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Abstract: The model, Transformer, is known to rely on a self-attention mechanism to model distant
dependencies, which focuses on modeling the dependencies of the global elements. However, its
sensitivity to the local details of the foreground information is not significant. Local detail features
help to identify the blurred boundaries in medical images more accurately. In order to make up for
the defects of Transformer and capture more abundant local information, this paper proposes an
attention and MLP hybrid-encoder architecture combining the Efficient Attention Module (EAM) with
a Dual-channel Shift MLP module (DS-MLP), called HEA-Net. Specifically, we effectively connect
the convolution block with Transformer through EAM to enhance the foreground and suppress
the invalid background information in medical images. Meanwhile, DS-MLP further enhances the
foreground information via channel and spatial shift operations. Extensive experiments on public
datasets confirm the excellent performance of our proposed HEA-Net. In particular, on the GlaS and
MoNuSeg datasets, the Dice reached 90.56% and 80.80%, respectively, and the IoU reached 83.62%
and 68.26%, respectively.

Keywords: attention; MLP; Transformer

1. Introduction

Medical image segmentation is a fundamental and critical task in computer-aided
diagnosis, which aims to accurately identify the target organ, tissue, or lesion area at the
pixel level. As opposed to images of natural scenes, medical images are often complicated in
texture and limited by imaging technology and equipment. Although the research [1,2] on
artificial intelligence-based enhanced magnetic resonance imaging has made contributions
to medical image processing, medical images are still characterized by noise interference,
blurring, and are difficult to judge. Moreover, medical image labeling intensively depends
on the cognition and experience of the medical experts, which results in significant labeling
errors and causes there to be few annotated data records available for training. From
the characteristics mentioned above of blurred edges, less training data, and inevitable
labeling errors in medical images, the auxiliary diagnosis system based on traditional image
segmentation algorithms is not enough to meet the requirements of clinical applications.

In recent years, CNN has gradually become a mainstream image-processing method.
Subsequently, researchers proposed a full convolutional neural network (FCN) [3] and
U-Net [4] for image segmentation, with the latter being more widely used. Due to its
remarkable performance in image segmentation, U-Net is used in the segmentation of
the eye [5], heart [6,7], liver, brain [8], skin [9], prostate [10], breast, and other organs.
Relying on U-Net, researchers have made great strides in practical application and network
performance, such as ANU-Net [11], DIU-Net [12], AttUNet [13], MRUNet [14], HDC-
Net [15], and FAC-Net [16]. Although U-Net [4] and its derived models have made great
achievements in the field of medical image segmentation, they all face the inevitable
problem similar to CNN models: a lack of long-term global correlation modeling capability.
The main reason is that CNN simply extracts local information and cannot effectively
measure global correlation.
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Much recent work has attempted to address this problem by using Transformer. Trans-
former is a model based on self-attention (SA). SA’s ability to model the dependencies
between all of the input elements means that Transformer can handle global long-term
dependencies. Some recent work has yielded satisfactory results, such as that of Chen et al.,
who first proposed the Transformer architecture TransUNet [17] for medical image segmen-
tation. It uses CNN to extract features and inputs the extracted features into Transformer
for long-range dependency computation. Zhang et al. proposed TransFuse [18] based on
ViT [19], which integrates features extracted from Transformer and CNN. Valanarasu et al.
proposed MedT [20] based on Axis-attention [21], which proved that Transformer could be
applied to small datasets. Since it is difficult to distinguish the boundary of the foreground
area of medical images, the local detail information is also important to the segmentation
result. However, Transformer focuses on extracting global information while weakening
local information, so it also has some shortcomings in the task of medical image segmenta-
tion. How to properly strengthen foreground information, suppress useless background
information, and how to better attain the joint modeling of local and global features have
become the focus of our research.

To solve the above problems, we designed a new attention mechanism, EAM, and pro-
posed DS-MLP. We used EAM to effectively connect the convolution block to Transformer.
EAM attention enhances the model’s perception of the boundary of the sample foreground
region and weakens the background information, thus providing richer foreground infor-
mation for the global modeling of Transformer. We further propose DS-MLP to strengthen
the acquired features and obtain more significant coding ability for our model.

We summarize the contributions of this paper as follows:

(1) We propose an Efficient Attention Module (EAM) that enhances the foreground and
suppresses invalid background information in medical images by performing feature
refinement at the channel and spatial level;

(2) We propose a Dual-channel Shifted MLP module (DS-MLP), which can further en-
hance foreground information via channel and spatial shift operations.

We briefly review the related network models in Section 2. The third part introduces
the general framework of our network and the details of associated modules. The fourth
part explicates the datasets and indicators used. The fifth part presents our experimental
results and experimental analysis. The sixth part is the conclusion.

2. Related Work

CNN uses convolution as a primary operator to collect the local features and fil-
ter images in a sliding window. Typical networks in image segmentation are encoder-
decoder-based models, such as R2U-net [22], U-Net [4], DenseUNet [23], UNet++ [24],
ResUNet++ [25], etc. They have gradually dominated the field with their excellent per-
formance. However, the local features collected by convolution alone are not enough to
distinguish the foreground information from background information in medical images.

In recent years, the attention mechanism has been proved to be a potential means of
enhancing deep CNN. Since then, researchers have proposed a variety of attention modules
to strengthen the capability of a convolutional neural network. For example, SENet [26]
can adaptively adjust the feature response values of each channel and model the internal
dependence between the channels. BAM [27] infers attention maps along two different
paths (channels and spaces) and embeds them in each bottleneck block. CBAM [28]
provides a solution to embed channel and spatial attention submodules sequentially. To
avoid the neglect of cross-dimensional interaction, TAM [29] considered dimensional
correlation by rotating the feature mapping. However, existing attention modules are
composed of multiple layers of convolution or pooling, which inevitably increases the
complexity of the module.

Natural Language Processing (NLP) was the first field to apply the Transformer
architecture. Researchers applied Transformer to computer vision joining the popularity
of Transformer with NLP applications. Most of the networks used for medical image
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segmentation are based on hybrid architectures of Transformer and CNN. For example,
Gao et al. proposed UTNet [30], which applied self-attention modules to the encoder
and decoder to obtain long-term dependence relations of different scales at the lowest
cost. The UCTransNet [31] proposed by Wang et al. utilized the CTrans module as a skip
connection to solve the problem of the semantic gap. There are also architectures based on
pure Transformer, such as Swin-Unet [32] proposed by Cao et al., where each module of
the network is built based on the Swin Transformer block [33].

CNN can only simply extract local information, but cannot effectively measure global
relevance. Transformer mainly models the global context of an image, which has limited
awareness of local features. Since it is difficult to distinguish the boundary of the foreground
area of a medical image, the local detail information is also important to the segmentation
result. Based on this, we propose HEA-Net. In our approach, we make use of the attention
mechanism to effectively connect the convolution blocks with Transformer to form a
powerful, joint local and global model.

3. Methods

The overall architecture of the network is shown in Figure 1. The network consists
of four parts: encoder, skip connection, bottleneck block, and decoder. The encoder uses
EAM and convolution layers for feature extraction. As shown in Figure 1, EAM enhances
the foreground and suppresses the invalid background information in medical images
by performing feature refinement at the channel and spatial levels. In order to provide
the decoder with more refined foreground information, DS-MLP further enhances the
foreground information via the channel and spatial shift operations and embeds it into the
bottleneck block. The skip connections and decoders are aligned with UCTransNet [31].

Figure 1. The architecture diagram of HEA-Net.
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3.1. Efficient Attention Module (EAM)

Medical research in recent years has shown that the early treatment of most diseases
largely depends on the quality of lesion segmentation. However, the exceptionally high
similarity between the diseased tissue and the surrounding tissue makes the edges blurred
and not easily recognized by the naked eye. This section introduces the EAM module, which
can adequately detect and segment the diseased tissue margins and nuclear boundaries.

As shown in Figure 2, the EAM module inputs feature maps into the two branches to
estimate the weights of channel dimension and spatial dimension, respectively. In terms of
channel dimension, the scale factor (γ) in batch normalization (BN) [34] assigns a unique
weight to each channel in the input feature map to extract different feature information
from each channel. The weights are calculated as follows [35]:

ωγ =
γi

∑j=0 γj
, (1)

where γ is the scale factor; i and j are indexes over the channel dimension. Therefore, the
calculation formula for the channel dimension is as follows:

ωC = sigmoid(ωγ ⊗ BN(ω)), (2)

where ⊗ denotes the element-wise multiplication; BN denotes batch normalization; and
ω ∈ RC×H×W represents the input image.

Figure 2. Efficient Attention Module.

In the spatial dimension, the minimum energy function [36] within a single channel
is used to estimate the weight of each neuron within the spatial dimension of the image
to extract the edge information of the lesion area and nucleus. The minimum energy
function [36] was proposed by Yang et al. By summarizing some of the neuroscience
findings, they found that the neurons with a large amount of information can show different
firing patterns from the surrounding neurons. They define an energy function for each
neuron by measuring the linear separability between one target neuron and other neurons.
Assuming that all of the pixels on a single channel follow the same distribution, the mean
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and variance of all neurons can be calculated and reused for all neurons on that channel [37].
Finally, a minimum energy function is obtained:

e∗t =
4
(
σ̂2 + λ

)
(t− µ̂)2 + 2σ̂2 + 2λ

, (3)

where µ̂ = 1
M ∑M

i=1 xi and σ̂2 = 1
M ∑M

i=1(xi − µ̂)
2
; M = H ×W is the number of neurons

on that channel; t is the target neuron; and λ is a hyperparameter. The importance of
each neuron can be obtained by 1

e∗t
. In the experiment, λ is set to 0.0001. Therefore, the

calculation of the spatial dimension is as follows:

ωS =
1
e∗t

(4)

To obtain the importance of each neuron in the channel dimension and the spatial
dimension simultaneously, we combined the weight of the channel dimension with the
weight of the spatial dimension by multiplying the elements. The output of the EAM
module can be expressed as:

E = sigmoid(ωC ⊗ωS)⊗ω, (5)

where ⊗ denotes the element-wise multiplication and ω ∈ RC×H×W represents the in-
put image.

3.2. Dual-Channel Shift MLP Module (DS-MLP)

The spatial shift MLP [38] module adopts spatial shift operations to realize the commu-
nication between patches. However, the effect of feature enhancement using only spatial
shift operation is weak, and Global Maximum Pooling (GMP) can collect more salient
features. The DS-MLP module implements further feature enhancement using space shift
operations and channel shift operations. The complete structure of the DS-MLP module
is shown in Figure 3, and the number of channels and resolution of its output and input
feature map remain unchanged.

Figure 3. Dual-channel Shift MLP module.

Given an input feature map T ∈ RW×H×C, T is divided into two parts along the
channel dimension, represented by T1 and T2, respectively, T1, T2 ∈ RW×H× C

2 :

T1 = T
[

:, :, 1 :
C
2

]
, T2 = T

[
:, :,

C
2
+ 1 : C

]
, (6)

where C indicates the number of channels.
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We carried out two different shift operations for T1 and T2 to achieve better feature
enhancement, namely SS(·) and CS(·). SS(·) performs the same spatial shift operation
as [38]. That is, T1 is equally divided into four parts along the channel dimension and
moved in four directions:

T11[1 : w, :, 1 : c/4]← T11[0 : w− 1, :, 1 : c/4], (7)

T12[0 : w− 1, :, c/4 + 1 :c/2]← T12[1 : w, :, c/4 + 1 : c/2], (8)

T13[:, 1 : h, c/2 : 3c/4]← T13[:, 0 : h− 1, c/2 : 3c/4], (9)

T14[:, 0 : h− 1, 3c/4 : c]← T14[:, 1 : h, 3c/4 : c], (10)

where w is the width of the feature map; h is the height of the feature map; and c is
the number of channels. CS(·) performs the channel shift operation on T2. Specifically,
we used GMP to extract dominant features without dimensionality reduction, then used
one-dimensional convolution to carry out channel shift operation to realize cross-channel
information interaction, and finally, the final channel shift descriptor is generated by
sigmoid function and residual connection; the formula is as follows:

T′2 = sigmoid(conv(GMP(T2)))⊗ T2, (11)

where conv denotes a one-dimensional convolution of kernel size 3; GMP denotes global
max pooling; and ⊗ denotes the element-wise multiplication. Then, the two feature maps,
T1 and T2, obtained through different operations are fused using the Split Attention (SA)
module [39] to achieve feature enhancement.

In the SA module, T′1, T′2 are reshaped into matrices {Tk}2
k=1. We used [t1, t2, . . . , tS] to

represent the S feature maps with a size of N × C, where N is the number of patches and C
is the number of channels. The average value is taken:

α =
S

∑
s=1

1tS, (12)

where 1 ∈ Rn is all the n-dimensional row vectors of 1s, α ∈ RC. Generated by a series of
MLPs and activation functions:

α̂ = MLP2(GELU(MLP1(α))), (13)

where α̂ ∈ RC. Further processing along one dimension with softmax function the following
is obtained:

α = so f tmax(α̂), (14)

where α ∈ RC. The workflow of the SA module is shown in Figure 4, and the output of the
SA module can be expressed as:

T̂ = t′ ⊗ t, (15)

where⊗ denotes the element-wise multiplication; t is the output of the reshaping operation;
t′ is the output of the un-squeezing operation.

Finally, the output of the DS-MLP module can be expressed as:

T = MLP
(
T̂
)
, (16)

where T̂ is the output of the SA module.
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Figure 4. Split Attention module.

3.3. Channel-Wise Cross Fusion Transformer (CCT)

In the skip connection part, this paper uses the CCT module in UCTransNet (Figure 1) [31].
This module can not only fuse features from different scales in the encoder but also ex-
change information across channels. The output of the CCT module is:

MCAi =
(

CA1
i + CA2

i + . . . + CAN
i

)
/N, (17)

Oi = MCAi + MLP(Qi + MCAi), (18)

where CAi is a cross-attention (CA); N is the number of heads; Oi is the output of the
CCT module; Qi = TiWQi , WQi ∈ RCi×d; d is the patch numbers; and Ci are the channel
dimensions of the four EAM modules. Layer normalization (LN) is omitted in Formula (18),
and the Lth layer CCT module can be constructed by repeating the formula (18). In the
experiment, N and L are both set to 4.

3.4. Decoder

In the decoder, we use the Channel-wise Cross Attention (CCA) module [31] to fuse
the semantic features between the output of the CCT module and the upsampling. The
CCA module can filter the features generated by the Transformer and reduce the ambiguity
of the decoder features. The detailed structure of CCA is shown in Figure 5.

Figure 5. Channel-wise Cross Attention module.
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4. Experiments
4.1. Datasets

GlaS [40] is a glandular segmentation dataset from colon tissue images. There were
165 images in this dataset, including 85 in the training set and 80 in the test set. These
images are sections of colorectal adenocarcinoma. The slides were processed on different
occasions in the laboratory, and each slide belonged to a different patient.

MoNuSeg [41] is a multi-organ nuclear segmentation dataset. The training set of this
dataset has 30 images with 21,623 independent nuclei annotated. These images contain
seven organs: stomach, prostate, liver, colon, bladder, kidney, and breast. The test set of
this dataset has 14 images containing the seven organs of the brain, breast, lung, prostate,
bladder, colon, and kidney. The lung and brain tissue images are unique to the test set,
making testing more challenging.

4.2. Evaluation Metrics

The experiment uses the Dice coefficient (Dice) and intersection ratio (IoU) to evaluate
network performance. These two indicators are related to four values, namely TP, FP, TN,
and FN. TP indicates that the predicted result is the same as the actual result, and both
are positive, meaning that the prediction is correct. FP implies that the prediction result is
positive, but the actual value is negative, indicating that the model misjudges a negative
value as a positive value and the model predicts incorrectly. TN demonstrates that the
prediction result is the same as the actual, and both values are negative, indicating that the
model predicts correctly. FN demonstrated that the prediction result is negative, but the
real value is positive, indicating that the model misjudges a positive value as a negative
value, and the model predicts incorrectly. The calculation formulas of the Dice and IoU
indicators are as follows:

Dice =
2TP

2TP + FP + FN
, (19)

IoU =
TP

TP + FP + FN
(20)

4.3. Implementation Details

We used flipped (vertical and horizontal) and rotated (random) forms of online data
augmentation to avoid overfitting. Our proposed HEA-Net is not trained with any pre-
trained weights. We set the input resolution size of GlaS to 224 × 224, the input resolution
size of MoNuSeg to 512 × 512, and the batch size to 4. To achieve fast convergence when
training the model, we used the Adam optimizer with an initial learning rate set at 0.001.
The loss function in which we trained the network employed a combined cross-entropy loss
and dice loss. All of our baselines were trained with the same settings and loss function.

5. Results
5.1. Comparative Experiment

The experimental results on the two datasets are shown in Tables 1 and 2. As shown in
Table 1, the UNet-based approach still has a good performance, with UNet++ and MRUNet
outperforming MedT on GlaS. However, our approach is significantly superior to both the
UNet-based and the Transformer-based methods.

In the GlaS dataset, Dice and IoU reached 90.56% and 83.62%, respectively, obtaining
the best Dice and IoU. We show the qualitative comparison results in Figure 6. It can be
seen that: (1) UNet is more likely to cause over-segmentation or under-segmentation (for
example, line 1, line 2, and line 4). (2) In UCTransNet, these phenomena are improved
with Transformer. This shows that the Transformer-based hybrid model has strong global
context modeling ability. However, due to Transformer’s weak local modeling ability, it can
be seen from Swin-UNet’s forecast segmentation diagram that its segmentation contour is
relatively rough. (3) Compared with other models, the segmentation effect of HEA-Net is
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better. Its segmentation profile is also smoother. It can accurately identify the edge of the
lesion tissue (for example, the first and fourth lines).

Table 1. Comparative experimental results on GlaS datasets. Network results with “*” are derived
from [31]. The superscript “1” indicates the best experimental result.

Method Dice (%) IoU (%)

U-Net * (2015) 86.34 76.81
UNet++ * (2018) 87.07 78.10
AttUNet * (2018) 86.98 77.53
MRUNet * (2020) 87.72 79.39

UTNet (2021) 83.05 72.32
MedT * (2021) 86.68 77.50

Swin-Unet * (2021) 88.25 79.86
UCTransNet (2021) 89.54 82.26

HEA-Net (Ours) 90.56 1 83.62 1

Table 2. Comparative experimental results on MoNuSeg datasets. Network results with “*” are
derived from [31]. The superscript “1” indicates the best experimental result.

Method Dice (%) IoU (%)

U-Net * (2015) 73.97 59.42
UNet++ * (2018) 75.28 60.89
AttUNet * (2018) 76.20 62.64
MRUNet * (2020) 77.54 63.80

UTNet (2021) 78.35 64.74
MedT * (2021) 79.24 65.73

Swin-Unet * (2021) 78.49 64.72
UCTransNet (2021) 79.51 66.15

HEA-Net (Ours) 80.80 1 68.26 1

Figure 6. Qualitative results on GlaS dataset.

In the MoNuSeg dataset, Dice and IoU reached 80.80% and 68.26%, respectively. As
shown in Figures 7 and 8, we offer the network segmentation results based on UNet and
Transformer. It can be seen from the figure that: (1) UNet still has some cases of misclassify-
ing background pixels as foreground pixels (for example, the first line of Figure 7). (2) The
Transformer hybrid model ameliorates some of the incorrect predictions. However, Trans-
former’s poor sensitivity to local information is at a disadvantage for nuclear segmentation
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(see lines 1 and 3 in Figure 8). (3) Compared with other models, HEA-Net can capture the
nucleus better.

Figure 7. Qualitative results of MoNuSeg dataset based on UNet. In the red box are the parts with
significant differences in the segmentation results of each network.

Figure 8. Qualitative results of MoNuSeg dataset based on Transformer. In the red box are the parts
with significant differences in the segmentation results of each network.

5.2. Ablation Studies

To intuitively demonstrate the relative contribution of each module, we conducted
ablation experiments on the GlaS and MoNuSeg datasets. We compared our model to the
baseline (UCTransNet). As you can see from Tables 3 and 4, both EAM and DS-MLP are
indispensable, as removing either of them can result in network performance degradation.
In addition, to demonstrate the critical role of the BN layer in the EAM module in our
model, we included Baseline+EAM (without BN) in the ablation experiment. As shown in
Tables 3 and 4, the EAM with a BN layer performs better than the EAM without it. This is
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because the channel weights generated by the BN layer can highlight the importance of
individual channels.

Table 3. Ablation experiments on GlaS datasets. The superscript “1” indicates the best experimen-
tal result.

Method Dice (%) IoU (%)

Baseline (UCTransNet) 89.54 82.26
Baseline + EAM (without BN) 87.72 79.51

Baseline + EAM 89.86 82.48
Baseline + DS-MLP 90.20 83.04

Baseline + EAM + DS-MLP (Ours) 90.56 1 83.62 1

Table 4. Ablation experiments on MoNuSeg datasets. The superscript “1” indicates the best experi-
mental result.

Method Dice (%) IoU (%)

Baseline (UCTransNet) 79.51 66.15
Baseline + EAM (without BN) 77.99 64.82

Baseline + EAM 80.20 67.57
Baseline + DS-MLP 80.41 67.51

Baseline + EAM + DS-MLP (Ours) 80.80 1 68.26 1

On the GlaS dataset, Dice and IoU are 1.02% and 1.36% higher than the baseline
(UC-TransNet), respectively. As shown in Figure 9, our model has remarkable performance
in segmenting the edges of diseased tissue. The EAM module assigns unique weights to
the pixel values from the channel dimension and spatial dimension, respectively, so as to
strengthen the foreground information and weaken the background information. Taking
the fourth row in Figure 9 as an example, the EAM module has a more accurate and smooth
processing of the boundary of the foreground part, and the segmentation of the large areas
is closer to the label graph (GT). DS-MLP simply further enhances the acquired features
to avoid information loss. As you can see in the fourth row of Figure 9, the results with
the addition of the DS-MLP module are significantly more complete than the baseline
(UCTransNet), but slightly worse than the results with the addition of the EAM module.
The combination of EAM and DS-MLP can better capture the foreground information of
the samples. Therefore, HEA-Net has a solid ability to segment highly similar foreground
and background information.

On the MoNuSeg dataset, Dice and IoU are 1.29% and 2.11% higher than the baseline
(UCTransNet), respectively. As shown in Figure 10, most of the nucleus boundaries are
closely connected, which increases the segmentation difficulty of our model. As can be
seen from Figure 10, although the segmentation result of our model is improved compared
to the baseline (UCTransNet), it is not very complete compared to the label map. From the
fourth row in Figure 10, we derive a set of local enlargements (Figure 11). As shown in
Figure 11, the segmentation graph with the DS-MLP module is more complete than that
with the EAM module. This is because the DS-MLP module obtains salient features through
hierarchical operation, which is better able to avoid the loss of important information. In
order to correctly identify the boundary information of the nucleus, the network needs to
pay more attention to the extraction of local details. The combination of EAM and DS-MLP
can more accurately grasp the nuclear boundary information for local modeling. Thus, the
HEA-Net segmentation of the nucleus is complete.
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Figure 9. Visual comparison of each module in GlaS dataset. In the red box are the parts with
significant differences in the segmentation results of each network.

Figure 10. Visual comparison of each module in MoNuSeg dataset. In the red box are the parts with
significant differences in the segmentation results of each network.

Figure 11. A local enlargement of the visualization result for the fourth line in Figure 10.
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6. Conclusions

The accurate segmentation of medical images helps doctors to observe and judge
the diseased parts of the human body more effectively. In this work, this paper proposes
a hybrid attention encoder architecture (HEA-Net). In HEA-Net, we propose the EAM
module can refine the convolutional output at different scales of the encoder network for
better local modeling. The DS-MLP module is also proposed to achieve further feature
enhancement by shifting operations in the channel and spatial dimensions. We evaluate
HEA-Net on two public datasets. The experiments show that our network outperforms the
most advanced methods. By analysis of ablation experiments on two different datasets, the
overall performance of HEA-Net is significantly improved compared to baseline. Dice and
IoU are (1.02%, 1.29%) and (1.36%, 2.11%) higher than baseline, respectively, indicating that
the proposed HEA-Net, including EAM and DS-MLP modules, is helpful and valid for the
segmentation of lesions.
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