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Abstract: Internet of Vehicles (IoV) technology has been attracting great interest from both academia
and industry due to its huge potential impact on improving driving experiences and enabling better
transportation systems. While a large number of interesting IoV applications are expected, it is more
challenging to design an efficient IoV system compared with conventional Internet of Things (IoT)
applications due to the mobility of vehicles and complex road conditions. We discuss existing studies
about enabling collaborative intelligence in IoV systems by focusing on collaborative communications,
collaborative computing, and collaborative machine learning approaches. Based on comparison and
discussion about the advantages and disadvantages of recent studies, we point out open research
issues and future research directions.

Keywords: internet of vehicles; collaborative intelligence; multi-access vehicular environment; edge
computing; machine learning

1. Introduction

As the fourth industrial revolution, industry 4.0 has started an important development
stage and academia, industry and management departments are making efforts to realize
the intelligent ecology of industry 4.0 [1,2]. As a necessary foundation of industry 4.0 and
key use cases such as smart city and smart industry, Internet of Things (IoT) realizes the
intelligent perception, recognition and management of objects and processes through the
connection between things and things, and people and things. In recent years, Intelligent
Transportation System (ITS) and Intelligent Vehicles (IV) are the research hotspots of many
researchers and technology companies. As the most important application fields of the IoT,
IoV is an essential key technology for the next generation of ITS, and also one of the most
important breakthroughs. The realization of IoV can significantly improve the smart city
and the sustainable development of energy. For example, the traffic management system in
the environment of IoV and vehicles with autonomous driving function can reduce traffic
congestion, traffic accidents, and environmental pollution. Vehicles under the networking of
an intelligent vehicle system can provide users with more comprehensive and personalized
mobile travel service, such as path planning, service recommendation, and intelligent
parking to provide a safe, comfortable, intelligent, and efficient driving experience and
transportation services, improving the efficiency of transportation. At the same time, they
promote an intelligent level of transportation service for society. Applications of IoV are
listed in Figure 1. IoV is not only applied to urban traffic, but also has many applications;
for instance, internet of underwater vehicles and internet of aerial vehicles. Drones are
used in intelligent logistics, oil and gas equipment inspection, environmental and traffic
monitoring, disaster recovery and more scenarios. IoV has attracted a large number of
researchers and companies due to its great research value and commercial interests.
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Figure 1. Application of Internet of Vehicles.

However, the development of the IoV system still needs to overcome many challenges
before it can play a big role because of the above characteristics. These challenges include
the following. To turn the "Internet of Everything" into reality in the future, there will be
more and more network devices and access environments, resulting in entity heterogeneity,
dynamic, data diversity and big data challenges. At the same time, a variety of high-
quality new applications, such as autonomous driving and automated delivery and other
advanced services, require high network, storage, and computing resources. Therefore,
to meet the network requirements of low delay, large bandwidth, secure, and efficient
computing requirements of the next generation of IoV, efficiently utilizing the existing
limited resources to design the IoV system is a major challenge.

To address these challenges, resource-efficient task processing architecture must to
be built while effectively utilizing the limited resources at all levels, such as perception,
transmission, and application of IoV. All of these demands drive us to research how these
various entities might work together to optimize communication, caching, and computing
resources between heterogeneous agents. In the past few decades, AI has developed rapidly
and has been successfully applied in many research and application fields. Currently, in
the field of IoV, there are many studies showing great interest in AI and collaborative
intelligence methods. Collaborative intelligence(CI), also known as cooperative intelligence,
is able to aggregate the capabilities and intelligence of multiple devices to achieve a common
goal and intent [3].

CI can bring AI to the edge, such as vehicles and roadside units. The lack of sensing,
computing, and storage capabilities of edges and endpoints can be solved. Letting a single
computing device perform complex tasks alone should be avoided, while the lack of sensing,
computing and storage capabilities of edges and endpoints can be resolved. This reduces
communication latency and protects data privacy by bringing the AI closer to the user.
Some studies have confirmed that the collaboration of cloud and mobile edge can improve
end-to-end latency, decrease usage of energy, and increase data-center throughput [4,5].

Many articles have reviewed and surveyed research issues from various perspectives
in IoV, including 5G technology evolution [6], edge service optimization [7], attacks and
detection mechanisms [8], secure and trust management [9–11], and big data extraction and
decomposition [12]. There are also articles proposing new generic IoV architectures [13,14],
applied Software-Defined Networking (SDN) on VANET [15], or studying the deployment
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and application of IoV in a smart city [16]. In addition, there are many works on the
application of new techniques in IoV; for instance, Deep Reinforcement Learning tech-
nologies [17], Blockchain [18], Digital Twins, and Federated Learning [19]. These articles
well introduce the basic technology, network architecture, and typical applications of IoV,
but rarely involve the problem of collaborative intelligence in IoV. There are still a small
number of articles discussing the problem of collaborative intelligence in IoV, including col-
laboration in smart drones and IoT [20], cooperation and collision avoidance in UAVs [21],
and sociality of collaborative CAVs [3], but they are limited to specific fields or research
problems, and cannot describe the whole picture of the collaborative problem involved
in the heterogeneous network of IoV. In addition, the articles on CI are not limited to
IoV [22,23], which is a good reference for the study of CI in IoV scenarios, but more targeted
work is desired to discuss CI problems according to the characteristics of fast-moving
vehicles and high delay requirements of IoV applications.

The research works discussed in this paper cover a wide range of topics for imple-
menting CI in IoV applications, such as radio resource allocation, routing protocols, data
sharing, task offloading, security enhancement, and machine learning methods. We will
discuss these topics in three sections: collaborative communication, collaborative comput-
ing, and collaborative machine learning approaches. Collaborative communication is the
coordinated networking technology, including the routing and access selection in V2R,
V2P, and V2V collaborative scenarios, security and privacy during communication, etc.
Collaborative computing includes big-data-oriented task offloading and mobile edge com-
puting. Collaborative learning technologies include federated learning, ensemble learning,
unsupervised learning, and reinforcement learning.

Due to space and energy constraints, we prioritize research works according to their
relevance to the subject under discussion, as well as their quality, location, date of pub-
lication, and number of citations. Journal papers published in authoritative journals or
magazines and conference papers published in international conference proceedings in
the last 3 to 5 years are selected. We also include the most cited papers on collaborative
intelligence in the IoV.

The rest of this paper is organized as follows: In Section 2, the concepts and features
of IoV and CI are introduced. In Section 3, we describe the collaborative communication
technology in the collaborative intelligence of the IoV and then discuss its existing difficul-
ties and existing research in detail. In Section 4, technical issues and existing research in
collaborative computing, including task offloading and mobile edge computing methods,
are discussed. Section 5 summarizes the development and current situation of collabora-
tive machine learning methods such as joint learning, ensemble learning, unsupervised
learning clustering, and reinforcement learning in the collaborative intelligence of the IoV,
and analyzes the advantages and disadvantages of each method. In Section 6, we propose
the future research directions of CI in the IoV. Section 7 is the conclusion of the paper.

2. Internet of Vehicles and Collaborative Intelligence

In this section, the concept, architecture, and characteristics of the Internet of Vehicles
are briefly introduced, and then collaborative intelligence and its advantages and challenges
in IoV are discussed.

2.1. Internet of Vehicles

The IoV is the integration of IoT and mobile vehicle Internet. It is a huge system
composed of multiple nodes connected in the network, such as intelligent vehicles driven by
humans or autonomous vehicles, infrastructure integrated with intelligent sensing and V2X
communication [24], Mobile Edge Computing (MEC) devices [25], and cloud computing
service platforms. It relies on multiple disciplines such as networking, communication,
Artificial Intelligence, control, social sciences, and cybersecurity to try to provide rich
intelligent applications. In general, IoV technology is a dynamic mobile communication
system that connects vehicles and connected devices through vehicle to everything (V2X)



Sensors 2022, 22, 6995 4 of 38

communication, enabling all necessary devices to share information and interact. It includes
vehicle to vehicle (V2V), vehicle to road (V2R), vehicle to infrastructure (V2I), vehicle to
pedestrian and cyclist (V2P), and vehicle to cloud/edge (V2N) communication [24]. The
scenario is shown in Figure 2. An IoV system can supervise and guide traffic efficiently
in real time and provide more intelligent mobile services through data collection, sharing
transmission, storage and computing and analysis capabilities.

Figure 2. One scenario of Internet of Vehicles.

The traditional IoV architecture is usually divided into three layers, including the
perception layer, the network layer, and the application layer. According to the specific
application scenarios or refinement functions, many studies have divided the IoV into four
layers [26], five layers [13], seven layers, and other different levels of architecture [27]. Here,
we still consider IoV as a three-layer structure, as shown in Figure 3.

The perception layer is the foundation of IoV and contains all sensors inside and
outside the vehicle, which collect environmental data and detect specific events of interest;
for instance, vehicle condition, road conditions, traffic lights, and environmental conditions.
The goal is to obtain the knowledge of the whole environment by collecting information
from multiple angles [28]. After screening, integration, and analysis, these large amounts
of collected information can afford data support for the realization of various businesses
in the IoV.

The second layer is the networking layer, or communication layer, which supports
different V2X wireless communication modes. It allows seamless connectivity with existing
and emerging networks such as GSM, Wi-Fi, LTE, Bluetooth, 802.15.4, 5G/6G, etc. This
is so that the large amount of data and signals generated at all times can be transmitted
everywhere without delay, while minimizing the resource consumption. At present, the
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main communication standard of IoV is Dedicated Short-Range Communications (DSRC)
based on the IEEE 802.11 standard, which is led by the United States and cellular-vehicle to
Everything (C-V2X) which is the global unified standard communication technology [29].

The application layer includes statistics, storage management, computing, and pro-
cessing infrastructure, which provides the analysis, processing, and decision-making of
different situations based on big data for ordinary users, management departments, and
enterprises. The goal is to be able to fuse information from different systems and technolo-
gies to make a unified decision. It involves the allocation of computing tasks and resource
management [30].

Figure 3. Three-layer Structure of Internet of Vehicles.

Internet of vehicles is widely used. At present, research on IoV is mainly focused
on low-delay information transmission, traffic safety and efficiency, high reliability, and
other aspects, and oriented to big data [27]. In addition, security and privacy protection
is an important part of every layer of IoV. Omnidirectional sensing and data sharing
require user privacy protection and system security to be in place, so there are many
related studies [31,32].
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Some features of IoV are as follows:

• Information gathering: Data are collected through the use of various sensors (pollu-
tion detection sensors, cameras, road sensors, etc.) that provide drivers with enough
information to react to environmental changes in an adequate and effective manner.

• High mobility: Vehicular networks (VNs) have highly mobile nodes, related to the
speed of the car, and nodes can be added and disappear in a short period of time,
resulting in repeated topology changes.

• Type of information transmitted: Messages are transmitted according to the level of
participation in the event triggered. Messages can be sent from an initiator to a destina-
tion (unicast), or from an initiator to a specific cluster using multi-hop communication
(multicast). Vehicles can also send messages to all other vehicles via broadcast.

• Processing big data: A large number of VNs generate large amounts of data, and
vehicular networks use cloud computing to process and store big data.

• Internet facilities: The IoV has the unique feature of accessing the Internet. The
connected vehicles can benefit from this huge network.

2.2. Collaborative Intelligent in IoV

Collaborative intelligence is capable of merging the data, power, and intelligence of
multiple pieces of connected equipment in order to accomplish a shared objective and pur-
pose. In the IoV system, this usually manifests as real-time communication and interaction,
organic combination of data, sharing of computing and storage resources, and synchroniza-
tion and scheduling of network access IoV entities, including intelligent vehicles, roadside
units, users and mobile devices, edge computing servers, cloud computing centers, data
centers, etc. In this framework, AI computation and inference will be deployed simultane-
ously on edges and the cloud. One possible structure is that the front end of the AI model
is deployed on edge devices and performs the initial processing and feature computation.
Then, intermediate features are sent to the cloud, and the AI back end completes the step
of inference [22].

As shown in Figure 4, ideas and methods of CI can be integrated into all aspects of IoV.
Through cooperation between communication-related smart devices, agents are connected
to form a heterogeneous collaborative network, so as to carry out collaborative sensing,
collaborative communication, and collaborative computing on this network, in order to
make collaborative decisions.

Figure 4. Collaborative Intelligence in the Internet of Vehicles.

Since AI-based CI methods can produce superior decisions with lower communication
overhead by aggregating knowledge and achieving efficient coordination among multiple
agents, CI is an inevitable development trend of IoV systems. Specifically, it has the
following advantages:
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• Collaborative communications over various wireless spectrum types among many
transmitters to increase the efficiency of the spectrum utilization.

• Collaborative computing with an end-edge-cloud task processing framework that is
resource efficient, meeting a variety of demands on the massive amount of real-time
data processing, including exceptionally high throughput and ultra-low latency.

• Collaborative caching among numerous network entities to decrease service latency.

Despite the many benefits of CI, such as communication and computation benefits, it
also introduces new challenges in practical applications, so new scientific and technological
theories need to be established to attain the optimal design. These challenges include:

• Enable coordination between smart devices.
• Privacy protection and data security issues arising from data and information sharing.
• Efficient collaborative learning with low overhead in scenarios with limited bandwidth

and strict latency requirements.

3. Networking Technologies toward Collaborative Intelligence

Internet of Vehicles is a large system network composed of an intra-vehicle network,
an inter-vehicle network, and a vehicle–cloud network for radio communication and
information interaction. Through the integration of the three networks, V2X communication
can be more seamless, more efficient, and less communication dead zone. However, with
the development of the IoT and vehicle-related technologies and the increasing demand for
new service applications, more and more devices are being connected or are ready to be
connected to the network. This requires the transmission and exchange of a large amount
of data to achieve the purpose of sensing, transmission, and application. ITS has been
revolutionary to change, and every device has the potential to become an intelligent node
in IoV to participate in collaboration. This results in the transmission of large-scale signals
and data, which must rely on stable, trusted, low-latency communication technology. At
the same time, the diversity of access devices and communication approaches, the high
dynamic and mobility of vehicles, and frequent topological changes in IoV pose challenges
to V2X communication.

Considering CI, networking technologies in IoV are classified from multiple perspec-
tives below:

• From the perspective of communicating object
It can be divided into V2V, V2I, V2P, and V2N, such as the urban traffic scene in
Figure 2. Through V2V communication, the information of the surrounding vehicles
can be obtained in the process of vehicle driving, and the vehicles can also constitute
an interactive platform, which is often used to transfer control information or safety
information between vehicles. Generally, the time delay requirements are high. V2I
allows vehicles to communicate with roadside infrastructure (such as traffic cameras,
roadside units, bus stations, traffic lights, and parking lots), and through the roadside
infrastructure, vehicles can also obtain information about nearby vehicles and send
various real-time information. Usually, the amount of data transmission is large,
which is mainly used in real-time information service and vehicle monitoring and
management. V2P involves communication between vehicles and mobile devices used
by vulnerable traffic groups (such as pedestrians and cyclists). V2P communication
can be implemented via Bluetooth or Near Field Communication (NFC) technology,
and it is often used to avoid traffic accidents and information services. V2N is the
connection and information exchange between vehicle or driver and cloud platform
or internet through an access network/core network. After storing and processing the
acquired data, various applications and services are provided for vehicle users and
management departments [33].

• From the perspective of communicating range
Communication in IoV can be classified as short-range, medium-range, and long-range
communication [34], as shown in Figure 5. Short-range communication technology can
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be used for in-vehicle device connection or V2P scenarios, including Bluetooth, UWB,
ZigBee, etc. At present, Wireless Local Area Network (WLAN) and DSRC are able to
provide wireless communication within approximately 300 meters for IoV, which can
be used in V2V and V2I scenarios and classified as medium-range communication.
Cellular Communication technology enables vehicles to communicate with objects
thousands of meters away. Nowadays, there is no one communication method that
can meet all the communication needs of IoV. Therefore, how to select and formulate
a scheme to ensure the CI between vehicle and vehicle, and vehicle and environment,
is a key concern when the above multiple access methods coexist.

• From the perspective of data dissemination and protocol
It is also possible to classify the network technologies of IoV into three categories:
unicast communication, geocast, and broadcast communication, which respectively
represent from one vehicle to another, from a vehicle to a group of vehicles, and from
one vehicle to all other vehicles in the specified range. Important data can be transmit-
ted in a dedicated resource pool using unicast transmission to avoid data transmission,
such as platooning and advanced driving. For sensor data sharing or geographical
location demanding scenarios, the geocast or broadcast transmission were carried out
through the shared resource pool. Broadcast communications are used when collision
warnings and traffic jam messages are disseminated [35]. From the perspective of
routing, there are single-hop and multi-hop communication methods [36].

Figure 5. Taxonomy of IoV communication technologies with communication range.

Collaborative communication and networking technology is the key to achieving CI
tasks between heterogeneous agents in IoV. This section mainly focuses on three different
broad topics, namely Radio Access Technology (RAT) selection, routing protocol, and
authentication and secure communications in IoV.

3.1. Radio Access Technology Selection in IoV

As mentioned above, there are many types of communication methods that can be
used for IoV, and they cannot be replaced with each other. At the same time, the band-
width demand of users is also increasing, so wireless networks coexist to provide the best
service. Vehicles can use different RATS to communicate with other vehicles, infrastructure,
networks, etc. Therefore, it is necessary to select the best communication mode and reduce
the waste of resources in the multiple access network coexisting environment to ensure
cooperation [37].

The RAT selection method can have two schemes [38]. The centralized approach
considers the needs of all users in the network and maximizes the throughput or minimizes
the delay to centrally optimize the network task. The distributed approach is one in which
mobile users improve their own performance as much as possible and regardless of global
collaboration, generally using heuristic methods. RAT selection problem is usually treated
as a multiple-attribute decision-making problem, or one which uses AI-based algorithms
such as neural networks and Q-learning methods. Table 1 summarizes the recent studies
on the RAT selection in IoV system.



Sensors 2022, 22, 6995 9 of 38

Table 1. Recentstudies on RAT selection in IoV.

Publication Research Summary Communication Technology Scenarios

[39]

A network selection approach that The dynamic
Q-learning algorithm was used to verify the

necessity of handover, and the fuzzy CNN was used
to select the network.

DSRC, 4G-LTE and 5G
mmWave V2V

[40]
The communication performance of DSRC and LTE
in three typical IoV applications is tested in a real

road environment.
DSRC, 4G-LTE V2V, V2I

[41]
An Integrated Approach of 4G LTE and DSRC for

IoV by Using a Novel Cluster-Based Efficient Radio
Interface Selection Algorithm.

DSRC, 4G-LTE V2V

[42]
A heterogeneous network architecture incorporating

multiple wireless interfaces and a Best Interface
Selection algorithm are proposed.

WAVE, Wi-Fi, 4G-LTE V2I

[43]

A conceptual multi-RAT OBU architecture for
personal mobility vehicles such as shared bikes,

segways or electric scooters and its RAT selection
approach are discussed.

LPWAN, Wi-Fi, Cellular V2I, V2N

[44]
A vertical handover architecture inside the vehicle is

implemented based on the logical interface in
TCP/IP mode.

IEEE 802.11P, cellular, Wi-Fi V2X

[45]
A Dynamic Radio Access Selection and Slice

Allocation algorithm for 5G and above
heterogeneous networks is proposed.

5G and above: small-cells,
macro-cells, Wi-Fi IoT

Hussain et al. [39] studies the network selection and routing when different communi-
cation modes exist at the same time, including DSRC, 4G LTE, and 5G mmWave. In terms of
network selection, the Shannon entropy rule is used to dynamically set the signal strength,
and dynamic Q learning is applied to decide whether the communication mode has to
be switched. At the same time, a total of 32 fuzzy rules are formulated after considering
factors such as distance, line of sight, vehicle density, signal strength, and data type, and
then a fuzzy convolutional neural network (CNN) is adopted to execute RAT. In the aspect
of routing between vehicles, the objective function based on channel and vehicle state is
designed, and the jellyfish optimization algorithm is improved to calculate the routing.

There are also many studies comparing DSRC, Wi-Fi, and cellular factors. In Ref. [40],
the communication performance of DSRC and LTE in several application scenarios of
IoV is discussed, and corresponding software and hardware are developed for verifica-
tion. The results show that 4G LTE is more suitable for non-secure applications with low
communication speed requirements such as internet access, traffic data transmission, and
file download, while DSRC performs better in secure applications such as traffic signs
and collision avoidance. Finally, it is suggested to combine the two methods to handle
communication problems in IoV, so as to better support high-quality remote information
transmission services and security services.

On the premise of studying the advantages and limitations of DSRC and cellular
network technology, Hussain et al. [41] proposes an integration scheme combining these
two potential networking technologies to complete more efficient vehicle communication.
In this paper, an algorithm combining DSRC and 4G-LTE with a new data forwarding
protocol based on optimal clustering is proposed. This algorithm is used to intelligently
monitor and evaluate the level of packet loss rate to reduce the handover delay.

In Ref. [42], Sherazi et al. proposed a heterogeneous structure that fully integrated
several wireless interfaces, along with WAVE, LTE, and Wi-Fi, by utilizing a radio approach
for network access. Furthermore, this architecture was proposed to meet requirements
such as pervasive connectivity in order to make VANETs adaptable and expandable for
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IoV to support a wide range of emergency services. This architecture also used the Best
Interface Selection algorithm to ensure reliable communication by using the best wireless
interfaces to provide suitable connectivity required for successfully forwarding data in
vehicular networks in order to avoid single point failure. The results demonstrated the
method’s suitability in IoV. Vehicle classification based on application needs is advised in
future research in order to avoid access control issues with increasing vehicles and demand.

Sanchez-Iborra et al. [43] considers the incorporation of new environmentally friendly
mobile devices, such as motorcycles or bicycles, into collaborative intelligent transportation
systems, and a variety of communication techniques—for instance, vehicular Wi-Fi, low-
power WAN, and cellular networks—are already available. These communication methods,
however, are not fully covered and do not meet the demands of energy consumption and
quality of service (QoS). As a result, they propose a decision support frame by applying
supervised ML classification to select the best transmission interface in the multi-radio
access technology (RAT) device to send a specific message. Various ML algorithms are
investigated while considering the computational and energy usage of IoV terminal devices
and traffic types. Their method is tested using a decision tree-based microcontroller unit
decision support system, and it demonstrates that it can save energy while performing
communication tasks and meeting the QoS requirements of some urgent messages.

Vertical handover refers to switching among two distinct networking techniques,
while horizontal handover refers to handover among distinct cells of a single network
technology. Tuyisenge et al. [44] studies a mobile internal vertical handover mechanism in a
Heterogeneous Vehicle network (HVN) with IEEE 802.11P, cellular network, and Wi-Fi.They
suggest a vertical handover management strategy that cuts down on setup time to speed
up binding updates. By simultaneously connecting to several available networks utilizing
the PMIP-HD architecture, this method enhances handover outcomes by predicting the
subsequent handover. It uses a proposed logical interface to profit from the connectivity
session. The performance of the proposed approach is verified through stimulations of
packet delivery rate, packet error rate (PER), handover connection duration and latency,
jitter, and throughput.

In tedious scenarios such as the future IoV, the network slicing paradigm has been
studied as technology used to solve the dynamic, isolation, and programmability of mobile
networks [46]. This is the layering of an infrastructure into many logical network slices (NSs)
so that intelligent systems can flexibly allocate system resources to these network slices
based on requirements and network conditions. González et al. [45] proposed Dynamic
Radio Access Selection and a Slice Assignment algorithm suitable for a heterogeneous
network at 5G or above. Multi-attribute decision making and analytical hierarchy process
are used in the selection process, which takes into account multiple entities in a network.
Their approach handles overload using collaborative game theory, allowing slices to be
reallocated on demand and accepting more users with sufficient service awareness. The
distinction between premium and ordinary customers ensures that high-priority users
receive excellent service quality. The algorithm combines SDN and network function
virtualization methods to provide a comprehensive solution for ratio access selection and
slice allocation. Since the above methods are proposed in IoT scenarios and slow mobile
users are the experimental objects, whether they can also achieve good results in high-speed
mobile IoV scenarios needs further experimentation and discussion.

3.2. Routing Protocol in IoV

In recent years, a lot of research of IoV has been carried out on the communication
design in the routing protocol. The papers discussed here are listed in Table 2. One
type of routing protocol is location based. It designs communication schemes based on
location-related information, such as geographical location, topology, and maps [47,48].
In Ref. [48], Ghaffari et al. propose a VANET location-based hybrid opportunistic routing
protocol that effectively addresses the location of nodes, as well as the link quality and
density of nodes. This process utilizes a greedy forwarding scheme in which the sending
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vehicle selects the neighborhood with the greatest geographic progress. A mechanism for
identifying and remove expired nodes in the routing process has been added, which uses
information such as moving direction, velocity, and distance between nodes to measure
the lifespan of links. The best candidate node is chosen based on the opportunity and
location strategy, and the appropriate data transmission priority is set. Performance is
improved in packet delivery ratio, throughput, and end-to-end delay. In Ref. [49], a multi-
hop communication protocol based on location information and fuzzy logic is proposed.
In Ref. [50], a mobility-prediction-based routing protocol is discussed to lengthen the
network lifespan and shorten vehicles’ end-to-end delays. In Ref. [51], the intention of
the driver in the vehicle positioning system is used for neighborhood detection, packet
transmission, and path recovery in VANET, and a routing protocol based on movement
prediction is studied.

Table 2. Recent studies on Routing Protocol in IoV.

Publication Research Summary Communication Technology Scenarios

[47]
A survey about geographic routing protocols of

three type of VANETs: Delay Tolerant, Non-Delay
Tolerant and hybrid type.

Position based V2V

[48]

An opportunistic and position-based routing
protocol with candidate relay node set selection

strategy, the priority scheduling scheme and
removing the expired links mechanism.

Opportunistic and Position based V2V

[49] A multi-hop greedy position-based routing
algorithm with fuzzy logic techniques is proposed.

Position-based routing with
greedy fuzzy logic V2V

[50]

A mobility-aware dynamic-clustering-based routing
which forms clusters based on Euclidean distance,

uses a Mayfly optimization algorithm to select
cluster heads and forwards data to RSU is proposed.

Position-based clustering method V2I

[51] A routing protocol based on movement prediction is
studied using the intention of the driver. Position based V2V

[52]
An improved position-based routing protocol with a

Kalman filter and an extended Kalman filter
is studied.

Position based with Kalman filter V2V

[53]
A routing protocol considering network connectivity
to dynamically clustered vehicles and select gateway

nodes is studied.

Connectivity prediction-Based
clustering V2V

[54]

Proposed a vehicle-density-prediction-based routing
protocol in which optimal relay nodes are selected

on the road grid according to the real-time
traffic information.

Grid and vehicle-density-
prediction based, neural network V2V

[55]

A method of actively selecting routing and
communication interface with Q-learning is

proposed in the case of multi-access vehicular edge
computing environment.

Reinforcement-learning based V2V, V2I

However, the location-based protocol still has some limitations. As the conditions of
the traffic environment are changing and becoming more and more complex, the commu-
nication links are frequently disconnected because of the mobility of vehicles. Therefore,
the communication scheme based on the location information alone cannot fully reflect the
communication status between vehicles. Therefore, some studies use a Kalman filter and
an extended Kalman filter to improve location-based routing protocols [52], or consider
network connectivity to dynamically cluster vehicles, and select gateway nodes in the
cluster for communication routing [53]. The reliability of these methods is poor when the
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distribution of vehicles is uneven, and the effect is not ideal because the scope to be covered
is too large and the global structure of the network is not fully structured.

Liu et al. [54] studies a routing protocol named VDPGrid using vehicle density pre-
diction. The vehicle density prediction model uses CNN and long short-term memory
(LSTM) to mine spatial and temporal related characteristics in an urban trajectory dataset.
The results of the above prediction model are then combined with link quality and path
length to assign a weight to each path. In order to reduce communication overhead and
computational complexity, after dividing the map into multiple grids, the optimal routing
paths are stored in packets, so that data packets can be forwarded between different grids
according to road weights. The established vehicle trajectory prediction model can select
strategies based on different relay nodes of vehicle cooperation and allocate optimal paths
to transmit data packets. This method has less overhead and avoids the grid with poor
communication conditions when considering grid selection, so it has better performance in
terms of delivery rate. In the process of path selection, the collaborative decision mechanism
is adopted, and the overall performance of the method is good.

In Ref. [55], route selection in the edge computing of multi-access vehicles is discussed.
The main idea is to learn route selection using the Q-learning method in reinforcement
learning, and to actively select routes and communication interfaces to reduce the cost of
finding routes after receiving communication requests. A reward rule is designed to learn
the route selection method from the feedback of cloud or communication partners and the
feedback received by the next hop during the learning process, which is combined with
the collaboration of end-edge-cloud and different QoS requirements of delay-sensitive and
traffic-intensive applications. Vehicular edge selecting scheme based on fuzzy logic meth-
ods is also designed. It can meet the throughput and latency requirements of applications
with varying QoS requirements.

3.3. Authentication and Secure Communications in IoV

More and more connected devices are joining the IoV. The comprehensive application
of collaborative intelligence in the IoV requires a variety of devices to take part in the data
collection, transmission, and calculation processes. This leaves the communication process
between vehicles, users, Road Side Units (RSUs), and edge and cloud servers all exposed
to network security attacks. This is a very serious problem because it involves a large
range of traffic safety issues, and may endanger lives. For example, critical information
such as traffic jams, traffic light information, accident reports, and the driving status of
nearby vehicles may be intercepted and modified by malicious vehicles or operated RSUs,
resulting in missing or incorrect information that can cause damage or accidents. Therefore,
protecting the critical data communication in the network is a key link in IoV. In addition
to data communication security, another important issue is user privacy protection. The
recent studies in authentication and secure communications are listed in Table 3. There
are many forms of attacks from all sides in the IoV. In article [56], 14 possible attacks on
vehicular ad hoc networks are listed. These include Greedy Drivers, Impersonation Attack,
Wormhole Attack, Pranksters, Blackhole Attack, and Denial of Service. Therefore, high
requirements are put forward for the IoV system.

A collaborative intelligent vehicle internet environment, from the perspective of
privacy and security, must be able to [57]:

• Achieve effective and fast authentication of the validity and integrity of messages.
• Avoid exposing user privacy to anyone other than the licensor.
• Trace the appearance of malicious nodes or false information in the network.
• Ensure that the information transmitted by malicious nodes is irrelevant to the control

of vehicles.
• Withstand cryptanalysis attacks by quantum computers.
• Prevent middleman modification, counterfeiting, authentication table theft, replay

attacks, etc.
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Table 3. Recent studies on Authentication and Secure Communications in IoV.

Publication Research Summary

[56] The security and privacy issues in VANETs are reviewed.

[57] A quantum-defended blockchain-assisted data authentication
protocol is proposed.

[58] An effective vehicle-centric CRL distribution mechanism is proposed for
secure and privacy-preserving IoV.

[59] A blockchain-based data exchange system that is safe and
verifiable is investigated.

[60] A bivariate polynomial lightweight mutual authentication and key
agreement protocol with blockchain is proposed.

[61]
An authenticated key agreement protocol without bilinear pairing is

proposed to meet the security requirements of a fog-based
vehicular network.

[62]
A secure authentication key management protocol for the deployment of IoV

based on fog computing is studied to realize the safe communication in
vehicle network, RSUs, fog, and cloud servers.

[63] A framework that uses decentralized off-chain dataset and blockchain
networks is proposed to increase the security.

[64] A blockchain-based payment strategy for intelligent vehicle refueling to
protect sensitive information when data sharing.

[65] A trusted routing scheme based on blockchain and fuzzy logic is proposed to
improve discrimination of malicious user in vehicular network.

Secure communication protocol has always been an active research field. With the
development of IoT technology, security authentication protocols in IoV are also developing.
In view of the above safety requirements, researchers have carried out many related
studies recently. To solve the problems of vehicle identity privacy, distribution of certificate
revocation Lists, and computing and communication constraints of vehicular devices
intermittently connected to infrastructure, Khodaei et al. [58] designed certificate-based
batch authentication technology. However, the fast data communication between vehicles
in such schemes and RSUs requires cumbersome certificates, and has a high key storage
burden and a long operation time.

In view of the user’s computing power and the sensitive information contained in
the access policy, Fan et al. [59] designed an attribute-based ciphertext policy encryption
technology for vehicle authentication, and supported information cancellation of vehicles
that no longer shared data.

In Ref. [60], a bidirectional authentication scheme based on decentralized key manage-
ment is designed to automatically enroll, refresh, and withdraw the customer’s public key.
But these two methods are vulnerable to quantum attack.

The IoV based on fog clouds is another variant of mobile cloud computing. There are
many studies that try to combine fog computing with VANETs to satisfy the requirements
for mobility and low latency in practical VANETs. Ma et al. [61] proposed a novel protocol
with authenticated key agreement and without bilinear pairing, which realized mutual
authentication, generated session keys with security conventions for secret communication,
and supported privacy protection. Wazid et al. [62] proposes one lightweight authenti-
cating and key-managing scheme for IoV based on fog computing, which implements
authentication key management between vehicle and fog server, RSU and fog server, and
cloud server and fog server.

Recently, blockchain technology has been used in many fields as a p2p decentralized
computing architecture. In IoV, it is a distributed database retained by multiple entities
in the network that can serve as a consensus, privacy, and security protocol to protect
V2X communication.
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For traffic control of flying vehicles, Allouch et al. [63]presented the blockchain-based
lightweight security system UTM-Chain. The visited flight plan or collection of waypoints
is saved by the vehicle in a transaction, which is then verified and stored in a block to
securely manage vehicle flight. The blockchain is updated with these blocks using cloud
servers. A decentralized database is adopted to maintain encrypted vehicle driving records
to secure the privacy of information, as well as to lighten the load on the storage capacity
of the cars. The system is resilient to different threats and is easily adaptable to the IoV
environment, according to the performance evaluation.

To provide clarity, privacy, and trust while erasing any human contact, Jamil et al. [64]
discuss a new trading tactic for intelligent vehicle refueling with blockchain. The solution
is implemented using a hyperledger structure and is designed so that data sharing between
different participants and intelligent vehicle is not allowed.

In Ref. [65], Inedjaren et al. propose a secure and trusted routing scheme for VANET
based on blockchain and fuzzy logic. Using blockchain, malicious vehicles’ information
can be shared and removed. In order to avoid the burden of a proof-of-work blockchain
consensus algorithm, this paper proposes a trust-proof consensus algorithm suitable for
a VANET distributed, dynamic, and constrained resource environment. This scheme
calculates the trust degree of nodes according to their routing performance. This method
uses the Optimized Link State Routing routing protocol and is therefore only used to
eliminate the case of malicious vehicles. At the same time, the system overhead is higher
than that of other methods.

Gupta et al. [57] designs a new data authentication protocol without a certificate,
which is a conditional privacy protection authentication method based on lattice, and
realizes the security characteristics of open wireless communication in the IoV. Quantum
attacks can be reduced or avoided by using lattice cryptography. On this basis, a reliable
blockchain mechanism is proposed, which provides a basis for batch data verification
of vehicle reliability and can maintain vehicle anonymity at the same time. In the ideal
environment can achieve better communication storage and energy overhead.

The energy consumption and burden of future IoV will be increasingly high, so energy
efficiency will be another key issue, and there are quite a few research studies that highlight
this [66]. Wang et al. [67] discussed future communication and energy management issues
in IoV and proposed an energy-harvesting framework and strategy based on V2I communi-
cations to maximize the utility of battery-enabled RSUs and EVs in a V2I communications
environment. Cesarano et al. [68] studied the dynamic allocation of RSUs considering
the energy consumption and transmission cost of dynamic communication connections
between vehicles and RSUs. Sodhro et al. [69] focused on the optimization of QoE and
energy consumption in multimedia communication in IoV, and proposed a cache allocation
algorithm based on artificial intelligence. As the focus of the sustainable development of
green IoV, energy management should be integrated into every link of the IoV system.

4. Collaborative Computing in IoV

Emerging applications in the IoV are committed to providing users with efficient,
comfortable and secure services and experiences, which requires not only efficient and
stable networking and communication schemes, but also more and more computing and
storage resources. This is especially true in the IoV with collaborative intelligence applica-
tions. While on-board computing and storage capabilities of connected vehicles have been
growing rapidly, they are still insufficient for computationally intensive and delay-sensitive
tasks. For this purpose, computing tasks are transferred to other nodes with abundant
computing resources, such as utilizing cloud computing. However, the centralized cloud
computing method shows unstable connection and long propagation delay in the face
of the high-speed dynamics of vehicles in the IoV. Even if 5G communication is used,
there will be a non-negligible delay. Mobile edge computing, or multiple access edge
computing (MEC), has been introduced into IoV to address the problems associated with
delay-sensitive applications [70,71].
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In the big data environment of IoV, the current solution trend is to consider vehicle–
edge–cloud computing collaboration to deal with a large number of complex computing
tasks and quickly obtain results. Through the collaboration between the edge and the cloud,
the vehicle can transfer the low-latency or low-computation-intensive tasks that were
originally processed by the cloud to the edge near the vehicle to compute. In this way, the
computing and storage resources of edge devices can be reasonably utilized while reducing
the communication overhead. There are many research directions in the collaboration of
vehicle, edge, and cloud, such as resource scheduling problems [72], the computing-task
offloading problem [73,74], data security [75], the privacy protection problem [76], etc.
In addition, studies have discussed the improvement in communication modes and the
optimization of perception after the introduction of edge devices into IoV. In article [77], a
vehicle clustering algorithm is proposed for routing selection and communication while
edge computing devices are deployed in RSU. Dai et al. [78] discusses the problem of object
detection under the edge computing framework.

In IoV multimedia applications, Xu et al. [79] discuss how to manage content caching
on edge devices according to service requirements to ensure resource efficiency and quality
of service, and propose an edge content caching scheme. Based on edge computing,
combined with blockchain, Bayesian, and other technologies, Xiao et al. [80] study the
problem of fake news detection in the IoV. Xu et al. [81] study estimation of the amount
of multimedia services offloaded on edge servers in the future to accurately schedule and
reserve the resources of edge devices.

In this section, we will focus on computing task offloading and storage resource man-
agement. These two parts are the most important and must be solved in the collaboration
of vehicle, edge and cloud. Therefore, we can classify these existing works on collaborative
learning technologies into the following two aspects for discussion, as shown in Table 4.

Table 4. Recent studies on Collaborative Computing in IoV.

Purpose Publication Research Summary

Task offloading

[82]
The cloud–MEC collaborative computing offloading problem is

established by co-optimizing computing offloading decision and
computing resource allocation.

[83]

Intelligence-Sharing MEC framework with aggregation and
representation for context features, relationship mining and

reasoning, and knowledge transfer among MEC
servers is discussed.

[84]
A deep cooperative hierarchical end–edge framework using data

communication, computation offloading, and content
caching is proposed.

[85]
An edge caching and computing management problem that jointly

optimizes service caching, request scheduling, and resource
allocation policies is proposed.

[86]
To balance delay and energy usage, a distributed iterative approach
to handle multivariable and time-varying channel conditions for

computational offloading methods is proposed.

Data storage and cache management

[87] A cache service registry on mobile entities and a new metric to
evaluate the effectiveness of service discovery are proposed.

[88]

A collaborative edge caching scheme is proposed, which shares
communication, computation, and caching, and co-optimizes

content placement and delivery through flexible trilateral
cooperation among macro cells.

[79] An edge content caching method for service demand prediction in
the IoV in smart city scenarios is proposed.
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4.1. Big-Data-Oriented Task Offloading

In MEC architecture, the computing tasks of nodes such as vehicles and RSUs are of-
floaded to nearby devices with idle resources as much as possible. Zhao et al. [82] proposed
a collaborative method based on MEC and cloud computing to offload services to cars in
vehicle network, which means using cloud resources to provide more computing power
to vehicles. By co-optimizing computing offloading decisions and computing resource
allocation, the cloud-MEC collaborative computing offloading problem is established. In
the Collaborative Computing Offloading and Resource Allocation Optimization scheme, a
distributed computing offloading and resource allocation algorithm is designed to achieve
the optimal solution, which allows users to request CC resources through their MEC links
instead of letting edge servers make decisions. While it can respond quickly when resources
are scarce, it is not well suited to tasks with high computational or storage requirements.

The framework proposed by Guo et al. [83] can share the intelligence of different
MEC servers to improve their performance. By using MEC and knowledge transfer, the
processing speed and accuracy of object detection in different vehicle network scenarios
can be significantly improved.

In Ref. [84], it was stated that collaboration among network users can allow them to
pool their sensor data and compute results. This eliminates the need for them to manually
perform various tasks and increases the efficiency of their networks. One of the most
important factors that affects the performance of computation and caching processes
is the availability of bandwidth. This allows them to handle large amounts of content
efficiently. In order to effectively manage their networks, both cloud and users need to
have the necessary edge servers. These servers can help them with content update policy
management and broadcast planning.

By simultaneously optimizing service caching, request scheduling, and resource-
allocation policies, an online distributed method combining edge caching and computing
management is studied in [85]. It cost-effectively minimizes the time–average service re-
sponse latency of randomly arriving service requests, leveraging its online and distributed
nature to investigate real-time queue sizes and link states. To address the dynamic and un-
predictable challenges of virtual cars, the authors utilize Lyapunov optimization, matching
theory, and multiplier consensus alternating directions to solve the problem in an online
and distributed manner. Specifically, by using fresh data at each time point, the selection
algorithm saves critical storage space and maintains generality, but at the cost of additional
resource usage.

For collaborative intelligent optimization in the IoV, energy consumption is another
issue that needs to be taken into account. Gu et al. [86] proposed the energy efficiency
cost-reduction issue to carry out computational offloading in the vehicle edge computing
network in order to balance delay and energy usage. In addition, a distributed itera-
tive method is created to deal with multivariable and time-varying channel conditions.
Transmission power, offloading and uploading times, decision-making, and processor
frequencies are concurrently adjusted to establish a non-local efficient offloading method,
which increases computation flexibility while considering the impact of vehicle motion on
communication quality.

In order to strike a balance between energy consumption and delay, it is necessary to
reasonably schedule the computation tasks requested by users in the vehicle–edge–cloud
cooperative system. Ning et al. [89] studied the problem of task scheduling and energy
consumption minimization among MECs when MEC devices are deployed on RSUs, and
provided a processing model. Considering the power consumption of RSUs and EVs, task
offloading based on the connection between the remaining power and the application is the
method proposed by Zhai et al. [90]. Specifically, the cost function is established using the
weighted sum of MEC energy consumption and the response time of the application, while
combining SDN and fog computing to optimize the computational task. In the MEC–cloud
collaboration, Michailidis et al. [91] made the Unmanned Aerial Vehicle (UAV) the air relay,
combined with the ground RSUs deploying MEC to process the vehicle’s computing tasks,
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which reduced the processing delay. However, this may increase the energy consumption,
so they proposed a multivariate optimization method to efficiently manage the energy
of battery-supported RSUs and EVs. Energy issues and sustainable development are
significant parts of IoV, which are crucial to the reliability and effectiveness of the system,
and will continue to receive attention [92].

In the vehicle–edge–cloud collaboration, some researchers introduce digital twins (DT)
to solve the problem of computational task offloading and resource allocation. DT tech-
nology establishes a real-time updated and interactive digital copy of the physical world,
called a virtual model, which can be applied to mine information and simulate processes to
obtain favorable results and feedback on the physical model, so as to achieve the purpose
of optimization or provide new visualization services [93]. Liu et al. [94] adopted the power
of digital twins to intelligently screen edge devices and offload tasks. Specifically, in the DT
network, blockchain technology is utilized to ensure the consistency of information, and
then computing devices with good communication quality and reliability are selected to
allocate tasks. In order to solve the offloading balancing problem in edge computing of
IoV, Xu et al. [95] chose edge computing devices as agents to apply deep reinforcement
learning on the basis of DT technology, and the experiment verified that the proposed
method could improve the level of service QoS. Another study [96] combined digital twins,
game theory, and a distributed incentive mechanism to solve the problem of computing
resource allocation from the perspective of energy efficiency and user recognition.

4.2. Data Storage and Cache Management in IoV

Like computing resources, the distribution of storage resources in the IoV is also
uneven and increasingly unable to meet the needs of various large data services under
collaborative intelligence. Both vehicles, RSUs, and MEC servers have limited storage space.
Therefore, it is necessary to dynamically optimize storage data and cache management by
fully considering the capacity and usage of storage resources of each node when computing
tasks are uninstalled.

In Ref. [87], a cache service registry on mobile entities and a new metric to evaluate
the effectiveness of service discovery are proposed. Caching the service registry makes the
content discovery process less interactive with the RSUs. The cached contents of vehicles
are available to neighbors. This kind of vehicle cache sharing can improve the discovery
rate of accessible services and the utilization rate of services. When integrated into the RSUs
content caching scheme, users can switch from edge caching to vehicle content acquisition
based on density and mobility. This allows for more flexibility in design and is a great
advantage for V2X environments.

Qiao et al. [88] proposed a collaborative edge caching scheme, which is a shared frame-
work for communication, computation, and caching. It co-optimizes content placement
and delivery through flexible trilateral cooperation among macro cell stations, roadside
units, and intelligent vehicles in vehicle edge computing and networking. Data are cached
and shared around infrastructure such as vehicles and RSUs in the form of multiple queues.
Different strategies are designed for different time scales. The deterministic policy gradient
deep learning algorithm is used to compute the optimal solution, which encourages and
optimizes content sharing and reduces latency and packet loss.

In the IoV in the smart city scenario, Xu et al. [79] designed E-cache, an edge content
caching framework including road side units and base stations. Combined with the deep
spatiotemporal residual network, the traffic flow is predicted, and then the future service
demand is predicted. This process can be divided into two stages: (1) the historical traffic
flows are arranged into traffic flow vectors by a specific data embedding method and
then spliced into tensors with different time dependencies. The future service demand is
predicted after predicting the future traffic flow through the deep spatiotemporal residual
network. (2) Initialize the edge content caching scheme according to the above selection,
then modify the crossover and mutation, and select the reference point to get the optimal
edge content caching scheme with the shortest executive time and lowest energy usage.
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5. Collaborative Learning Technologies

Machine learning and AI have infiltrated various research and application fields since
the Renaissance caused by backpropagation algorithms in the 1980s. AI technology with
machine learning methods provides more intelligent solutions to improve the efficiency of
IoV. With the development of the field of AI, many excellent machine learning methods
have been derived, and also applied to the IoV for intelligent decision-making, which can
be optimized for different related problems and needs. For example, unsupervised learning,
supervised learning, deep reinforcement learning, and federated learning are used to solve
specific problems such as path planning, communication routing protocol, task offloading,
load balancing, vehicle blockchain, network attack prevention, and resource management
based on traffic prediction.

Federated learning is a distributed machine learning method. Under the guidance
of a central server, multiple clients use local data to train a model, then aggregate the
model parameters of each client in the central server to integrate the knowledge, and then
distribute it to each client. Since only intermediate model parameters are sent to the server
instead of raw local user data, this is a way to obtain global knowledge under the premise
of protecting user privacy.

Ensemble learning completes the learning task by constructing and combining mul-
tiple learners; that is, combining multiple weakly supervised models in order to obtain
a better and more comprehensive strongly supervised model. The underlying idea of
ensemble learning is that even if a weak classifier makes an incorrect prediction, other weak
classifiers can correct the error back.

As shown in Figure 6, both federated learning and ensemble learning are distributed
learning methods. They are all parallel learning models. However, the difference is that
federated learning has the same model regardless of client or server, while ensemble
learning has different models. Note that the ensemble learning uses multiple models to
generate a better decision, where the data distributed to different models could be different
or the same.

Figure 6. Learning parallelism (left: data parallelism, the same model; right: model parallelism,
different models).

In the following, we provide a detailed discussion of the key learning approaches for
collaborative intelligence in IoV, including:

• Federated learning.
• Ensemble learning.
• Supervised learning.
• Reinforcement learning.

5.1. Federated Learning for IoV

Lim et al. [97] discuss FL in detail from the perspectives of communication cost,
resource allocation, security and privacy, and applications in mobile edge computing, and
point out the challenges and feasible research directions. They believe that FL has strong
optimization potential in mobile edge computing, and FL is an important scheme used to
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realize collaborative machine learning by transforming the centralized cloud computing
model into a distributed edge–cloud collaborative computing.

Abreha et al. [98] study the routing protocol, framework, architecture, and hardware
requirements of FL, then illustrate its feasibility through two application cases, and explain
its advantages and challenges in edge computing from the perspective of engineering
applications. The conclusion they come to is that FL is highly suitable for edge computing
tasks because it utilizes the data and computing power of edges effectively.

Pokhrel and Choi [99] conduct a theoretical analysis about the latency and loss per-
formance for multiple TCP connections in a Wi-Fi-available vehicular environment, and
introduce a FL method to maximize system performances while maintaining the fairness
among different TCP flows. Learning models are installed in vehicles, and the learning
results are sent to a federal coordinator that is connected to vehicles through RSUs.

Xiong et al. [100] discuss the delay-aware task offloading problem in vehicular edge
computing environments, where different types of communication approaches—namely
dedicated Short Range Communication (DSRC), cellular vehicle-to-everything (V2X) com-
munication, and millimeter wave (mmWave) communication—are available. In order to
efficiently utilize the available communication and computing resources to minimize the
task execution delay, they propose a FL-based approach to learn the best allocation policy
in complex vehicular environments. Q-learning is used at each FL client to find the local
best policies, and the learned results from multiple FL clients are aggregated to deal with
different conditions. They use computer simulations to show that the FL-based approach
can achieve a higher offloading success rate and better utilization of the communication
and computing resources compared to existing baselines.

Fadlullah and Kato [101] consider a aerial–terrestrial networking scenario where the
UAVs serve as base stations. They first introduce a distributed heterogeneous computing
platform (HCP) integrating UAVs and terrestrial base stations. Then, they propose a two-
stage federated learning algorithm to enhance the content caching process. The first stage of
local training is conducted at mobile devices, and the second stage of training is conducted
at UAVs. HCP aggregates the local models from mobile devices and UAVs to generate the
global model.

Zhang et al. [102] discuss the use of federated learning to estimate the intelligence level
of computer systems. They propose a vertical federated learning framework to conduct an
intelligence ranking of autonomous vehicles without disclosing user data. Experimental
results show that the FL-based approach outperforms existing baselines with acceptable
time efficiency on both real and simulated data.

Yu et al. [103] discuss the joint communication, computing, and caching resource
allocation problem for Ultradense edge computing environments, including smart vehicle
systems. They design a DRL approach to minimize the task offloading delay and network
resource consumption. A FL approach is also used to train the DRL model in a distributed
manner for the purpose of data privacy protection. Experimental results demonstrate the
effectiveness of both the DRL and FL.

Shiri et al. [104] consider the control problem of a massive population of UAVs in
communication-resource-limited environments. A FL approach is used to distribute the
learning process. One UAV is selected as the central unit; the other UAVs are used as FL
clients. A neural network model is used at each FL client (UAV). The selection of the central
unit is not discussed.

Sun et al. [105] integrates FL technology with digital twin technology for air–ground
networks where a drone works as the central server of FL, and ground terminals work as
FL clients. Digital twin technology is used to capture network dynamics in the training of
the model. Numerical results are used to show the significance of the proposal in terms of
learning accuracy and energy efficiency.

In Ref. [106], a FL approach is discussed for image processing applications in vehicular
IoT. In addition, a model aggregation method is introduced to improve the accuracy of the
global model and minimize the communication overhead for model exchanges. The model
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aggregation method takes into account the quality of local images, and the computational
capability on each candidate for FL client.

Zhang et al. [107] propose a FL-based image classification system for multi-UAV
networks. In this system, each UAV updates its local model based on the data from on-
board cameras. A ground fusion center aggregates the local machine learning models
generated by multiple UAVs to form a global model. The authors use computer simulations
to demonstrate that the FL approach is able to reduce the communication cost significantly
for a given target test accuracy, compared with the centralized training approach.

Saputra et al. [108] propose a FL-based energy demand prediction method for electric
vehicle (EV) networks. In this method, charging stations are the FL clients, and the smart
grid provider is the central server aggregating local models. A deep neural network is
used as the machine learning model. In addition, taking advantage of the characteristic
that charging stations in close geographical locations always have similar numbers of
transactions, and similar transaction parameters, they also employ a clustering approach to
generate CS clusters in order to reduce the impact of biased prediction results and improve
the prediction accuracy.

In Ref. [109], Liu et al. introduce an aerial–ground integrated air-quality-sensing
framework using FL based on UAV swarms. This framework includes aerial UAV swarms
and ground-sensing systems, where the aerial-sensing part uses UAV cameras and the
ground-sensing part uses static monitoring stations. In order to enable collaborative aerial
sensing among UAVs from different agencies, UAVs work as FL clients to conduct local
training, avoiding the transmission of camera data to other entities. A CNN model is used
to learn the mapping between camera data and air-quality level. An UAV is used as the
central server, which aggregates the learned model from multiple FL clients.

Thorgeirsson et al. [110] discuss the use of FL in energy demand and driving range pre-
diction for electric vehicles. They consider two different types of learning models, namely,
linear regression and neural network. EVs perform training of machine learning models
based on local data, and the backend infrastructure (cloud) aggregates the local models to
generate the global model. Different driving behaviors are considered by grouping drivers
into multiple groups with a clustering technology, where each group defines its own model.
They also discuss the effect of different extensions of the federated averaging algorithm on
the FL performance.

Wang et al. [111] propose a secure federated learning framework for UAV-assisted
crowdsensing applications. The UAVs train local models and send the models to a mobile
edge computing (MEC) server, which could be installed on a base station for aggregation.
Upon reception of a sensing task request, the MEC server selects a set of UAVs to perform
the task. The framework can enable better utilities for UAVs than existing baselines.

Chai et al. [112] propose a hierarchical FL framework for knowledge sharing in IoV
based on blockchain technology. Considering the diversity of driving routes and road
environments, a hierarchical blockchain is introduced to improve the scalability of the
proposed framework in terms of the network size. There are two types of FL clients and
two types of blockchains, namely, vehicle client, RSU client, ground chain, and top chain,
respectively. First, vehicles act as vehicle clients to train local models and then send the
model updates to nearby RSUs. Then, RSUs collaborate with each other to record the model
updates to the ground chain. RSU clients use the knowledge stored in the ground train and
their own observations to train their models. RSU clients then record the learning results
from both RSU clients and vehicle clients to the top chain, for the purpose of exchanging
the information with other entities.

Lu et al. [113] propose a scheme for data sharing for IoV based on FL and blockchain
technologies. A blockchain approach is employed to ensure the security. Based on the
blockchain, an asynchronous FL is introduced to take into account the capability difference
in FL clients. The central server selects the FL clients and the corresponding local training
parameters in an adaptive approach by considering the capability of FL clients and the
dynamic environments.
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Yu et al. [114] propose a mobility-aware FL approach for content caching in IoV.
Vehicles exchange content caching experience with each other using a FL-based approach,
where vehicles are FL clients and RSUs are central servers. Each FL client trains a neural
network based on local data related to content caching, and sends the learned experience
to a RSU in proximity. A mobility-aware FL client selection approach is also proposed to
ensure high-mobility training topology. The client selection considers the channel quality,
connection time, and the importance of local data.

Lim et al. [115] propose a FL-based approach to enable distributed machine learning
for UAV-Enabled IoV scenarios, including vehicle traffic prediction and parking slot man-
agement. A model owner allocates training tasks to UAVs. The whole geographical area is
divided into multiple subregions, where each region is allocated to one UAV for training.
A multi-dimensional contract-matching-based incentive mechanism is also designed to
facilitate the participation of more candidates in the client selection.

Mowla et al. [116] propose a FL-based jamming defense mechanism for flying ad hoc
networks. A Q-learning model is used in distributed learning of the best defense policy.
Possible movements of UAVs are defined as the actions. UAVs learn the best defense
policy by interacting with environments, and the local models are aggregated at an edge
computing server such as a base station. By sharing Q-values among multiple UAVs with
FL, the convergence speed at each vehicle can be reduced.

Pokhrel and Choi [117] design a blockchain-based decentralized FL approach for IoV.
Vehicles act as FL clients, and exchange information with other network entities through a
blockchain. The model updates from multiple FL clients are also aggregated by the blockchain
network. Without discussing the details of the FL scheme, Ref. [117] discusses the effect of
blockchain parameters and wireless channel parameters on the system-level performance.

There are also some studies discussing underlying technologies that better support FL
in vehicular environments. Pham et al. [118] consider a FL scenario for mobile devices with
limited battery supplies. They propose using UAVs to transfer power to mobile devices
to enable sustainable FL-based wireless systems. They focus on UAV resource allocation
and UAV placement. Rihan et al. [119] consider some FL-enabled use cases for vehicular
IoT, and discuss fog computing architecture for V2X networks. Based on some discussion
about the use of deep reinforcement learning (DRL)-based resource allocation and task
offloading in vehicular fog computing environments, they also explore the possibility
of using FL algorithms to improve the reliability of V2V communications. In Ref. [120],
Yang et al. discuss the FL client scheduling problem in mobile networks involving smart
phones or vehicles. They develop an analytical model to describe the performance of FL in
wireless systems.

Yang et al. [121] propose an over-the-air computation approach to enabling FL in a
wireless multiple-access channel. They propose a sparse and low-rank modeling method to
facilitate the communication between the FL clients and the central server, allowing more
clients to upload their model successfully.

Ng et al. [122] consider a UAV-enabled IoV scenarios where UAVs work as relay
nodes to help the communication between a FL client (vehicle) and the central server.
They propose a joint auction–coalition formation framework to incentivize UAVs in the
forwarding of model updates.

5.2. Ensemble Learning for IoV

Jiang and Yin [123] propose a fault detection approach for vehicular cyber–physical
systems based on an ensemble learning scheme. An accurate fault diagnosis requires the
support of a large amount of data. However, these data are from different types of sensor
devices and show different values in different weather and road conditions. Therefore, the
fault detection should consider the variety of sensor data and environments. To conduct
a more accurate diagnosis in various conditions, Jiang and Yin use an ensemble learning
scheme to improve the adaptability of the fault diagnosis. The procedure of the scheme is as
follows. First, different types of sensor information are collected through multiple sensors.
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Second, the data are processed by multiple models, where each model can recognize a
special environmental condition. While each model reflects a limited feature of the whole
system, by using the ensemble learning strategy to combine the results from multiple
models, the scheme is able to enable more efficient data-driven fault diagnosis in complex
vehicular environments.

Alamgir et al. [124] discuss the use of ensemble learning in finding the best modu-
lation and coding scheme (MCS) for communications between underwater vehicles and
underwater base stations. They employ the boosting technique, a type of ensemble learning,
to analyze a measured sea trial dataset that includes channel parameters under different
conditions. They further combine the regression tree technique with a boosting technique
to find the best mapping between the MCS level and channel parameters. They claim that
their approach can achieve 99.97% accuracy in classifying MCS levels.

Valle et al. [125] use random forests (RF), a well-used ensemble learning method,
to better satisfy different service requirements, including extra-low latency and large
throughput, in different vehicular scenarios. They consider a heterogeneous network
scenario that includes multiples types of networks, including cellular communications
through a base station, cellular V2V, and IEEE 802.11p. The objective of the ensemble
learning method is to find the best available network according to the current vehicular
environment and application requirements. The RF algorithm constructs multiple trees,
where each tree is generated by parts of parameters (features) of the data. By using the RF
algorithm, Ref. [125] is able to build an efficient system by making a decision based on the
knowledge from multiple trees, which is not possible by a single simple algorithm.

Zhang et al. [126] use an ensemble learning approach in real-time driver behavior recog-
nition tasks. They employ a deep CNN with multiple inputs, namely, side video streams, side
optical flows, front video streams, and front optical flows, where each input is a weak classifier
but has its own advantages in extracting some special features. By merging four different
classifiers with the ensemble learning approach, Ref. [126] can improve the classification
accuracy compared with existing baselines with low computational complexity.

Making a good prediction about the future network status and user traffic patterns is
essential when it comes to providing successful network resource allocation in complex
environments. In Ref. [127], Ferreira et al. discuss the use of ensemble learning in fore-
casting network performance metrics for fifth-generation (5G) networks. They propose a
real-time distributed framework that uses multiple algorithms to make better forecasting.
They show that an ensemble of multiple good algorithms can achieve a better prediction
for different performance metrics. A vehicular network dataset in Porto, Portugal, is used
to evaluate the performance of the framework.

Raja et al. [128] use an ensemble learning approach to enable an efficient intrusion
detection system in vehicular ad hoc networks (VANETs). They consider the privacy pro-
tection of vehicle data and propose a collaborative approach based on private classifiers
that are installed on each vehicle. While each vehicle is a weak classifier, using the com-
munications among neighboring vehicles, the results from multiple vehicles are merged
with an ensemble learning method, resulting in a much better intrusion detection system.
Simulation results show that the ensemble classifier can achieve 96.94% accuracy without
violating the user’s privacy.

In Ref. [129], an ensemble learning approach is applied in the path prediction of
obstacle vehicles for the purpose of enabling a more advanced driver assistance system.
Three different types of sensor data—namely, light detection and ranging (LiDAR), camera,
global positioning system (GPS)—are considered trained by the ensemble learning. A
recurrent neural network (RNN) is combined with ensemble learning to capture temporal
behaviors of vehicles and environments. The authors show that the ensemble learning can
improve the robustness of prediction with a network model of small size, which ensures its
validity in dynamic road scenarios.

Toprak et al. [130] discuss the pedestrian detection problem in railway driver support
systems where existing object detection technologies do not work well. They propose
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a three-stage system based on ensemble learning. In the first stage, various non-deep
feature-classifier models are used to generate bounding boxes. Based on the results of
the first stage, the second stage applies multiple deep CNN models to generate multiple
individual adapted classification results. The final stage employs an ensemble learning
method to combine the individual results to find a better detection result. The ensemble-
learning-based system can significantly improve the detection accuracy as compared with
well-used existing models.

Zhao et al. [131] propose an ensemble-learning-based approach for short-term ve-
hicle traffic prediction. They use an ensemble learning model with the long short-term
memory (LSTM) technique. The approach consists of two stages. In the first stage, dif-
ferent LSTM models repressing different effects of different time lags on the prediction
are trained separately. In the second stage, ensemble learning is used to determine the
weight coefficient of each LSTM model, and combine different models to make the final
decision. They apply six different highway traffic datasets from Seattle, USA, to show that
the ensemble-learning-based approach could perform better than six existing traffic flow
prediction models.

Zhang et al. [132] propose WBELA, a weight-based ensemble learning algorithm, for
intrusion detection in heterogeneous vehicular environments by identifying abnormal
messages in the controller area network bus network. They use support vector machine
(SVM), K-neighborhood (KNN), and decision tree (DT) methods as the basic classifiers.
First, the CAN messages are processed by the basic classifiers for preclassification. Based on
the preclassification results, an ensemble learning algorithm is used to optimize the weight
of each classifier in order to reach the maximal accuracy and minimal errors. Simulation
results are presented to show the advantage of the algorithm as compared with existing
baselines in terms of precision and false positive rate.

For the purpose of enabling context-aware computing of smartphone applications,
Alotaibi [133] discusses the problem of transportation mode detection of smartphone users,
and proposes a method based on an ensemble learning algorithm. The method uses
three different basic classifiers, specifically, random forests (RF), gradient boosting (GB),
and decision trees (DT). Each classifiers votes independently, and the ensemble learning
algorithm makes a better prediction by taking the majority vote of these three classifiers.
The simulation results show that the method can achieve better results compared with
existing human activity recognition approaches to classifying different transportation
modes, namely, walking, standing, riding a train, driving a car, and riding a bus.

Wang et al. [134] propose an ensemble-learning-based method for traffic congestion
detection in complex scenarios. The method first uses multiple deep neural networks to
extract features from the data. In order to consider different levels of features, including
low-level, middle-level, and high-level features, hierarchical feature extraction networks
are employed. After that, based on the results from multiple networks, an ensemble
learning approach is used to further improve the detection accuracy and generalization
ability. Simulation results demonstrate that the deep learning ensemble can achieve a better
performance compared with single estimator in complex scenarios.

5.3. Clustering with Unsupervised Learning

While k-means algorithm or its extensions are widely used, there are also some other
clustering approaches. Here, we first discuss the use of k-means algorithms for IoV, and
then show the applications of other clustering techniques.

Yousif et al. [135] discuss a license plate (LP) recognition problem where multiple types
of LPs, namely Arabic–Egyptian license plates and English license plates, are considered. A
k-means clustering algorithm is applied to segment the LP characters. Experimental results
show that their approach can achieve higher recognition accuracy than existing alternatives.

Pustokhina et al. [136] present a deep-learning-based license plate recognition model
that uses a k-means algorithm in character segmentation, and uses CNN in character
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recognition. Experimental results on three different datasets show the advantage of the
model compared with existing baselines.

Yang et al. [137] study the challenges in recognizing the decision-making style of a
driver. They introduce an approach that integrates an unsupervised learning approach,
specifically, a k-means algorithm, with a supervised learning approach, a k-nearest neighbor
(KNN) algorithm. They demonstrate that their approach can improve the traditional KNN
algorithm with 72.67% faster recognition time and can shorten the recognition time by
more than 72.67%, with higher accuracy.

Rong et al. [138] discuss the challenges of simultaneous localization and mapping in
mobile environments, and employ a k-means algorithm to conduct image segmentation for
the purpose of better processing dynamic regions. They use experiments to demonstrate
the validity of the approach in terms of trajectory accuracy and computing speed.

Bhaumik et al. [139] discuss the clustering problem of a channel impulse response
for 60 GHz mmWave multipath channels in vehicular environments. Considering that
the performance of the k-means algorithm is dependent on the value of k, they combine
the k-means algorithm with a time–amplitude clustering algorithm to group multipath
components based on their time delays and amplitudes.

Gedschold et al. [140] discuss a similar multipath clustering problem in vehicle-to-
infrastructure (V2I) channels. They employ a variant of the k-means algorithm, namely,
K-Power-Means, to conduct the clustering of multipath components. An algorithm is also
used to find the best number for clusters before conducting the clustering.

Song et al. [141] study the multi-hop broadcast issue in VNs, which is considered to
be useful for disseminating safety-related messages. They introduce a vehicle-clustering-
approach-based k-means algorithm. The selected cluster heads are used as forwarder
nodes in multi-hop broadcasting. The geographical position of vehicles and inter-vehicle
distance are considered in the clustering algorithm. Since the signal quality and vehicle
mobility are not discussed in the clustering algorithm, this clustering algorithm requires an
enhancement for handling complex vehicular environments.

Sliwa et al. [142] discuss the data transfer problem in for delay-tolerant vehicular
applications, such as environmental map construction, traffic monitoring, weather sensing,
and so forth. They define some geographical regions as black spots where the transmission
rate should be reduced due to insufficient communication capability. Based on vehicular
big data, a k-means algorithm is used to conduct clustering of black spots.

Shehzad et al. [143] consider the use of UAVs to improve the communication perfor-
mance between small cell base stations. The focus on the optimal placement of UAVs for
the purpose of serving more small cell base stations. A k-means algorithm is used to solve
the problem by considering multiple metrics such as the achievable data rate, available
bandwidth, and the capability of UAVs. Numerical results are used to show the superiority
of the algorithm over the conventional approach in terms of the achievable data rate and
spectral efficiency.

Hoang et al. [144] consider a wireless authentication system that uses UAVs as relay
nodes. They discuss the problem of how to detect eavesdropping attacks targeting UAVs.
They build a detection model combing one-class support vector machines (OC-SVM) with
k-means clustering. Numerical results are presented to show the proposed model in terms
of stability.

Targeting for mobile communication systems for high-speed trains and vehicles,
Albakay et al. [145] propose an improved k-means algorithm for estimate frequency offset
from the in-phase and quadrature constellation of the received signal. They divide the
received signal symbols into multiple groups and find the centroid of each group using
the modified k-means algorithm. The algorithm is able detect the constellation rotation
within a range between −45 degrees and 45 degrees for QPSK signals with additive white
Gaussian noise.

He et al. [146] consider a drone-aided emergency communication network in post-
disaster scenarios, and employ a modified k-means algorithm to solve the drone deploy-
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ment problem with the aim of minimizing power consumption of drones while satisfying
user requirements regarding the transmission speed. The k-means algorithm is used to
find the optimal number, altitude, and transmit power of drones.

Ye et al. [147] discuss the effect of vehicle density on the communications in VANETs,
and propose using a clustering approach to reduce the packet collisions in VANETs. They
use an improved k-means algorithm to group vehicles into different clusters by considering
the similarities in movements, vehicle location, and inter-vehicle distance. Based on the
vehicle clusters, a message distribution mechanism is designed. Computer simulations
are used to show that the mechanism can achieve a higher packet delivery ratio and lower
latency compared with existing baselines.

Different vehicular applications possibly exhibit different levels of service require-
ments. Network slicing is a promising technology for fulfilling the service requirements
involving a large amount of diversity. Cui et al. [148] propose a k-means++ algorithm to
group the services into different clusters based on the service-level agreement—including
the capacity, coverage area, and QoS requirements—between the service provider and
customer. Based on the clustering results, different network slices are provided to different
groups of services.

Ozasa et al. [149] consider a communication network where UAVs act as base stations,
providing wireless communications services to other terminals. They discuss the joint
UAV placement and frequency division problem in multi-UAV environments. A k-means
algorithm is used to derive the best horizontal arrangement of UAVs. The frequency
division is conducted after the clusters are generated.

Wahlstrom et al. [150] study the smartphone placement problem for smartphone-based
driver monitoring. They use a kernel-based k-means clustering approach to infer the place-
ment of smartphones within vehicles (the position of the smartphone with respect to the
vehicle). They argue that knowing the placement of the smartphone could provide benefits
in many scenarios, such as accident reconstructions and improving driving behaviors.

Yuan et al. [151] study the modeling of the driving cycle of a city tour bus. The
driving cycle construction is useful for evaluating vehicle performance and measuring
fuel consumption. As the conventional k-means algorithm is sensitive to its initialization
parameters, an improved version of k-means—namely, GA-K-means—integrates a genetic
algorithm. The GA-K-means algorithm groups micro-trips, specifically, an excursion
between two successive time points at which the vehicle is stopped. They further combine
GA-K-means with a hidden Markov model to construct the driving cycle of city tour buses
in Beijing.

Forster et al. [152] study how to identify multiple characteristic driving cycles from
vehicle data representing real driving scenarios. They use a k-means algorithm to find
k groups of micro trips to represent different driving cycle features. They show that by
choosing only one parameter, k, the k-means algorithm can achieve a scalable solution for
different granularities of driving scenarios.

In Ref. [153], the density-based spatial clustering of applications with noise algorithm
is employed to design an adaptive clustering scheme for low-power base stations in
coordinated multipoint transmission and reception operation. They show that DBSCAN has
advantages in identifying geographically isolated low-power base stations and improving
system throughput compared with the k-means algorithm.

For the purpose of enabling more intelligent traffic monitoring, Cao et al. [154] discuss
the lane determination of vehicles based on millimeter-wave radar data. They propose a
kernel line segment adaptive possibilistic c-means clustering algorithm to achieve better
clustering. KLSAPCM is able to conduct efficient clustering without knowing the position
and angle of the radar. The experimental results are used to show the advantage of
KLSAPCM in a lane determination problem over other clustering algorithms, including
DBSCAN and k-means algorithms.
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In Ref. [155], hierarchical clustering is employed for anomaly detection in VANETs.
The anomaly detection is conducted at a roadside unit without revealing the content of user
traffic. The anomaly detection also uses dynamic time warping in distance measurement.

Chen et al. [156] discuss the driving cycle prediction problem for hybrid electric
vehicles. They employ a k-shape clustering algorithm to group the driving cycle data
into six different groups. Simulation results are used to show that the k-shape algorithm
performs better than k-means in this problem.

5.4. Reinforcement Learning

In order to achieve a more accurate understanding of the complex vehicular environ-
ments, a vehicle has to utilize the information received from other vehicles in the vicinity.
However, the vehicle has to ensure that whether the messages received from other vehi-
cles are trustworthy or not. If the messages include fake or misleading information, the
perception accuracy degrades drastically, possibly resulting in a fatal error. Therefore, the
trust management in vehicular environments is an important consideration for achieving
a good decision. Guo et al. [157] propose a context-aware trust management model in
VANETs. The context includes internal information, specifically the information collected
from the local sensor (the sensor devices installed on the current vehicle), and external
information received from other vehicles. A Q-learning-based approach is proposed to
set the weights of the internal and external information in making the final decision. The
information entropy theory is used in the trust calculation. Simulation results show that
the model can achieve a higher precision for trust evaluation with reasonable commotional
and communication overhead.

Multi-agent reinforcement learning (MARL) is widely used in vehicular IoT to enable
an efficient system in a distributed manner. However, the coordination among vehicles in a
dynamic environment is particularly challenging. Yu et al. [158] formulate the coordination
problem by using a dynamic coordination graph. They propose coordination-graph-based
MARL approaches to optimize the joint maneuvers of multiple vehicles. Experimental
results are presented to show the performance of the proposed approaches in the decision
making surrounding following or overtaking in highway situations to enable high-level
strategic control of vehicles.

Zhou et al. [159] consider the decentralized control of multiple robots, such as UAVs,
for patrolling in partially observable environments with unknown prior knowledge. For
example, for a post-disaster scenario, while an UAV can patrol continuously over the
disaster area and collect information by coordinating with other UAVs, the decentralized
control of multiple UAVs is challenging due to the environment, which is unknown and
only partially observable for each UAV. The authors formulate the problem as a Bayes-
adaptive transition-decoupled partially observable Markov decision process, and propose
a Bayesian RL algorithm to improve the coordination and planning process of multiple
robots. The experimental outcomes indicate that the proposed algorithm performs better
than the existing methods.

It is important to consider stability and efficiency in the design of a RL algorithm,
especially for IoV applications, which require ultra-high reliability. Zhang et al. [160]
propose a deterministic promotion RL algorithm approach that improves policy evaluation
in critique and exploration in action. The action exploration in the proposed algorithm
is conducted by a normalization-based evaluation approach in a way that can increase
efficiency and decrease the dependencies among the explored actions. They use both
computer simulations and real-world experiments to show the advantage of the proposed
algorithm in a longitudinal velocity control scenario for vehicular environments.

In Ref. [161], Feng and Haykin discuss the jamming problem in vehicular networks.
They investigate anti-jamming V2V communications based on joint control of power and
channel selection. The problem is formulated as a multi-armed bandit problem, and a
RL-based approach is tailored to solve the problem. Extensive simulations are conducted to
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show the performance of the approach in terms of multiple performance metrics, including
power strategy, channel selection, and throughput.

Xing et al. [162] discuss the importance of trust evaluation in intrusion detection
systems. They argue that the trust evaluation of vehicles should be conducted not only
by RSUs, but also by the vehicles in the vicinity. However, in order to achieve a trust
evaluation based on the collaboration of a large portion of vehicles, an efficient incentive
mechanism is required. Therefore, the authors propose a RL-based incentive mechanism to
involve the participation of more vehicles. They use computer simulations to show that the
mechanism can achieve a higher detection ratio than the conventional approach.

Kapoor et al. [163] discuss the user association problem for small cell dense VNs, where
a vehicle could possibly connect to multiple small cell base stations. The mobility of vehicles
result in handovers between different base stations, which makes the user association
policy—specifically, which base station to connect with at a particular time—very important.
In Ref. [163], the authors propose a signal-quality-aware user association algorithm based
on Q-learning, a form of RL. The algorithm is able to make a tradeoff between the number
of handovers and system performance while guaranteeing the QoS requirements.

Zhou et al. [164] discuss the radio resource allocation at base stations in VNs. They define
a Q-learning model where the state is the uplink and downlink data rate against aviate channel
resource. The action is the ratio between the resource allocated for uplink and downlink
data transmission. The reward is defined based on multiple network status parameters. By
using the Q-learning algorithm, Ref. [164] is able to consider the future reward for a resource
allocation policy, which can provide a solution with long-term efficiency.

Wu et al. [165] propose a RSU-assisted routing protocol for VANETs based on
Q-learning. They use a three-phase routing algorithm. In the first phase, a packet is
forwarded from the source node to a nearby RSU. In the second phase, the packet is for-
warded between RSUs. In the last phase, the packet is delivered to the destination from a
RSU to the destination. Hello messages are used to exchange information among neighbors
and update Q-table.

Samir et al. [166] consider a scenario in which UAVs act as relay nodes to improve the
coverage of cellular infrastructure. A reinforcement-learning-based approach is proposed
to optimize the trajectories of multiple UAVs while minimizing the number of deployed
UAVs and energy consumption. The learning is conducted at the central unit that interacts
with other network entities to update the model. Numerical results are used to demonstrate
the advantage of the RL-based approach over existing baselines.

Raja et al. [167] discuss the communication gateway selection problem in a multi-
access vehicular environment where multiple types of radio access technologies, including
Wi-Fi and cellular communication, coexist. They propose a Q-learning-based approach to
support each vehicle to select the best gateway nodes among a cellular base station and
multiple RSUs where RSUs are connected with vehicles through a Wi-Fi interface. In the
learning model, the state is defined by the distribution of vehicles, and the action is the
selection of the gateway. While each vehicle is a learning agent, the real learning process
is conducted a centralized server, and the software defined network (SDN) technology is
used to achieve centralized control of the entire vehicular network.

There are some studies which discuss the use of reinforcement learning in improving
vehicle path planning. Cao et al. [168] propose a Q-learning algorithm to minimize the
delay in transportation. In the Q-learning algorithm, the action is the driving direction, and
Q-value represents the probability of satisfying the deadline constraint in transportation.
They use both artificial transportation networks and real road networks in Beijing, Munich,
and Singapore to evaluate the efficiency of the proposed algorithm.

Zhang et al. [169] propose a RL-based scheme for route planning for hybrid electric
vehicles for the purpose of finding the route with minimum energy consumption. The
RL model is defined as follows. The state is represented by a vector consisting of vehicle
position, power demand, vehicle velocity, and the state of charge for battery. The action is
represented by a vector that consists of output torque from engine, gear selection, and direc-
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tion. The reward is defined based on the energy recuperation level. They conduct computer
simulations by using Toyota Prius as the vehicle model, and evaluate the performance of
the proposed approach for various navigation tasks.

6. Discussion of Future Research Directions

The rapidly growing paradigm trend of Internet of Vehicles predicts that it will gain
attention and development in many fields and industries in the next decade. The main
goal of applying collaborative intelligence ideas and technologies to the field of IoV is to
integrate the data and resources of a large number of vehicles, users, infrastructure, and
networks, providing systems with reliability and connectivity that are easy to manage,
control, and operate. Due to the dynamic nature of vehicles, the diversity of devices, the
low time delay requirements of applications, and the connectivity of V2X, various special
requirements are put forward for the collaboration of this complex system. However,
these aspects bring new technical challenges to the design and expansion of the IoV field.
Important future research directions that will help to conquer those challenges are presented
in Figure 7, as follows:

• Big Data Management: In IoV under collaborative intelligence, multiple types of
smart devices generate a large amount of data, which are stored locally or in the
cloud. Network latency and insufficient storage affect computation and analysis, and
may even break the system. Therefore, the real-time management and analysis of
IoV big data has always been a challenge, but will also be a challenge in the future.
(1) Comprehensive awareness of the environment: Fusing sensor data and historical
knowledge in the collaborative network provides comprehensive awareness of the
environment for the whole system and each entity, so as to improve the accuracy and
security of decision making. (2) Storage and preprocessing of big data: Effectively
utilizing the storage capacity of edge nodes and cloud data centers to further compress
the increasing massive data and eliminate a large amount of redundancy is another
important research direction. (3) Data transmission and unified standards: In the case
of vehicle movement and low latency, big data have more stringent requirements on
communication, so reducing the amount of transmitted data and improving communi-
cation efficiency is inevitable. Research on more reasonable communication protocols,
design of edge computing models with a small amount of data transmission, and
use of semantic communication to compress data are all directions which researchers
can make further efforts to explore. Furthermore, establishing a unified transmis-
sion standard and increasing investment in infrastructure can greatly accelerate the
development of IoV.

• Sparse Data: Since most collaborative intelligence requires machine learning methods
that are data-driven or interact with the environment, a large amount of training data
will be used to train a model for a certain task. This puts forward high requirements for
data collection and processing, but some tasks make it difficult to collect corresponding
high-quality data in reality, resulting in the problem of data sparsity. In order to
overcome this problem, many studies use realistic simulators to generate simulated
data for model training, and then transfer to real data to fine-tune the model. On the
other hand, the learning model is built and adjusted, or other intelligent methods
are combined to optimize the training effect. In addition, expanding the scope of
collaboration and deepening the cooperation in collaboration can alleviate the problem
of data sparsity to a certain extent. This is also an aspect to which future researchers
can devote their energy.

• Stability: Vehicles are dynamic in nature, and the network topology of IoV also changes
at any time, so stability is also a major challenge in this field. The stability is reflected
in the network connectivity, and the data and signal transmission between agents need
high-quality communication capabilities. Although there are many research studies
on the cooperative communication of Internet of Vehicles, the Internet facilities for
Internet of Vehicles or Internet of Things are not perfect in most areas, and it will take
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some time to achieve coverage of 5G and the development of 6G. Therefore, the real
realization of collaborative intelligent communication in the Internet of Vehicles still
needs efforts.

• Reliability: Applications related to intelligent transportation and UAV detection are
usually sensitive to safety, because such applications require high reliability, otherwise
there will be serious losses of life and property. In the application of Internet of
Vehicles, reliability is an important issue due to the large scale of the network, complex
computing architecture, and poor network stability.

• Different Purposes, Different models: Collaborative intelligent models based on ma-
chine learning are widely used in Internet of Vehicles tasks and have achieved good
results, such as reinforcement learning, federated learning, centralized learning, etc.
However, in different tasks and objectives, different learning models and methods are
usually used. The data demand is large, the processing is tedious, the model parame-
ters are particularly large, the training time is long, and the model is not universal. In
future research, this problem can be optimized from two perspectives. (1) Building
a unified large model that integrates data and is suitable for multi-class tasks after a
simple fine-tuning process. (2) Constructing different models for different purposes to
refine tasks and achieve better results.

• Safety: Safety is one of the core challenges in the field of Internet of Vehicles. It is a
network that is connected by a variety of devices and integrates different technologies
and standards through the Internet to achieve collaborative intelligence. Not only must
infrastructure such as roadside units, cloud storage centers, and computing centers be
connected to the network, but also most of the vehicle’s devices such as GPS, cameras,
sensors, brakes, and accelerators may be accessed remotely. So if the network security is
not in place, the attacker may control a large number of network devices or even directly
control the vehicle, leading to serious consequences. At present, IoV is not completely
secure against all kinds of attacks, such as quantum attacks. Therefore, the discovery and
repair of security vulnerabilities, and even the establishment of a more perfect security
system are indispensable challenges in the future.

• Privacy Protection: In V2X network, the everything-connected network will create the
problem of data and privacy exposure. How to protect user privacy and data is also a
very recent concern, including the application of federated learning and blockchain
technology in IoV collaboration. The most popular solution in this regard is to use
federated learning and blockchain technology, which can avoid the direct transmission
of original user data to make task decisions and take advantage of the decentralization
and tamper-proof characteristics of blockchain to improve the privacy protection
ability. However, the cost of applying these technologies in IoV collaboration is not
low, and there are unsolved difficulties.

• Convergence: The problem of training efficiency of machine learning models is often
involved in coordinated intelligence methods. Under the strict service requirements
of high security, stability and low latency, methods that help the model achieve higher
learning accuracy and faster convergence speed are worthy of further improvement.

• Combination with other approaches: At present, the method of deep learning is widely
used to realize the collaborative intelligence of Internet of Vehicles, and has achieved
good results. On this basis, other effective ideas and approaches, such as fuzzy logic,
semantic communication, and digital twins, can be combined to further optimize the
task results.

• Seamless integration into the IoT in future: As a part of the future Internet of Things,
the Internet of Vehicles must be integrated into the smart city and other next-generation
Internet of Everything environment, such as Industry 5.0. Therefore, we believe that
the development of IoV technology and the deployment of practical applications
should also consider integration and collaboration with other fields, such as smart
healthcare. At the same time, the collaboration with human needs to be paid more
attention to lay the foundation for providing users with more personalized services.
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Figure 7. Several valuable future research directions of Iov with CI.

7. Conclusions

With the development of Artificial Intelligence, distributed computing, supercom-
puters, hardware such as GPU and other technologies, autonomous driving under the
Internet of Vehicles, and even smart cities under the Internet of everything will certainly
become a reality in the near future. In the following emerging applications and services,
collaborative intelligence will play an important role because it can integrate the knowledge
and capabilities of multiple smart devices, including data, communication, computing, and
storage resources. With the increasing interest in collaborative intelligence schemes from
both industry and academia, it is particularly important to explore their research in the
context of vehicle-borne IoT. In this paper, we discussed the existing research, technical
challenges, possible solutions, and open problems of CI for IoV applications. This paper
first briefly introduced IoV and the CI problem in IoV, and then expounded its advantages
and challenges in the wireless Internet of Things environment. Then, from the aspects of
collaborative communication, collaborative computing, and collaborative learning meth-
ods, the existing research on the application of CI methods in vehicle-borne Internet of
Things was reviewed, and the technical problems were discussed. Finally, the future re-
search direction of the integration of CI and IoV was discussed to accelerate the research
process of IoV.
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The following abbreviations are used in this manuscript:
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C-V2X Cellular Vehicle to Everything.
DSRC Dedicated Short Range Communication.
DT Decision Tree.
EV Electric Vehicle.
GB Gradient Boosting.
GPS Global Positioning System.
HCP Heterogeneous Computing Platform.
HVN Heterogeneous Vehicle Network.
IoT Internet of Things.
IoV Internet of Vehicles.
ITS Intelligent Transportation System.
IV Intelligent Vehicles.
KNN K-Neighborhood.
LiDAR Light Detection and Ranging.
LP License Plate.
LSTM Long Short-Term Memory.
MARL Multi-Agent Reinforcement Learning.
MCS Modulation and Coding Scheme.
MEC Mobile Edge Computing.
MIMO Multiple-Input Multiple-Output.
mmWave Millimeter Wave.
NFC Near Field Communication.
NSs Network Slices.
QoS Quality of Service.
RAT Radio Access Technology.
RF Random Forests.
RSU Roadside Unit.
SDN Software Defined Network.
SVM Support Vector Machine.
UAVs Unmanned Aerial Vehicles.
V2I Vehicle-to-Infrastructure.
V2N Vehicle-to-Cloud/Edge.
V2P Vehicle-to-Pedestrian And Cyclist.
V2R Vehicle-to-Road.
V2V Vehicle-to-Vehicle.
VANET Vehicular Ad Hoc Network.
VN Vehicular Network.
WLAN Wireless Local Area Network.
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