
����������
�������

Citation: Saggese, F.; Lottici, V.;

Giannetti, F. Rainfall Map from

Attenuation Data Fusion of Satellite

Broadcast and Commercial

Microwave Links. Sensors 2022, 22,

7019. https://doi.org/10.3390/

s22187019

Academic Editor: Assefa M. Melesse

Received: 8 August 2022

Accepted: 10 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Rainfall Map from Attenuation Data Fusion of Satellite
Broadcast and Commercial Microwave Links

Fabio Saggese1,* , Vincenzo Lottici 2 and Filippo Giannetti 2

1 Department of Electronic System, Aalborg University, 9220 Aalborg, Denmark
2 Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
* Correspondence: fasa@es.aau.dk

Abstract: The demand for accurate rainfall rate maps is growing ever more. This paper proposes
a novel algorithm to estimate the rainfall rate map from the attenuation measurements coming
from both broadcast satellite links (BSLs) and commercial microwave links (CMLs). The approach
we pursue is based on an iterative procedure which extends the well-known GMZ algorithm to
fuse the attenuation data coming from different links in a three-dimensional scenario, while also
accounting for the virga phenomenon as a rain vertical attenuation model. We experimentally prove
the convergence of the procedures, showing how the estimation error decreases for every iteration.
The numerical results show that adding the BSL links to a pre-existent CML network boosts the
accuracy performance of the estimated rainfall map, improving up to 50% the correlation metrics.
Moreover, our algorithm is shown to be robust to errors concerning the virga parametrization, proving
the possibility of obtaining good estimation performance without the need for precise and real-time
estimation of the virga parameters.

Keywords: rainfall rate estimation; rainfall map estimation; microwave propagation; rain attenuation;
earth–satellite link; commercial microwave link

1. Introduction

In recent years, the higher and higher occurrence of extreme phenomena related to
climate change has considerably spurred the demand of accurate and real-time rainfall
maps. To this end, classical methods for rainfall measurement, i.e., surface sensors, weather
radars and satellite systems have been intensively used. These solutions, however, require
non-negligible installation and operating costs, while the measurements they offer have a
temporal and spatial resolution that is often not sufficient for the tasks of interest.

In the last decades, the use of opportunistic sensors for rainfall estimation has opened
the way to various methods based on signal processing techniques applied to attenuation
measurements of existing commercial microwave links (CMLs). Several different strategies
have been published on this topic such as [1,2], and in the sequel, [3–5]. As an alternative
option, it has also been proposed to obtain the rain attenuation contribution from the overall
attenuation measured at the CML receiver [6–8]. In addition, exploiting the measurements
of the attenuation data available at the CML receiver, the generation of rainfall maps
through the inverse distance weighting (IDW) algorithm or tomographic estimation has
been addressed in [9–11] and in [1,12,13], respectively.

Recently, a significant research effort has been devoted also to the estimation of the
rainfall rate from the received signal level at the ground station of direct-to-home (DTH)
broadcast satellite links (BSLs) [14–20]. Hence, taking advantage of the limited cost and
ease of installation of the commercial-grade BSL receivers for DTH broadcast, the rationale
of our current work consists of effectively merging together the attenuation data coming
from both the CML and BSL receivers. Differently from our preliminary approach [21], (to
the best of our knowledge) the first rainfall estimation system based on fusing together such
measurements, here, we propose a modified GMZ algorithm [9] which properly handles
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the BSL and CML attenuation data over a three-dimensional (3-D) scenario of interest,
where the vertical variations of rain intensity affecting the satellite links are considered.

The main contributions are as follows.

• We consider the virga phenomenon, i.e., a variation of rainfall rate with respect to the
height due to a gradient of environmental parameters such as humidity, which may
cause evaporation or sublimation of rain [22];

• Based on the virga model, we propose a hybrid 3-D modified version of the GMZ
algorithm [9,11] which provides the rainfall rate estimation by properly merging
together the attenuation measurements collected at the BSL and CML receivers;

• We numerically show that the root mean square estimation error steadily decreases at
each step of the iterative procedure, thus leading to a stable solution for the rainfall
intensity although the underlying optimization problem is not convex;

• We prove that a few BSLs placed in locations scarcely covered by CMLs can act as
gap-fillers, with the result of notably improving the rainfall estimation performance
with respect to conventional schemes based on either CMLs or BSLs only;

• The robustness of the proposed approach is achieved even in case of non-ideal knowl-
edge of the parameters describing the virga phenomenon, which is significant indica-
tion that the hard task of its real-time characterization [22,23] can be avoided.

The organization of the paper is as follows. In Section 2, the environmental scenario
is described, i.e., we define the geometrical position of CMLs and BSLs in Section 2.1, the
rainfall model for both horizontal and vertical planes in Section 2.2, and the quantization
procedure to obtain the rainfall map in Section 2.3. In Section 3, we outline the hybrid
iterative optimization algorithm, in Section 4, we discuss the numerical results, and finally,
some conclusions are drawn in Section 5.

2. Environmental Scenario
2.1. Geometrical Model

The area of interest has a parallelepiped shape P with a square base of area B and
height equal to the rain height h0, defined as in [24] and assumed to be constant over B. The
coordinates (measured in km) of each point inside P are referenced as p = [x, y, z]T ∈ P ,
[·]T denoting the transpose of a vector, with

−
√

B/2 ≤ x ≤
√

B/2,

−
√

B/2 ≤ y ≤
√

B/2,

0 ≤ z ≤ h0.

(1)

The above-defined geographical scenario to be monitored includes NCML horizontal
CMLs along with NBSL slanted BSLs, whose available data measurements are properly
gathered up and fused together; consider Figures 1 and 2 as examples. After indicating with
n the link index, either terrestrial or satellite, and denoting the overall number of links as
N = NCML + NBSL, the n-th link is geometrically delimited by pn,1 = [xn,1, yn,1, zn,1]

T ∈ P
and pn,2 = [xn,2, yn,2, zn,2]

T ∈ P , 1 ≤ n ≤ N.
Hence, we obtain that: (i) For CMLs, zn,1 = zn,2; (ii) For BSLs, zn,2 = h0; (iii) The length

of the n-th link results as

Ln =
√
(pn,1 − pn,2)

T(pn,1 − pn,2), (2)

while its angle of elevation over the horizontal plane x− y is given by

θn = arctan 2(zn,2 − zn,1, xn,2 − xn,1). (3)

Exploiting the former equations, it can be further remarked that: (iv) θn = 0 for all the
CMLs; (v) The BSLs are characterized by a slanted path between the satellite transmitter
and the ground receiver; (vi) Due to the distance of the geostationary satellite from the
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scenario and assuming that
√

B is around few kilometers, θn = θ, for all the BSLs, i.e., the
elevation angle can be assumed constant for all the links pointing to the same satellite. (The
case of using BSLs from different satellites visible at different azimuth and elevation angles
is under study.)

x

z

θ2

L1
L2

A2

A1

h0

Figure 1. Stratiform rain model and geometry of the scenario. Link 1: CML, with length L1, atten-
uation A1 and elevation angle θ1 = 0. Link 2: BSL, with wet path length L2, attenuation A2 and
elevation angle θ2.

0.00  0.80  1.60  2.40

 3.20

 2.40

 1.60

 0.80

 0.00

Figure 2. Network topology used for numerical performance evaluation via computer simulation.
Legend: blue lines: CML links; black lines: ground projection of BSLs’ wet segments; ‘x’ marks: data
points taken by the algorithm on CML links; ‘◦’ marks: ground projection of data points taken by
the algorithm on BSLs’ wet segments; ‘ ’ marks: receivers. Notice: CMLs are full duplex links with
receivers on both endpoints of each link; BSLs are one-way links with receivers only on the ground
endpoint of the link.

2.2. Rainfall Model

The specific rain attenuation, in dB/km, experienced at a location p lying along the n-
th wireless communication link with carrier frequency fn in the 10–30 GHz frequency range
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depends (with a good approximation) on the local rainfall rate r(p), in mm/h, according to
the power law formula [25]

αn(p) = an[r(p)]bn [dB/km], (4)

where an and bn are empirical coefficients (assumed to be known throughout the paper)
relying on fn and on the polarization, i.e., horizontal, vertical or circular, [14,26,27]. It is
also worth emphasizing that the rain attenuation represents only one of the contributions
to the total attenuation affecting the n-th link. State-of-the-art works, however, have shown
that the rainfall contribution can be reliably extracted from the measurements of the total
attenuation [7,14,15]. Furthermore, for the sake of simplicity, we assume the ITU model
based on stratiform rain with two layers only, i.e, solid and liquid [24] (A more accurate
model considering a third layer, named melting layer between the solid and the liquid
layers, was proposed and investigated in [14,16].), as shown in Figure 1, where, for instance,
the link 1 is a CML having length L1, attenuation A1 and elevation angle θ1 = 0, and the
link 2 is a BSL with wet path length, i.e., the portion of the path inside the liquid layer, L2,
attenuation A2 and elevation angle θ2. It can be remarked that the solid layer marginally
influences the attenuation, thus explaining the reason why the BSL link length is defined as
the wet-path only.

We model the rainfall rate as the spatially-continuous random process, expressed
in mm/h, r(p) ∈ P , i.e., with values depending on the position within the 3-D scenario.
Hence, according to (4), the total rain attenuation, in dB, experienced by the n-th link
reads as

An =
∫ pn,2

pn,1

an[r(p)]bn dp [dB]. (5)

As detailed hereafter, the rainfall will be modeled differently in a generic x− y horizontal
(H) plane at height z, denoted as πH(z), and in a generic x − z vertical (V) plane at
coordinate y, denoted as πV(y).

2.2.1. The πH(z) Plane

Let us consider K points lying on the same H-plane at height z, collect them into the
set K, i.e., pk = [xk, yk, z]T ∈ K, and assume that the relevant rainfall rates r(pk), 1 ≤ k ≤ K,
are known. Then, let us consider pu = [xu, yu, z]T, which lies on the same plane πH(z), but
with an unknown rainfall rate. The rainfall rate at pu can be estimated according to the
Shepard’s inverse distance weighting (IDW) method [10,28,29]

r(pu) =
∑K

k=1 Wu,k r(pk)

∑K
k=1 Wu,k

, [mm/h]. (6)

The adimensional weights Wu,k ∈ [0, 1] in (6) are expressed as

Wu,k =

[
(1− du,k/Γ)2

(du,k/Γ)2

]+
, (7)

where [·]+ = max{0, ·}, the constant Γ is the radius of influence, i.e., the radius of a cir-
cumference centered on pu and lying on πH(z), which is suitably set (In [9], the radius
of influence depends on the density of the data points and is adaptively chosen so as to
include at least five data points.) to encompass those points on the H plane whose rainfall
rates are assumed to appreciably contribute to the evaluation of the rainfall rate at pu, and

du,k =
√
(pu − pk)

T(pu − pk) (8)

denotes the distance between the point with unknown rainfall rate and the k-th point of
the set K. Consequently, the rainfall rate in (6) is evaluated considering only those points
for which du,k < Γ.
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2.2.2. The πV(z) Plane

Let us take into consideration the following two points, both lying on the same vertical
line, i.e., pk = [x, y, zk]

T, where the relevant rainfall rate r(pk) is known, and pu = [x, y, zu]T,
where the relevant rainfall rate is instead unknown. Additionally, we consider the presence
of a vertical gradient of the rainfall rate, the so-called virga phenomenon. An accurate yet
analytically involved expression of the upwards vertical variation of the rainfall rate is
provided by [30]. Such analytical model, however, involves many parameters, which vary
according to the type of the precipitation, and so, in general, are hard to estimate [22].
Nevertheless, experimental results for temperate climates presented in [23] show that the
dependence of the rainfall rate with the height can be accurately modeled by a simple linear
law, i.e.,

ν(pu, pk) = [r(pk)− g(x, y)(zu − zk)]
+, [mm/h], (9)

where ν(pu, pk) is the rainfall rate evaluated at pu by applying the linear model from the
knowledge of the rainfall rate at pk. By convention, the gradient of the rainfall rate g(x, y),
expressed in mm/h/km, is assumed to be positive if the rainfall rate increases with the
altitude, so that the highest value is attained at height h0. Further, if the model (9) yields a
null rain rate at a given height, the rain rates will be zero for all the points below, down to
the ground. For the sake of simplicity, we assume a constant gradient all over the scenario,
i.e., g(x, y) = g, ∀x, y such that p = [x, y, z]T ∈ P . (The proposed procedure can be easily
generalized also to the case of a non-uniform gradient over the area of interest).

2.2.3. Overall Model

Merging together the assumptions on the planes πH(z) and πV(y), along with assum-
ing that the rainfall rates r(pk) of the set of K points pk are known, the rainfall rate at the
generic point pu ∈ P can be estimated as

r(pu) =
∑K

k=1 Wu,k ν(pu, pk)

∑K
k=1 Wu,k

, [mm/h]. (10)

2.3. Quantization

The distribution of the rainfall rate at the base of the volumeP , i.e., at z = 0, is obtained
by building a spatially quantized two-dimensional (2-D) map of J × J pixels, each pixel
with an area of ∆ = B/J2. The center of each pixel is denoted with cj, 1 ≤ j ≤ J2, while the

grid points consists of the overall set C = {cj}J2

j=1. Hence, assuming that the rainfall rate does
not significantly change over ∆, r(cj) stands for the rainfall rate for each pixel. Therefore,
the overall rainfall map the algorithm yields is given by r(C) = [r(c1), . . . , r(cJ2)]T.

Following the approach of [11], the quantization process is applied to the links as well.
We subdivide each link into segments with length D where the rainfall rate can be assumed
to be nearly constant, thus obtaining for the n-th link a number of Qn intervals equal to

Qn = dLn cos θn/De, 1 ≤ n ≤ N, (11)

where Ln cos(θn) is the projection of the BSL or CML link onto the base, and d·e takes
the nearest lower integer of the argument. The center of the q-th segment, 1 ≤ q ≤ Qn,
for the n-th link, 1 ≤ n ≤ N, is called data point, with coordinates dn,q = [xn,q, yn,q, zn,q]T.
All the data points of the n-th link are then collected in the set Qn = {dn,j}Qn

j=1, being the
corresponding rainfall rates denoted as

r(Qn) = [r(dn,1), . . . , r(dn,Qn)]
T, [mm/h]. (12)
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3. Estimation Algorithm

An iterative estimation algorithm of the rainfall rate for the data points r(Qn) and grid
points r(C) within the scenario of interest is outlined by combining the IDW estimation
algorithm in (10) with a proper constrained optimization problem (OP).

As a first step, let us consider the estimation of the rainfall rate of the data points of the
n-th link for the i-th iteration. We employ the rainfall rate corresponding to the data points
not belonging to the n-th link obtained at iteration i− 1, i.e., r(Q`)

(i−1), 1 ≤ ` ≤ N, ` 6= n,
to estimate the rainfall rate of the n-th link through (10), denoted as r̂(Qn), 1 ≤ n ≤ N.
Specifically, the distance between the desired r(Qn) and the one estimated from the other
links r̂(Qn) is minimized, under the constraint that the overall rainfall attenuation An
measured over the n-th link be

An =
Qn

∑
q=1

Ln cos θn

Qn
an[r(dn,q)]

bn , (13)

having approximated the integral (5) as the summation over all the intervals the n-th link
has been subdivided into, whose centers are located at the corresponding data points.
Hence, the OP can be formalized as

arg min
r(Qn)

||r(Qn)− r̂(Qn)||2

s.t.
AnQn

anLn cos θn
−

Qn

∑
q=1

[r(dn,q)]
bn = 0,

(14)

as a 3-D generalization of the OP described in [9]. Since the constraint is not affine, the
OP (14) is not convex, and thus, we argue that the optimal solution is not unique. Our
approach is to apply the gradient descent-based method to converge to (at least) a local
optimal solution [31], i.e., r(Qn)(i).

As a second step, the whole optimal set of data points is obtained, running the OP (14)
for each link n, until convergence is reached, or equivalently, when ei < ε, with an arbitrary
ε > 0, being ei the error of the optimization procedure at iteration i-th, i = 1, 2, . . .,
defined as

ei =

√√√√ N

∑
n=1
||r(Qn)(i) − r(Qn)(i−1)||2. (15)

As a third and final step, using the rainfall rate at the data points as input, the rainfall
rate estimation on the grid points is performed using (10), thus obtaining the map r(C).

The proposed iterative algorithm is outlined in Algorithm 1. The rainfall rates are
initialized with the values r(Qn)(0) = Rn, 1 ≤ n ≤ N, where

Rn =

(
An

anLn

) 1
bn

[mm/h]. (16)

is obtained by inverting (4) and assuming

α
(0)
n =

An

Ln
[dB/km] (17)

as an initial guess of the specific attenuation αn(p) for all the data points of the n-th link.
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Algorithm 1: Iterative OP.
1 Initialize: r(Qn)(0) = Rn, 1 ≤ n ≤ N; i← 1;
2 while ei > ε do
3 for n = 1 to N do
4 Compute r̂(dn,q), using (10), 1 ≤ q ≤ Qn assumed known r(Q`)

(i−1), ` 6= n;
5 Compute r(Qn)(i), solving OP (14);

6 i← i + 1;

7 Compute r(C), using (10) from r(Qn)(i), 1 ≤ n ≤ N.

4. Numerical Results

To corroborate the effectiveness of the proposed approach, a set of simulations were
run for the scenario of interest. The simulation makes use of a synthesized rain profile,
and the network topology shown in Figure 2, whose parameters are presented in Table 1.
(The evaluation of the performance using experimental data is under investigation.) We
simulate a square-shaped scenario with side length

√
B, which contains a given number

of CMLs and BSLs at known locations. For the sake of simplicity, we assume that all the
links are operating with the same carrier frequency fn, and the same polarization. (We
assume frequency values typically employed by CMLs [9] to be used also for the BSLs, for
simplicity. While BSLs’ carriers are usually in the Ku band (i.e., 10–13 Hz) [16], we remark
that the effect of the operational frequency is completely described by the parameters an
and bn [27]; therefore, we may use the same frequency for both the set of links without
loss of generalization.) All the (horizontal) CMLs have 0° elevation angle. Moreover, we
also assume that all the BSLs are pointed toward the same the satellite, laying on the
local meridian, so that, in a city located within 43° and 44° parallels (e.g., Pisa, Italy), the
corresponding elevation angle result is approx. θn = 39.5°; this value is set for any BSL
terminal. Based on (4), the coefficients an, bn, computed according to [27], are used to
model the rain attenuation in the whole scenario, as in [14,26]. The value of the radius
of influence Γ is computed in order to have non-zero weight for at least five other data
points in the evaluation of Equation (7), according to [9]. The simulated rainfall intensity
in mm/h is synthesized as a 2-D Gaussian-shaped spatial distribution on the x− y plane
with standard deviation σG, and peak value R mm/h located at pG = [xG, yG, 0]T, as in [10].
Moreover, the simulated precipitation is assumed to experience a fixed vertical gradient
gG, in mm/h/km, on the x− z plane, to take into account for the virga phenomenon. The
resulted precipitation rainfall rates are generated at the same position of the grid points of
the output estimated map C (see Section 2.3), and it is denoted as r̄(C) = [r(c1), . . . , r(cJ2)]T.
To obtain the quantized data points, the length D where the rainfall rate can be assumed
constant (see Section 2.3) is set lower than 1/10 of the diameter of the rainfall phenomenon,
as suggested in [9].

Table 1. Simulation parameters employed for every scenario.

B 40.96 km2 D 0.1 km h0 1 km
J 64 fn 18 GHz polariz. vertical

an 0.0601 bn 1.1154 σG 2 km

The overall accuracy performance of the estimation algorithm is quantified by both
the root mean square error (RMSE) εRMS

εRMS =

√
||r̄(C)− r(C)||2

J2 [mm/h], (18)

and the (adimensional) correlation coefficient ρ

ρ =
cov{r̄(C), r(C)}

std{r̄(C)}std{r(C)} (19)
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where cov{·} and std{·} denote the covariance and the standard deviation operators,
respectively. The accuracy contribution provided by the slanted satellite links in the
estimate of the rain intensity map is affected by how the degree of accuracy of the gradient
model. It is worth recalling that accurate real-time measurements of the vertical rain
gradient are difficult to achieve as they would require costly and complex instrumentation;
see, e.g., [22]. To evaluate the performance of the algorithm under realistic conditions,
the gradient galg is adopted, which is not necessarily equal to the true value gG used in
the generation of the synthetic rain. Numerical results are presented, indeed, under both
the assumptions galg = gG, i.e., ideal knowledge of the current virga phenomenon, and
galg 6= gG, i.e., imperfect knowledge.

Convergence behavior of the algorithm. To quantify the convergence behavior through an
analytical approach was found to be too complex, and therefore, we resort to simulations.
The error ei (15) is averaged for 1000 simulation runs. The resulting average error ei is
then plotted in Figure 3 for the first 100 iterations. As becomes apparent, the average error
steadily decreases, thus providing the experimental evidence about the convergence of the
proposed procedure.

0 20 40 60 80 100
10−3

10−2

10−1

100

Iterations (i) [m]

ē i

Figure 3. Mean error versus number of iterations.

Rainfall rate estimation for a single realization. A single realization of the rainfall rate is
estimated for the topology depicted in Figure 2, in the presence of a given 2-D Gaussian
rain intensity profile with peak value R = 15 mm/h. Figure 4a shows the πH(0) horizontal
plane of the scenario at ground level, including the following links: (i) A mesh of 21 CMLs
(as white lines); (ii) The ground projections of 8 BSLs (as black lines). The rain cell is also
visible at the top left of the map. The black circumference, which is centered on the peak of
the precipitation and has radius σG, is shown for reference as a core area of the precipitation.
Figure 4b shows the πV(yG) vertical plane of the scenario, where the CMLs appear as
near-ground horizontal white lines, while the BSLs are the slanted black lines reaching
h0. Also depicted is the vertical profile of the synthetic precipitation, characterized by a
virga effect with gradient gR = 5 mm/h/km. Figure 4c,d offers the precipitation maps
generated by the proposed algorithm, assuming a perfectly estimated vertical gradient, i.e.,
galg = gG. In both cases, the rainfall intensity distribution and the number (NCML = 21)
along with the geometry of the CMLs are the same. In case (c), there are no BSLs; thus,
the estimation procedure relies on the pure GMZ algorithm [9,10], whose performance
results in εRMS = 5.715 and ρ = 0.470. In case (d), there are eight BSLs supplementing the
measurements of the CMLs. Employing the proposed algorithm, the performance improves
to εRMS = 1.981, i.e., −34%, and ρ = 0.934, i.e., +50%. Hence, fusing BSL data through our
approach leads to better estimation performance, proving the possibility of using, either
already installed or purposely installed, satellite receivers as gap-fillers in CML networks.
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(d)
Figure 4. Rainfall rate estimation for a single realization with R = 15 mm/h and galg = gG =

5 mm/h/km. (a) r̄(C): πH(0) plane. (b) r̄(C): πV(yG) plane. (c) r(C): NCML = 21, NBSL = 0,
εRMS = 5.715, ρ = 0.470. (d) r(C): NCML = 21, NBSL = 8, εRMS = 1.981, ρ = 0.934.

Rainfall rate estimation average performance. To quantify the average performance, 1000
different scenarios are considered, each of them with randomly positioned BSLs, while
the CMLs are randomly selected from the network topology shown in Figure 2. For
every scenario, 50 different random positions of the rain cell pG are generated. Figure 5
shows the near-ground overall performance in terms of εRMS (Figure 5a) and ρ (Figure 5b)
as a function of NBSL. The results are for different values of NCML, while keeping fixed
R = 15 mm/h and galg = gG. Again, when NBSL = 0, the algorithm coincides with the pure
GMZ algorithm. On the other hand, we present also the results for NCML = 0 to show the
performance obtained by collecting measures from pure BSL approaches, such as [14–16].
For both RMSE and ρ metrics, the boost in performance given by adding BSLs is greater
than the one obtained by adding CML, as long as a minimum number of CML is present in
the scenario. For example, for NCML = 7, we can halve the RMSE by increasing the number
of BSLs from 8 to 13 (i.e., inserting five BSL terminals in the scenario). To obtain a similar
boost in performance with the CML, we need to triple the number of microwave links in
the network. On the contrary, when no CMLs are present in the network, the estimation
procedure is not able to reach good estimation performance. This phenomenon is partially
due to the limited length of the projection of the BSL on the x− y plane. In fact, to cover the
whole scenario, a large number of satellite terminals are needed. Another reason for this
drop in performance may be due to the (approximate) parallel links obtained by pointing
all terminals toward the same satellite, which could generate errors in the estimation of
the data points’ rain rate. Nevertheless, the quantitative impact of this phenomenon on
estimation performance is still under study. The results further support the choice of CML
and BSL data fusion for improving the estimation performance.
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Figure 5. Estimation performance of the rainfall rate map vs. the number of BSL.

Figure 6 illustrates ρ as a function of galg for NCML = 21, a different number of NBSL,
and with: (a) gG = 0, (b) gG = 3, (c) gG = 6 mm/h/km. The plots emphasize that the
performance is slightly influenced by the error of the gradient, which gives minimal effects
in the case gG = 3 mm/h/km. This proves that the proposed rainfall estimation technique
does not require a precise real-time assessment of the rain gradient. In fact, just the use of a
suitably selected constant value of the rain gradient (e.g., the average or a typical value) is
enough to guarantee a small estimation error of the rainfall intensity.
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Figure 6. ρ vs. galg [mm/h/km], NCML = 21, R = 10 mm/h.

5. Conclusions

In this paper, a novel hybrid procedure was illustrated to obtain the rainfall rate map
estimation from fusing together the attenuation data collected at the receivers of both
commercial microwave and broadcast satellite links. The proposed algorithm consists of
the modified version of the GMZ one which has been properly extended to: (i) Apply
the estimation procedure to a three-dimensional scenario; (ii) The virga phenomenon
experienced by the BSLs; (iii) Merge the attenuation data from the mixed available CMLs
and BSLs; (iv) Take into account the experimentally proven convergence of the iterative
estimation algorithm. The numerical results show the boost in the accuracy performance
provided by employing BSL terminals together with CMLs. Moreover, we show that the
proposed algorithm is robust to possible errors in the parameters used to model the virga
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effect, reducing the need for precise real-time estimation of those parameters. Combined
with the low installation cost of BSL terminals, the proposed algorithm ensures that the
BSLs can act as as gap-fillers of an pre-existing CML network.
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