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Abstract: A fingerprint sensor interoperability problem, or a cross-sensor matching problem, occurs
when one type of sensor is used for enrolment and a different type for matching. Fingerprints
captured for the same person using various sensor technologies have various types of noises and
artifacts. This problem motivated us to develop an algorithm that can enhance fingerprints captured
using different types of sensors and touch technologies. Inspired by the success of deep learning
in various computer vision tasks, we formulate this problem as an image-to-image transformation
designed using a deep encoder–decoder model. It is trained using two learning frameworks, i.e.,
conventional learning and adversarial learning based on a conditional Generative Adversarial Net-
work (cGAN) framework. Since different types of edges form the ridge patterns in fingerprints,
we employed edge loss to train the model for effective fingerprint enhancement. The designed
method was evaluated on fingerprints from two benchmark cross-sensor fingerprint datasets, i.e.,
MOLF and FingerPass. To assess the quality of enhanced fingerprints, we employed two standard
metrics commonly used: NBIS Fingerprint Image Quality (NFIQ) and Structural Similarity Index
Metric (SSIM). In addition, we proposed a metric named Fingerprint Quality Enhancement Index
(FQEI) for comprehensive evaluation of fingerprint enhancement algorithms. Effective fingerprint
quality enhancement results were achieved regardless of the sensor type used, where this issue
was not investigated in the related literature before. The results indicate that the proposed method
outperforms the state-of-the-art methods.

Keywords: biometrics; cross-sensor fingerprints; fingerprint enhancement; cGAN; adversarial
learning; deep learning

1. Introduction

The fingerprint is a biometric modality deployed mainly for human identification.
Fingerprint recognition systems have several practical applications, including access control
and criminal investigation [1].

Most available fingerprint systems compare data captured from the same sensor,
where matching algorithms are designed to work on data obtained from a single sensor for
enrollment and verification. Thus, the ability of these algorithms to work on data collected
from multiple sensors is limited. It is known as the fingerprint sensor interoperability
problem or the cross-sensor problem. In legacy databases, billions of fingerprints have been
collected from different sensors based on diverse technologies. Every time the sensor of
choice is changed, the re-enrollment of persons is a costly and substantial task. Moreover,
due to the improvement in fingerprint sensors and the need to apply fingerprint recognition
in devices such as those linked to the Internet of Things (IoT), the demand is high for an
efficient fingerprint matching algorithm that can recognize fingerprints captured using
different sensors. Therefore, the algorithms for the sensor interoperability problem, which
improve the biometric system’s ability to adapt to data obtained from several sensors, are
highly needed and will significantly impact system usability [2].
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The quality of fingerprints varies based on the sensor types used for capturing the
fingerprint, even if the same sensing technology is employed (e.g., optical or capacitive).
Additionally, the corresponding sets of features have high variability, which cannot be
analyzed easily by a matching algorithm for accurate decisions. An example is shown
in Figure 1, which shows the fingerprint of the same finger captured by nine different
sensors [3].

Sensors 2022, 22, x FOR PEER REVIEW 2 of 21 
 

 

print recognition in devices such as those linked to the Internet of Things (IoT), the de-
mand is high for an efficient fingerprint matching algorithm that can recognize finger-
prints captured using different sensors. Therefore, the algorithms for the sensor interop-
erability problem, which improve the biometric system’s ability to adapt to data obtained 
from several sensors, are highly needed and will significantly impact system usability [2]. 

The quality of fingerprints varies based on the sensor types used for capturing the 
fingerprint, even if the same sensing technology is employed (e.g., optical or capacitive). 
Additionally, the corresponding sets of features have high variability, which cannot be 
analyzed easily by a matching algorithm for accurate decisions. An example is shown in 
Figure 1, which shows the fingerprint of the same finger captured by nine different sen-
sors [3]. 

 
Figure 1. Fingerprints from the FingerPass database of the same finger that were captured by dif-
ferent sensors. 

Differences in sensor technology and interaction type can cause significant variations 
in the quality of fingerprints. Thus, a considerable drop in the performance of the existing 
fingerprint recognition systems has been reported when different sensors are used for 
identification [2]. 

Moreover, the performance of cross-sensor matching algorithms is affected because 
of the variations in ridge patterns caused by the various types of noises and artifacts due 
to the difference in sensor technologies, as shown in Figure 1. There is a real need to en-
hance fingerprint images. However, this is challenging because fingerprints captured us-
ing various sensors include several kinds of texture patterns and noises [4]. 

A sample including a set of impressions taken from the MOLF dataset [5] is presented 
in Figure 2. These impressions were categorized into three subsets: DB1 comprises the flat 
dap (10) fingerprints captured by the Lumidigm Venus sensor; DB2 contains the finger-
prints of the same fingers captured by the Secugen HamsterIV sensor; and DB3 consists 
of the dap fingerprints captured by CrossMatch L-Scan patrol sensor. Their quality was 
measured using the NFIQ (NBIS Fingerprint Image Quality) tool [6]. It is an open-source 
minutiae-based quality evaluation algorithm that provides a quality value {1, 2, 3, 4, 5}, 
with 1 representing the best quality and 5 denoting the worst one. Each row within the set 
stands for fingerprints captured by the same sensor. Each column, in turn, represents the 
same level of quality, in which the first column is excellent while the last column is poor. 
It can be noticed that DB1 has no images of the poor class. In addition, most of the ridge 
pattern information is unclear in the impressions belonging to classes poor and fair in DB2 
and DB3. 

Figure 1. Fingerprints from the FingerPass database of the same finger that were captured by different
sensors.

Differences in sensor technology and interaction type can cause significant variations
in the quality of fingerprints. Thus, a considerable drop in the performance of the existing
fingerprint recognition systems has been reported when different sensors are used for
identification [2].

Moreover, the performance of cross-sensor matching algorithms is affected because
of the variations in ridge patterns caused by the various types of noises and artifacts due
to the difference in sensor technologies, as shown in Figure 1. There is a real need to
enhance fingerprint images. However, this is challenging because fingerprints captured
using various sensors include several kinds of texture patterns and noises [4].

A sample including a set of impressions taken from the MOLF dataset [5] is presented
in Figure 2. These impressions were categorized into three subsets: DB1 comprises the flat
dap (10) fingerprints captured by the Lumidigm Venus sensor; DB2 contains the fingerprints
of the same fingers captured by the Secugen HamsterIV sensor; and DB3 consists of the
dap fingerprints captured by CrossMatch L-Scan patrol sensor. Their quality was measured
using the NFIQ (NBIS Fingerprint Image Quality) tool [6]. It is an open-source minutiae-
based quality evaluation algorithm that provides a quality value {1, 2, 3, 4, 5}, with 1
representing the best quality and 5 denoting the worst one. Each row within the set stands
for fingerprints captured by the same sensor. Each column, in turn, represents the same
level of quality, in which the first column is excellent while the last column is poor. It
can be noticed that DB1 has no images of the poor class. In addition, most of the ridge
pattern information is unclear in the impressions belonging to classes poor and fair in
DB2 and DB3.

In this paper, we present an efficient enhancement solution for the cross-sensor finger-
print problem. Specifically, motivated by the outstanding performance of deep learning-
based techniques in various computer vision tasks such as image enhancement [7,8]. We
designed an image-to-image mapping function F that receives a low-quality fingerprint
and generates a high-quality one. We model F using Convolutional Neural Networks
(CNN) based on encoder–decoder architecture. The learning of this kind of CNN is a
challenging problem. Thus, we trained our method using two types of learning approaches
i.e., the conventional end-to-end approach and using the adversarial learning (using a
conditional GAN framework).

Adversarial learning generates fingerprints of higher quality than those produced
by conventional learning, as demonstrated by comparing the outputs of the two methods
using two frequent metrics: NFIQ and SSIM.
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Our method was evaluated on two benchmark public datasets, FingerPass and MOLF.
The results indicate that fingerprints are enhanced to higher quality regardless of the sensor
type used.

To the best of our knowledge, this is the first work dealing with the problem of cross-
sensor fingerprint enhancement using deep learning. Our contributions in this paper can
be summarized as follow:

• We formulated the cross-sensor fingerprint enhancement problem as an image-to-
image transformation problem and designed it using a CNN model with an encoder–
decoder architecture that takes a low-quality fingerprint and produces an enhanced
fingerprint. We trained the proposed CNN model using two different approaches:
conventional learning and adversarial learning.

• Motivated by the success of adversarial learning in modeling image-to-image transfor-
mation [9], we learned the proposed image-to-image transformation (the CNN model)
using a conditional GAN framework, where the proposed CNN model plays the role
of a generator.

• To preserve the ridge patterns in the fingerprints, we incorporated the edge loss
function [10] and L1 loss [9] into the adversarial loss [11]. This resulted in good quality
enhanced fingerprints regardless of the type of sensor used to capture the fingerprints.

• For comprehensive evaluation of a fingerprint enhancement algorithm, we proposed a
new metric called Fingerprint Quality Enhancement Index (FQEI). This metric yields a
value between 1 and −1, where 1 represents the best enhancement and −1 represents
the worst degradation.
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The rest of this paper is structured as follows. Section 2 reviews previous enhancement
methods, while Section 3 describes in detail the proposed method. Section 4 presents the
training and testing stages of our model, while Section 5 gives details of the experiments.
Section 6 discusses our results. Finally, Section 7 concludes the conducted work and
suggests some directions for future work.

2. Related Work

In the last decade, various studies have been conducted to study the effect of reliable
fingerprint enhancement for solving the matching problem assuming that the same sensor
was used both for enrollment and verification.

A common technique is the HONG method proposed by Hong et al. [12], where
fingerprints are enhanced using a bank of Gabor filters, which are adjusted to the orientation
of the local ridges. Another state-of-the-art method is the CHIK method, which was
proposed by Chikkerur et al. [13], where fingerprints are enhanced using the short-time
Fourier transform (STFT). In this method, each fingerprint is initially divided into small
overlapping windows, and the STFT is applied to each window. Next, the block energy,
ridge orientation, and ridge frequency are estimated using the Fourier spectrum, and then
contextual filtering is applied for fingerprint enhancement.

Other enhancement techniques focus on using off-line images, such as the latent
fingerprint technique [14]. Researchers proposed an approach that employed a CNN model
to predict ridge direction from a set of pre-trained ridge patterns. In [7], a direct end-to-end
enhancement approach was proposed using the FingerNet architecture. This method relied
on the use of a CNN within an encoder–decoder scheme. In [8], the authors employed a
convolutional auto-encoder neural network to enhance the missing ridge pattern. A similar
work was proposed in [15], where a method based on de-convolutional auto-encoders was
developed to match sensor-scan and inked fingerprints.

All previous works have focused on using conventional learning only in the enhance-
ment process, where CNNs learn to minimize the loss function. This process, however,
requires a lot of manual effort. In contrast, the flexibility provided by Generative Adversar-
ial Networks (GANs), which apply adversarial learning, allows for optimizing the objective
function of the problem more effectively. It initially determines a single high-level goal, such
as producing indistinguishable fake images from real images, and then learns to achieve
such a goal automatically using a suitable loss function [9]. In the JOSHI method [16], a con-
ditional GAN model was proposed based on an image-to-image translation to reconstruct
the ridge structure of latent fingerprints. As discussed above, most previous enhancement
methods have focused on matching latent fingerprints left unintentionally at a crime scene.
Unlike previous methods, which deal with latent fingerprints, the proposed method ad-
dresses the problem of enhancing cross-sensor fingerprints. The problem of cross-sensor
enhancement has been addressed in a few studies only. In [4,17], an adaptive histogram
equalization method was proposed to enhance the contrast of contactless fingerprint ridges
and valleys. To date, these are the only published studies concerning cross-sensor enhance-
ment. No previous studies have addressed the cross-sensor enhancement problem using
deep learning techniques.

3. Proposed Method

A critical issue when designing an effective cross-sensor fingerprint enhancement is
preserving valleys, ridges, and other fingerprint features, such as minutiae. In view of this,
we introduce a new method for cross-sensor fingerprint enhancement.

3.1. Problem Formulation

Fingerprint enhancement can be expressed as an image-to-image transformation prob-
lem. It aims to learn a mapping, denoted by F , which transforms an input fingerprint
x ∈ Rmxn to an enhanced fingerprint ŷ. This implies finding a mapping F : Rmxn → Rmxn

such that ŷ = F (x; θ), where θ represents the transformation parameters. A critical ques-
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tion in this context is how to model the mapping function F . From a practical standpoint,
the application of both deep learning and CNNs has shown promising performance in pat-
tern recognition problems, as indicated in various studies [4,14,15]. This, in turn, motivated
us to model F using a CNN model. The learning method typically employed in CNNs
is conventional learning, which is based on an objective function that minimizes the loss
function between ground truth and the predicted labels. However, regardless of whether
the learning process is automatic, several studies have sought to design more effective loss
functions [9].

Another efficient learning approach is based on the Generative Adversarial Networks
(GANs) framework. The learning method applied in GANs is adversarial learning, which
is based on a min-max game and includes a specific loss function, where one agent tries to
maximize while the other one tries to minimize [11].

3.2. The Design of Mapping Function (F )
The design of the mapping function (F ) is a challenging problem since the captured

fingerprints by different sensors have different texture patterns and noise [4]. The desired
mapping must be developed to enhance fingerprints by preserving the underlying finger-
print features and removing possible corruption and noise. To address these issues and
effectively learn F , two learning frameworks were investigated: conventional learning and
adversarial learning.

3.2.1. Conventional Learning Framework (One-Net)

In this case, F was designed using a CNN model following an encoder–decoder
architecture [18]. It takes a low-quality fingerprint as input and produces a high-quality
one as output. This architecture minimizes the loss between the target images and the
predicted ones. This architecture was adopted from SegNet [19] with some modifications.
SegNet comprises two networks: an encoder and a corresponding decoder, followed by a
final pixel-wise classification layer.

SegNet has five encoders and corresponding five decoders. All the encoders include
two consecutive layers and max pooling layers. Each convolutional layer consists of
64 filters with size 3 × 3, 1 padding and stride of 1 followed by batch normalization (BN)
layer and then element-wise rectified linear non-linearity (ReLU). After that, 2 × 2 max
pooling layer, with a stride of 2, is applied where the related max pooling indices (locations)
are saved.

Each corresponding decoder up-samples its input using the recalled max-pooling
indices using a 2 × 2 max unpooling layer with a stride of 2. Then, it convolves the input
using two consecutive convolutional layers. Each convolutional layer contains 64 filters of
size 3 × 3 and a stride of 1 followed by a batch normalization layer, then a ReLU layer. The
final output is then fed into a multi-class soft-max classifier to compute class probabilities
for each pixel independently.

This model has been specifically designed for segmentation purposes. However, since
our goal is different and focuses on the enhancement task, the SegNet model was modified
to fit the task of interest by receiving a low-quality, 300× 300× 1 fingerprint and generating
a same-size fingerprint with higher quality. Both the Softmax layer and the pixel-wise
classification layer were removed. Since the target task is to produce a same-size fingerprint
with a higher quality, a convolution layer with one filter of size 3 × 3, was also added, as
shown in Figure 3.

The preservation of small and thin details is essential for fingerprint matching since
they play an important role in determining the identity of each subject. Some of these
details are the minutiae points formed mainly by ridge bifurcations and ridge endings. The
ridge bifurcations are those points where ridges are divided into two ridges, whereas the
ridge endings are those points where ridges end. The extraction of minutiae points is a
difficult task in low-quality fingerprint images [1], see Figure 4.
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These small details should be considered when designing the target model. Convolu-
tional networks are deployed to gradually reduce the image resolution until it is represented
via tiny feature maps, where the spatial structure is not yet visible. However, this spatial
acuity loss may restrict fingerprint enhancement. This issue can be addressed by dilated
convolutions that can increase the output feature maps resolution without decreasing the
individual neurons’ receptive field. Thus, a second modification introduced to the SegNet
model is adding dilated convolutions.

Generally, dilated convolution is a convolution having a wider kernel that is generated
based on repeatedly adding spaces among the kernel elements [20]. Therefore, each
convolution layer in the encoder was substituted by a dilated convolution layer using a
different dilation factor in the range: 1, 1, 2, 2, 4, 4, 8, 8, 16, and 16. Our results illustrate
that dilated convolution is appropriate for fingerprint enhancement since it enlarges the
receptive field with no coverage or resolution loss.

In the decoder network, each decoder up-samples its input feature map(s) by deploy-
ing the memorized max-pooling indices related to its corresponding encoder’s feature
map(s). It should be noted that there is no conducted learning within the up-sampling
stage. SegNet uses the max pooling indices to up-sample the feature map(s) and convolves
them with a trainable decoder filter bank. Next, batch normalization is applied to each
map. Subsequently, the high dimensional feature representation at the final decoder output
is fed to a convolutional layer followed by a Tanh layer as shown in Table 1.
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Table 1. Specifications of encoder and decoder models; FS represents the filter size; FN is number of
filters and S represents the stride.

Encoder Decoder

Layer FS FN S Layer FS FN S

Conv1_1 3 64 1 Conv1_1 3 64 1
Conv1_2 3 64 1 Conv1_2 3 64 1

Max Pooling 1 2 - 2 Max Un pooling 1 2 - 2
Dilated Conv 2_1 3 64 1 Conv 2_1 3 64 1
Dilated Conv 2_2 3 64 1 Conv 2_2 3 64 1

Max Pooling 2 2 - 2 Max Un pooling 2 2 - 2
Dilated Conv 3_1 3 64 1 Conv 3_1 3 64 1
Dilated Conv 3_2 3 64 1 Conv 3_2 3 64 1

Max Pooling 3 2 - 2 Max Un pooling 3 2 - 2
Dilated Conv 4_1 3 64 1 Conv 4_1 3 64 1
Dilated Conv 4_2 3 64 1 Conv 4_2 3 64 1

Max Pooling 4 2 - 2 Max Un pooling 4 2 - 2
Dilated Conv 5_1 3 64 1 Conv 5_1 3 64 1
Dilated Conv 5_2 3 64 1 Conv 5_2 3 64 1

Max Pooling 5 2 - 2 Max Un pooling 5 2 - 2
Conv 6_1 3 1 1

Tanh - - -

3.2.2. The Adversarial Learning Framework (Two-Net)

This type of learning is based on the conditional generative adversarial network
(cGAN) framework [9]. The cGAN framework consists of a generator and a discriminator.
The role of the generator is to produce a transformed image from the input one. The
discriminator determines if the input image is real or fake. In the training stage, both the
generator and discriminator conduct a min-max game. For this task, F plays the role of
the generator, which is to produce a high-quality fingerprint (ŷ) from a low-quality one (x).
The enhanced high-quality fingerprint must have a clear ridge structure to preserve the
valleys, ridges, and further fingerprint features, such as minutiae points. The discriminator
differentiates real fingerprints from the generated ones, which helps to learn F .

To effectively learn F via the cGANs framework, it is considered a generator that
generates an enhanced image ŷ from an input image x. To model F , a dilated SegNet is
deployed since both the input and output are images with the same size 300 × 300 × 1,
as explained in the first framework. The discriminator D is modeled using a patch GAN
discriminator that was adopted from the paper [9]. The first convolution layer Conv
contains 64 filters, stride 2, depth of 2, followed by a Leaky ReLU layer. The second Conv
consists of 128 filters, stride 2, and the third contains 256 filters of stride 2; the fourth Conv
contains 512 filters, stride 2; each of these layers is followed by a batch normalization layer
and the Leaky ReLU. The last layer is a Conv layer consisting of one filter and stride of 1.
All these Conv layers contain filters of size 4, as illustrated in Figure 5.

3.3. Loss Functions and the Learning of (F )
For the first framework, F is learned through conventional learning based on taking

a low-quality fingerprint x and producing a high-quality one. This model minimizes the
gradient difference between the generated fingerprint and the ground truth y. We used
two loss functions: L1 loss [9] and Edge Loss [10].

The first loss used is the L1 distance that is expressed as follows:

LL1(F ) = Ex,y[‖ y−F (x) ‖1] (1)

An ideal fingerprint image has valleys and ridges that flow in a locally regular direction.
In this case, the detection of ridges is straightforward, and minutiae can be accurately
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located within the image. Nevertheless, skin conditions (e.g., dry/wet, bruises, and cuts),
improper finger pressure, and sensor noise significantly impact fingerprint image quality.
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Therefore, the edge loss function is added to improve the fingerprint ridge structures
by calculating the edge direction. For this, the ridge pattern of the generated fingerprint
and the corresponding ground truth fingerprint are initially computed, and then the loss is
used to update the parameters of F . The edge loss is denoted as Ledge and can be expressed
as follows:

Ledge(F ) =
√
‖ ∆F (x)− ∆y ‖2 + ε2 (2)

where ∆ represents the Laplacian of Gaussian operator, y denotes the ground truth finger-
print (high quality), and F (x) denotes the enhanced image. The parameter with constant ε
empirically set to 10−3 as used in [10]. This loss is used to preserve edge features useful for
improving ridge patterns.

The total loss
LConventional(F ) = µ LL1(F ) + λLedge(F ). (3)

In the second framework, F learning is inspired by the method [9]. Both D and F
are learned using adversarial learning. The training dataset includes pairs of poor- and
high-quality fingerprints. Such pairs are expressed as (xi; yi), in which xi stands for the
poor-quality fingerprint image, while yi stands for the corresponding high-quality one
(ground truth).

A fingerprint x is fed intoF , which then maps it to an enhanced version ŷ. The channel-
wise concatenation between the pairs (x, y) and (x, ŷ) is then fed into D to classify them
as real or generated fingerprints. The discriminator ensures that the generator effectively
learns to preserve ridge structures of the generated enhanced fingerprints. The adversarial
loss is given below:

LGAN(F , D) = E(x,y)[log(D(x, y) + Ex[log(1−D(x,F (x)) ]]. (4)

A custom training loop is deployed to train the model using the training dataset, in
which the network weights are updated in each iteration. In the training stage, F produces
a fingerprint that is hard to be classified as synthetic via D. In contrast, D avoids being
misled by F and increases the successful discrimination between the original and synthetic
fingerprints by reducing the value of the loss function.
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We combined the edge loss and L1 distance with adversarial learning. The final
objective function is expressed below:

argminFmaxD LGAN(F , D) + µ LL1(F ) + λLedge(F ). (5)

Figure 6 illustrates the training framework, which learns F to produce an enhanced
fingerprint from an input one.
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3.4. Assessing the Quality of the Enhancements

Although both NFIQ [6] and SSIM [21] are popular and accurate metrics used widely
to measure fingerprint quality, they do not offer a comprehensive description of what
happens during enhancement. In these metrics, the number of enhanced or degraded
images is not considered. A new metric has been designed to comprehensively describe
each class’s performance by analyzing the NFIQ results.

Fingerprint Quality Enhancement Index (FQEI)

The detail of the new metric for assessing the enhancement potential of an algorithm
is given in the following paragraphs. A fingerprint can be assigned to one of five quality
levels, i.e., Q1: excellent, Q2: very good, Q3: good, Q4: fair, or Q5: poor, based on the
scores obtained from the NFIQ tool [6]. Using the quality levels of fingerprints before
and after enhancement, we compute the Quality Confusion Matrix (QCM) as shown in
Table 2, where Qjj is the number of images with original quality Qj have been enhanced to
quality Qi.

Table 2. The quality confusion matrix (QCM).

Q11 Q12 Q13 Q14 Q15
Q21 Q22 Q23 Q24 Q25
Q31 Q32 Q33 Q34 Q35
Q41 Q42 Q43 Q44 Q45
Q51 Q52 Q53 Q54 Q55

To quantify the enhancement quality, each Qjj in QCM is scaled according to the
corresponding coefficient wij in the weight quality matrix (WQM), shown in Table 3.
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Table 3. The weight quality matrix (WQM).

0 1 2 3 4
−1 0 1 2 3
−2 −1 0 1 2
−3 −2 −1 0 1
−4 −3 −2 −1 0

In WQM, (i) wii = 0 because there is no enhancement in the quality level of the
fingerprints, (ii) wij (i < j) is 1, 2, 3, or 4 depending on enhancement levels, e.g., in case of
Q13, the quality of fingerprints after enhancement goes two levels up from Q3 to Q1, it must
be weighted with w13 = 2, (iii) wij (i > j) is −1, −2, −3 or −4 depending on de-enhancement
levels.

The enhancement score (Es), which quantifies the quality of enhancement of finger-
prints that were in a low-quality class before enhancement and assigned to a high-quality
class after enhancement, can be expressed using QCM and WQM as follows:

Es =
5

∑
j=2

∑
j>i

Qij × wij (6)

The degradation score (Ds), which quantifies the quality of de-enhancement of finger-
prints that were in a high-quality class before enhancement and assigned to a low-quality
class after enhancement, can be expressed using QCM and WQM as follows:

Ds =
5

∑
i=2

∑
j<i

Qij × wij (7)

In the ideal case (IS) scenario, all images are enhanced from low-quality class to
excellent class. In other words, IS can be represented as a weighted sum of all images,
except those of Q1 quality, using the following formula:

IS = (Q12 × 1) + (Q13 × 2)+(Q14 × 3)+(Q15 × 4) (8)

where Q12 represents images from very good class that enhanced one degree up to be in
class excellent, and so on.

However, in the worst-case (WS) scenario, all images move from the high-quality class
to the poor-quality class, excluding the class poor since its images preserve their class. This
means that WS can be expressed as a weighted sum of all images, except those in class
poor, using the following formula:

WS = (Q51 ×−4) + (Q52 ×−3) + (Q53 ×−2) + (Q54 ×−1) (9)

where Q51 represents images from excellent class that degraded four degrees down to be in
poor class, and so on.

To measure the enhancement ratio (ER), the Es computed using Equation (6), is divided
by IS computed using Equation (8). Thus, the ER is expressed as follows:

ER =
Es

IS
(10)

In contrast, the degradation ratio can be measured by dividing the Ds by WS as follows:

DR =
Ds

WS
(11)

The difference between the enhancement ratio and the degradation ratio is computed
to determine the degree of enhancement for measuring the performance of an algorithm:

FQEI = ER− DR. (12)

In the ideal case scenario FQEI = 1, and it is equal to −1 in the worst-case scenario.
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The more the FQEI is close to one, the higher the enhancement is, and vice versa. An
illustrative example is provided in the Appendix A.

4. Training and Testing

In this section, we discuss the training stage, which uses training data to learn the
model, and the testing stage tests it using test data.

4.1. Training Details

The model constructed is a supervised generative one trained to generate high-quality
fingerprint images from low-quality ones. Practically, a supervised model needs paired
training data of low-quality fingerprints combined with their corresponding enhanced
images. However, cross-sensor fingerprint datasets have low-quality fingerprints, and
their related high-quality counterparts are not available. Moreover, cross-sensor fingerprint
databases are not large enough with high-quality images. This results in training difficulties
of deep neural network models. Therefore, there is a need to generate fingerprints with
noise characteristics similar to those of real fingerprints, as shown in Figure 1, and their
enhanced versions to train the enhancement model. The following subsections detail the
datasets prepared for training the model.

FingerPass Database

The training data were fingerprints from the AES2501 sensor from the FingerPass
dataset, which includes 8460 images of different qualities: excellent, very good, good, fair,
and poor. To help the model learn how to enhance fingerprints with different quality levels,
all fingerprints were enhanced using the HONG method [12], which were used as the target
fingerprints.

The proposed method was trained using a minibatch SGD with Adam optimizer
considering the following parameters: Momentum parameters β1 = 0.5 and β2 = 0.999,
Learning rate 0.002, µ = 100, and λ = 0.001.

4.2. Testing Details

The performance of the proposed method was tested using two benchmark public
databases: FingerPass [3] and MOLF [5].

4.2.1. Multisensor Optical and Latent Fingerprint (MOLF) Dataset

This dataset includes images captured by using three different sensors, having the
same sensor technology (optical sensors) and the same capturing method (press). Images
in the database come from 100 subjects, where each one of the 10 fingerprints was captured
in two sessions (two independent instances were captured in each session). Each sensor
was used to capture 4000 images with 1000 fingerprint classes.

Live-scan images in the database are categorized into three subsets. DB1, DB2, and DB3.
It can be noted from Figure 2 that those images are visually different due the acquisition
sensor used and the capturing process applied.

4.2.2. FingerPass Database

FingerPass consists of images of the same eight fingers (thumb, index finger, middle
finger, and ring finger of both hands) captured using nine sensors from 90 subjects; a
sample is shown in Figure 1.

It includes two technological types (optical and capacitive sensors) and two capturing
methods (in this case, press and sweep). Each subject was asked to take 12 impressions for
each finger. Therefore, the database includes images of 720 fingers, where the total number
of impressions for one sensor is 90 × 8 × 12 = 8640 images.

Since our model is trained on fingerprints of size 300 × 300 × 1, the fingerprints from
the MOLF dataset and FingerPass are preprocessed to match the required size.
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5. Experimental Results

In this section, we introduce the metric used to evaluate our results and present the
outcome of the conducted experiments.

5.1. Fingerprint Image Quality Analysis

The NFIQ module of NBIS proposed in [6] was used to analyze the ability of the
proposed enhancement algorithm to enhance the quality of cross-sensor fingerprints. The
analysis offers a value between 1 and 5, where 1 represents the best quality while 5 repre-
sents the worst quality. The score distribution before and after applying the enhancement
method was assessed using fingerprints from MOLF and FingerPass datasets to evaluate
the performance. The results for MOLF enhancement using adversarial learning are shown
in Table 4.

Table 4. NFIQ quality scores on the Original MOLF dataset and the enhanced dataset by our model
(After E.). The up arrow represents better enhancement.

Quality Q
DB1 DB2 DB3

Original After E. Original After E. Original After E.

Excellent 1 2965 3796 ↑ 1340 2255 ↑ 2018 3303 ↑
Very good 2 985 183 1940 1724 985 646

Good 3 37 2 603 8 744 16
Fair 4 12 19 27 8 155 19
poor 5 0 0 89 5 97 18

It can be noticed from Table 4 that all images were enhanced, although different sensors
were used to capture them. In DB1, there is a significant image quality enhancement, where
3796 images were enhanced out of 4000 to be in class excellent. The difference here is
204 images, which are enhanced compared to the original images.

Moreover, DB2 shows enhancement in class excellent results from 1340 to 2255 and a
noticed reduction in a class fair and poor with 27 and 89 images before and 8 and 4 images
after for each class. DB3 shows an increase in class excellent fingerprints by 1285 images
and a reduction for all other classes; the number of fingerprints of class poor reduces from
97 to 18 after enhancement.

Two learning methods were applied: namely, conventional learning and adversarial
learning. A single network was constructed with a loss function that aims to minimize
the distance between the predicted and ground truth to test the impact of conventional
learning, as described in Section 3.1. On the other hand, the impact of adversarial learning
was tested using two networks: a generator and a discriminator, as described in Section 3.2.
The results are shown in Table 5 on MOLF datasets.

Table 5. The effect of the learning approach on the quality of the MOLF database.

Quality Score Q DB1
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 2965 3827 3796
Very good 2 985 123 183

Good 3 37 12 2
Fair 4 12 36 19
poor 5 0 2 0

Quality Score Q DB2
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 1340 1915 2255
Very good 2 1940 2057 1724

Good 3 603 18 8
Fair 4 27 6 8
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Table 5. Cont.

Quality Score Q DB3
Original

Conventional Learning
(One Net)

Adversarial Learning
(Two Net)

Excellent 1 2018 3206 3303
Very good 2 985 634 646

Good 3 744 39 16
Fair 4 155 86 19
poor 5 97 35 18

It can be noticed from Table 5 that the experiment based on adversarial learning offered
better results than the conventional one, although the same network architecture was used
to generate the fingerprints.

Comparison with the State-of-the-Art Method

There are various studies in the field of fingerprint enhancement, for example, the
methods proposed in [7,8,14,15]. Although HONG and CHIK methods are a bit old,
their performance is still better than the recent methods for cross-sensor fingerprint en-
hancement, and, due to this reason, they have been used in recent cross-sensor matching
methods [4,22–26]. So, we compared our method with HONG and CHIK methods and a
more recent method, i.e., JOSHI method [16].

Figures 7–9 illustrate the comparison results on DB1, DB2, and DB3.
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our method on DB3.

It is revealed from Figures 7–9 that our method outperforms HONG and CHIK meth-
ods in enhancing fingerprints to class excellent from DB1 and DB3. For DB2, the number of
enhanced fingerprints to class excellent by HONG method is slightly higher than that by
our method and CHIK.

5.2. Fingerprint Quality Enhancement Index (FQEI)

The FQEI metric was measured using MOLF datasets DB1, DB2, and DB3 by compar-
ing three methods: HONG, CHIK, JOSHI [16], and our method, where obtained results are
provided in Table 6. It can be clearly noticed that our method outperformed both HONG,
CHIK, and JOSHI methods on DB1, DB2, and DB3.

Table 6. FQEI values computed for HONG method, CHIK method, JOSHI [16] method, and our
method for the MOLF dataset.

The Enhancement Method DB1 DB2 DB3

HONG [12] 0.2581 0.6342 0.7026
CHIK [13] 0.0231 0.5562 0.6508
JOSHI [16] 0.2012 0.1723 0.3270

Our method 0.8863 0.6760 0.8740

For DB1, the HONG method performance is 0.2581 since the Es is 348, which is less
than the Ds (−808). This means that the number of images above the diagonal is less than
the images below the diagonal. The same case is for CHIK performance, where the Es is 168,
while the Ds is −1943 since a large number of fingerprints was degraded from excellent
class to very good class. In contrast, our method has a higher enhancement score than the
degradation score. Thus, our method outperformed both the HONG and CHIK methods
on DB1, DB2, and DB3.

Tables 7–11 illustrate a comparison between the enhancement results obtained with
HONG method, CHIK method, JOSHI method, and our method for FingerPass datasets
using NFIQ and our metric FQEI.
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Table 7. Analysis of the fingerprint quality scores measured by NFIQ of the FingerPass database
before enhancement.

Quality Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 5519 0 28 40 4105 2016 7917 7395 4697
Very Good 2 2423 65 3149 508 4195 5472 637 895 3263

Good 3 662 7177 2356 5585 330 1142 76 304 647
Fair 4 32 0 0 0 0 0 10 42 33
Poor 5 4 1398 3107 2507 10 10 0 4 0

Table 8. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using HONG method [12].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 6194 0 1136 13 4758 945 6381 6786 5245
Very Good 2 2443 202 6852 6020 3882 7693 2258 1853 3389

Good 3 2 8161 546 2596 0 2 1 0 0
Fair 4 1 0 1 0 0 0 0 1 0
Poor 5 0 277 105 10 0 0 0 0 6

FQEI 0.6146 0.1110 0.5868 0.4791 0.4497 0.1379 0.5065 0.5829 0.5912

Table 9. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using CHIK method [13].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 4834 0 318 4 2253 838 3953 6217 545
Very Good 2 3806 124 7525 5743 6387 7800 4687 2423 8095

Good 3 0 7323 706 2848 0 2 0 0 0
Fair 4 0 0 0 0 0 0 0 0 0
Poor 5 0 1193 91 45 0 0 0 0 0

FQEI 0.5335 −0.0012 0.5410 0.4615 0.2562 0.1372 0.3202 0.5373 0.0683

Table 10. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using JOSHI method [16].

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 2216 197 4583 783 2418 2607 2874 2506 2160
Very Good 2 6497 0 3975 6394 6005 5672 1648 6126 6474

Good 3 27 3459 28 1453 189 359 2438 6 6
Fair 4 0 1877 3 8 22 1 464 2 0
Poor 5 0 3107 51 2 6 1 1216 0 0

FQEI 0.2291 −0.3792 0.7889 0.5660 0.1027 0.3114 −0.070 0.3096 0.1582

Table 11. Analysis of the fingerprint quality scores measured by NFIQ and FQEI of the FingerPass
enhanced using our method.

NFIQ Q AES2501 AES3400 ATRUA FPC FX3000 UPEK V300 WS URU4000B

Excellent 1 5824 8192 8066 3958 4700 2924 4743 6779 8134
Very Good 2 2797 65 562 4680 2609 5716 241 1855 467

Good 3 2 82 6 1 813 0 3343 2 23
Fair 4 17 301 5 1 399 0 206 4 16
Poor 5 0 0 1 0 119 0 107 0 0

FQEI 0.5645 0.9388 0.9707 0.7836 0.3149 0.3407 0.2931 0.5825 0.9149
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From Table 7 for FingerPass dataset before enhancement, it can be noticed that there
are three sensors that have the highest number of images in poor class, including AES3400,
ATRUA, and FPC sensors with 1398, 3107, and 2507 images, respectively.

Based on comparing the results of NFIQ for the three methods after enhancement, it
can be noticed that our method offered the highest enhancement in these three sensors
by extremely reducing it to zero poor images for the first sensor, one poor image for the
second sensor and zero poor images for the third sensor. Moreover, it particularly enhanced
the number of images in excellent class to more than 8000 images for the first sensors and
the URU4000B sensor. In contrast, the HONG method revealed the highest enhancement
for AES2501 sensor. There are also two sensors with the highest number of images in the
excellent class: the WS and V300 sensors.

The overall results show that our method outperformed mostly in increasing the
number of images in the excellent class. The CHIK method usually transforms fingerprints’
quality to excellent and very good classes but with a noticeable reduction in the number
of images in excellent class in most sensors. JOSHI method increases the number of poor
fingerprints in two sensors: AES3400 and V3000.

In terms of FQEI metric, our method shows the highest results for five out of nine
sensors. The results on AES3400, ATRUA, and URU4000B sensors are 0.9149, 0.9388, 0.9707,
respectively, which are very close to 1, and hence a very high enhancement performance.
However, a negative enhancement was achieved by JOSHI method in two sensors: AES3400
and V3000. On the other hand, CHIK method gave FQEI of −0.0012 for AES3400 sensor,
where the minus sign means distortion in images, which can be obviously noticed by
comparing it with the confusion matrix results as shown in Table 12, where most images
preserved in good class without enhancement as well as a slight enhancement was revealed
from poor class to good class.

Table 12. Quality Confusion Matrices for AES3400 sensor enhancements using: (a) Hong [12]
(b) CHIK [13] (c) Our method.

(a) (b) (c)

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

q1 0 0 0 0 0 0 0 0 0 0 0 61 6821 0 1310

q2 0 17 144 0 41 0 15 99 0 10 0 1 48 0 16

q3 0 47 6847 0 1267 0 46 6450 0 827 0 1 66 0 15

q4 0 0 0 0 0 0 0 0 0 0 0 2 242 0 57

q5 0 1 186 0 90 0 4 628 0 561 0 0 0 0 0

5.3. Structural Similarity Index Metric (SSIM)

Fingerprint enhancement algorithms are applied to improve fingerprints without
changing the ridge structure. This feature can be assessed by computing the SSIM [21]
on the generated fingerprints using anguli and their related ground truth, due to the lack
of databases that include low-quality images and relative high-quality images. In other
words, the higher the obtained SSIM value is, the higher the preserved structural similarity
between the generated and ground truth is. Moreover, this denotes that the ridge structure
is also maintained.

A comparison was conducted for fingerprints that were enhanced using HONG
method, CHIK method, and our method. The test datasets contain two thousand synthetic
fingerprints generated using anguli [27]. It is an open-source implementation from the
fingerprint generator SFinGe [28] based on simulating synthetic live fingerprints having
similar features, such as real-live fingerprints. Two thousand (2000) synthetic fingerprint
images produced by Anguli are used to test the model with pattern types following the
normal distribution, including the arch, right loop, left loop, whorl, and double loop.
From those images generated using Anguli, other input images with lower quality were
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generated by adding Gaussian noise with morphological operations and blurring the
filtering in the frequency domain.

Both the mean and standard deviation of SSIM were then computed as shown in
Table 13.

Table 13. Mean and standard deviation (std) of SSIM.

The Enhancement Method Mean of SSIM Std

HONG [12] 0.4551 0.0482
CHIK [13] 0.4650 0.0460
JOSHI [16] 0.4125 0.0354

Our method 0.5127 0.0693

The mean of SSIM between the enhanced fingerprint generated using our model and
the ground truth is 0.5127. It can be noticed that our method had the highest mean of SSIM,
which means that the preservation of ridge patterns is the best in our method.

5.4. Computation Time

The average computation time needed to enhance the URU4000b sensor dataset was
computed. All three methods were applied on the same environment (R2021b). The
experiment was also applied using a laptop with an Intel Core i7-9750H CPU at 2.60 GHz
-2.59 GHz, 32.0 GB RAM, Microsoft Windows 10 in the 64-bit operating system, and an
x64-based processor. Our method is faster than HONG, CHIK, and JOSHI [16] methods as
shown in Table 14.

Table 14. Comparison between the computation time for enhancement.

Method Average Computation Time (in Seconds)

HONG [12] 0.63
CHIK [13] 0.48
JOSHI [16] 0.38

Our method 0.087

6. Discussion

The fingerprint sensor interoperability focuses on addressing how the fingerprint-
matching system is able to compensate for the differences in the captured fingerprints for
the same person by several sensors. The main causes of such variability in fingerprints
are the differences in the used capturing technology of sensors, scanning area, sensor
resolution, and interaction type.

In practice, each sensor generates its specific type of distortions. Hence, there is a
need to enhance captured fingerprints by various sensors. To achieve this, a cross-sensor
enhancement method was designed and trained using fingerprints from one sensor, which
is the AES2501. On the other hand, this method revealed general enhancement results
for other sensors in FingerPass and MOLF datasets. The learning approach considered
is the adversarial learning one, which offers better enhancement than the conventional
learning one. Moreover, it was found that there was no change in the global flow of ridge
patterns within the captured fingerprints by different sensors. This proves its robustness to
discrimination. Hence, the edge loss, L1 loss, and adversarial loss function were used as
loss functions.

The use of dilation convolution offered better enhancement results than those mea-
sured using convolution only. This means that the small fingerprint details, considered
important features for determining the identity, such as the minutia point and edges, were
preserved. This is clearly illustrated in Table 15.
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Table 15. The impact of using dilation operation and convolution operation for MOLF datasets.

FQEI DB1 DB2 DB3

Convolution layer 0.8643 0.5208 0.7996
Dilation Convolution 0.8863 0.6760 0.8740

Based on comparing the results of our method with those of two state-of-art fingerprint
methods: HONG and CHIK and a more recent method i.e., JOSHI method [16], using two
metrics, our method outperformed both of them. However, the NFIQ metric does not offer
a precise description for enhancement performance. Therefore, a new metric was designed,
called FQEI. This metric gives one result value between 1 and −1 instead of the five classes
results as in the NFIQ.

Figure 10 illustrates zoomed-in views of the fingerprints enhanced using the three
methods. From the enhanced fingerprints examples shown in Figure 10, it can be noticed
that the smoothed ridges related to the processed fingerprints by the HONG method were
more enhanced than those of the CHIK method. On the other hand, our method enhanced
fingerprints with preserving their original ridge pattern better than HONG and CHIK.

1 
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Figure 10. A zoomed-in view for fingerprint enhancement result, where the first column shows
the original fingerprint, while the second, third, and fourth columns show those of the HONG [12],
CHIK [13] and our method, respectively.

From Table 12, it is obvious that our method offers faster enhancement results than
those of HONG, CHIK, and JOSHI methods. In other words, the average computation time
needed to enhance one fingerprint by the HONG, CHIK, JOSHI, and our method was 0.63,
0.48, 0.38, and 0.087 s, respectively. Thus, our method is 13% faster than HONG method.
However, there are two sensors FX3000 and V300 with less results than what was expected
since the fingerprint nature is different than the original data.

7. Conclusions

It can be concluded that with the continuous developments in both fingerprint sensor
technologies and the Internet of Things (IoT), the use of biometric fingerprint identification
has been increasing over the years. Differences in sensor technologies and resolution can
lead to different types of distortion, which affects fingerprint image quality. Therefore, fin-
gerprints must be enhanced. On the other hand, there are no sufficient investigations of the
cross-sensor enhancement problem in the related literature. Therefore, this paper proposed
an efficient solution for this problem based on deep learning, in which cGAN framework is
used for training the image-to-image transformation for fingerprint enhancement. It was
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demonstrated that the proposed method significantly enhanced the cross-sensor finger-
prints regardless of the sensor type used. However, there is still space to achieve more
enhancement. One of the suggested future works is to explore different loss functions to
preserve and recover the ridge patterns.
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Appendix A

To clarify FQEI metric, the following example is provided: For a small dataset of
40 fingerprint images having different qualities, the table below represents the NFIQ de-
grees before (original) and after the enhancement. The QCM is then computed, where the
first column represents the total number of images before enhancement, while the first row
represents the total number of images after enhancement and so on. Both the IS and WS
are then computed as follows:

IS = 10× 1 + 10× 2 + 5× 3 + 10× 4
WS = 5×−4 + 10×−3 + 10×−2 + 5×−1

Table A1. NFIQ quality score of the example before and after enhancements.

NFIQ Values Q1 Q2 Q3 Q4 Q5

Original 5 10 10 5 10
The enhanced 20 4 14 1 1

Table A2. Computing the (QCM).

Q1 Q2 Q3 Q4 Q5

q1 1 8 5 2 4
q2 0 1 2 0 1
q3 3 0 3 3 5
q4 1 0 0 0 0
q5 0 1 0 0 0

Table A3. Computing the WCM by Multiplying QCM with WQM.

Q1 Q2 Q3 Q4 Q5

q1 0 8 10 6 16
q2 0 0 2 0 3
q3 −6 0 0 3 10
q4 −4 0 0 0 0
q5 0 −3 0 0 0

http://research.iiitd.edu.in/groups/iab/molf.html
http://research.iiitd.edu.in/groups/iab/molf.html
http://www.fingerpass.csdb.cn/
http://www.fingerpass.csdb.cn/
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Table A4. Calculating the FQEI.

Es Ds IS WS ER DR FQEI

58 −13 85 −75 0.6823 −0.1733 0.509
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