optimized Link State Routing (OLSR) protocol. In the presented approach, we
chose to use the Hybrid Wireless Mesh Protocol (HWMP). Both approaches are standard
and widely used mesh protocols [49]. As it can be seen in Table 4, the HWMP protocol has
enabled us to obtain good results as all the nodes of the network were able to send data
frames with more than 99% of success. As the HWMP protocol was working correctly, no
other mesh protocols were experimentally evaluated.

6.3. Computing Unit

As can be observed in the table, the work that differs more in terms of computing unit
is the MESSAGE approach, which uses a light PIC microcontroller instead of a single-board
computer as the Raspberry Pi or the Tronsmart. In this sense, although the MESSAGE
computer platform is the one that offers the cheapest computing unit, it would be unable
of performing expensive (in terms of hardware) computations in the edge such as acoustic
event classification using machine learning or deep learning approaches using its 64 KBytes
of program memory and 3968 Bytes of data memory. Considering that the scope of
the MESSAGE project was to measure noise levels instead of performing acoustic event
classification in the edge, the usage of such a light computing unit was justified for their
approach, but is not sufficient for the scope of the current paper.

Raspberry Pi model 3B, chosen by the FIWARE-based platform [9], enables the perfor-
mance of acoustic signal processing and classification in the edge. Actually, in previous
works (i.e., [16]), the authors of the current paper also chose to use a Raspberry Pi model
3B+, which is a very similar on-board computer. The main difference is that while the
processor of the first one operates at 1.2 GHz, the processor of the latter one operates at
1.4 GHz. However, after performing several classification tests, we realized that upgrading
the computing unit to a newer model (Raspberry Pi model 4B with 4GB of RAM) allowed
us to obtain 50% faster classification results when using state-of-the-art deep neural net-
works (i.e., MobileNet V2 [32], which has a size of 8.8 MB) as classification algorithms,
which enabled us to reduce the acoustic window. Actually, it took 1.3 s to perform the
classification of a 4 s fragment in a Raspberry Pi Model 3B+ and 0.7 s to do the same action
using the same algorithm in a Raspberry Pi Model 4B. These timings correspond to an
algorithm that, from a 4 s raw audio fragment, calculates the spectrogram of the audio file,
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normalizes it and passes it through a MobileNet V2 convolutional neural network stacked
with a decision tree. More details regarding the algorithms can be found in [25].

Compared to the computing unit used in SONYC [23], the Tronsmart MK908ii device
has 2 GB of RAM, compared to the 4GB of the Raspberry Model 4B used in this project.
For this reason, authors believe that the computing unit presented in this paper (Rasp-
berry Pi Model 4B with 4GB of RAM) is the most suitable for a real-time acoustic event
classification application.

6.4. Power

Regarding the powering of the system, although indeed the battery-based systems
can be physically deployed at almost any location, having to charge or replace the battery
is not convenient for a long-term deployment. This issue is emphasized when thinking
about the scalability of the system. For this reason, we think that the best way of powering
a static device is to connect it to a standard plug. In the proposed approach, the plug
could be replaced by a standard 5 V–3 A power bank if mobility was required, but due
to the need for a human interaction for charging it periodically, this powering system is
not recommended.

7. Conclusions

This paper proposes the design of an indoor WASN with distributed computational
capability to face several ambient assisted living challenges. The work has three main
focuses in its design: (1) the individual nodes of the network, which are composed of a
Raspberry Pi computing unit and a USB microphone; (2) the interconnection of the different
nodes among them using a meshed connectivity; and (3) the design of a box to cover and
protect the hardware while preventing it from overheating.

The final prototype designed satisfies the requirements initially described, and gives
the team wide research options to work in indoor environments, with coverage in sev-
eral different spaces, and with the deployment of machine learning algorithms to detect
acoustic events in real-time. The price of the design is affordable and in the criteria of
low-cost, what gives it the opportunity of having a large number of devices per home
if necessary. The connectivity is solved even in environments with low WiFi coverage,
and the microphones used have the required quality to detect events and measure Leq to
draw the sound map, as the use case presented in this work. Furthermore, the microphone
study and analysis has been conducted with more precision and detail than most of the
solutions proposed in the literature for low-cost WASN, where the acoustic quality of the
sensor was barely taken into account, prioritizing its price and assuming a change of the
device for a bad performance.

Future work directions involve replicating the experiments exposed in this paper in
multiple indoor environments with different architectural distributions to validate that
the meshed topology is valid for different locations as long as the distances explained
in Section 4 are respected. In this line, it is important to work in order to achieve the
redundancy needed for the nodes that are farther from the core, i.e., if it only has a
connection to one node and this node stops working, this failure will also have an affect
on a node that works. However, it is important to make a good selection of the placement
of each node and to assure that redundant nodes in terms of sound evaluation—in this
example—and connectivity are not used, as it will clearly affect the total cost of the WASN.
The more nodes needed to survey an area, the more expensive the WASN will be. To say
more, in the case of big spaces and, depending on the needs of sound event detection,
these can be places where with one or two nodes per floor are enough to cover the sound
topology; if the application was in a factory, for instance. In these situations, the WiFi
coverage could not be enough and other type of wireless protocol should be considered for
usage (e.g., Zigbee for medium spaces or Long Range Modulation (LoRa) for huge spaces
and buildings). The costs of displacing various nodes with WiFi in front of fewer nodes
with another type of wireless protocol should also be considered. Or, instead of adding a
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completely new wireless protocol to all the nodes, using it only in the farthest nodes could
also be a solution.

On the other hand, authors also want to discuss the algorithm that can be run in each
node. The placement of each node must be taken into account when using one algorithm
or another, because not all the rooms are used for the same purposes. To illustrate, in an
industry, there can be a room with different types of machines, another room with people
working and so on. In a closer example, in an ambient assisted living environment, such
as the example shown in this work, the sounds coming from the kitchen are clearly different
from the sounds coming from the bedroom. Therefore, each node algorithm must be trained
with the specific types of sounds that can be found in the node room. Further study should
be taken in this direction, as not every algorithm is valid for all types of sound. Some
algorithms work better with sounds that are punctual and others with prolonged sounds.

Further microphone study is required. We showed the linearity of the microphones
studied in Table 2, but the temporary drift of the microphones should also be considered.
This drift is quite important as can affect to the computation of equivalent levels. In this
sense, another relevant issue to study is the changes in the acoustic event detection accuracy
depending on the quality and the deterioration of the low-cost microphones.

Last but not least, we propose to improve the evaluation of the performance of the
network in terms of, in this example, acoustic event detection. A deep analysis of the
algorithms implemented to compute in each node has to be conducted, both in terms of
computational cost (already done in a preliminary study for this work), and in terms of
accuracy and recall. For this purpose, the final goal of the acoustic event detection has to be
set; e.g., the detection of activity in a flat, the detection of cooking in a house, the detection
of people waking up in the morning and going to bed at night. Several possible—and
powerful—applications in terms of ambient assisted living have already been tested by this
team in the past [1,12,50], some of them more focused on the algorithm design and others
more centered in the network design and distributed computing structure.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three Dimensional
ADC Analogue-to-Digital Converter
CNN Convolutional Neural Network
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
HWMP Hybrid Wireless Mesh Protocol
IoT Internet of Things
IP Internet Protocol
ISP Internet Services Providers
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LAN Local Area Network
Leq Equivalent Loudness level
LoRa Long Range Modulation
M4 Metric 4
MAC Media Access Control
MEMS Micro Electro Mechanical systems
OLSR Optimized Link State Routing
PDR Packet Delivery Ratio
PLA Polylactic Acid
PSU Power Supply Unit
RPi Raspberry Pi
SD Secure Digital
SNR Signal-to-Noise Ratio
TCPOLY Thermally Conductive Polymer
TPU Thermoplastic Polyurethane
USB Universal Serial Bus
WASN Wireless Acoustic Sensor Network
WiFi Wireless Fidelity
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