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Abstract: The air-quality index (AQI) is an important comprehensive evaluation index to measure
the quality of air, with its value reflecting the degree of air pollution. However, it is difficult to
predict the AQI accurately by the commonly used WRF-CMAQ model due to the uncertainty of the
simulated meteorological field and emission inventory. In this paper, a novel Auto-Modal network
with Attention Mechanism (AMAM) has been proposed to predict the hourly AQI with a structure of
dual input path. The first path is based on bidirectional encoder representation from the transformer
to predict the AQI with the historical measured meteorological data and pollutants. The other path is a
baseline to improve the generalization ability based on predicting the AQI by the WRF-CMAQ model.
Several experiments were undertaken to evaluate the performance of the proposed model, with the
results showing that the auto-modal network achieves a superior performance for all prediction
lengths compared to some state-of-the-art models.

Keywords: modal decomposition; air quality; short-term forecast; bidirectional encoder representation
from the transformer

1. Introduction

As a result of the serious environmental problems associated with industrialization
and urbanization, air pollution has received a great deal of attention [1]. A report released
by the World Health Organization states that almost all (99%) of the world’s population
lives in an environment of air pollution, which leads to 4.2 million deaths yearly [2]. Thus,
outdoor air pollution has become a serious hazard to the population. Air-quality forecasting
is used to predict air pollution in advance, to provide effective guidance for protection
and suppression when the air is contaminated, and to reduce the impact on health and the
environment. Thus, in recent years, improved air-quality prediction model accuracy has
been required.

The air-quality index (AQI) is an index that reflects the air quality. A large number
of AQI prediction models, which are based on physics and chemistry or are driven by
data, have been developed in the field of air-quality prediction. Although they are robust,
the physics and chemistry models, e.g., the Community Multi-scale Air Quality model
(CMAQ) [3], the Weather Research and Forecast model (WRF) [4], and the Nested Research
and Forecasting model (NAQPMS) [5], are not sufficiently accurate. However, the com-
monly used WRF-CMAQ model—a combination of the WRF and CMAQ models—cannot
produce optimal results due to the uncertainty inherent in the simulated meteorological
field and emission inventory, and because the formation mechanism of pollutants such as
ozone [6] is unclear.

With the development of computer technology, data-driven models have come to the
forefront. Multi-Layer Perceptron (MLP) was designed for the prediction of sulfur dioxide
concentration by Boznar et al. [7] in 1997. Since then, machine learning has been widely
used in air-quality index prediction. In order to improve AQI prediction accuracy, different
methods have been combined. For example, empirical modal analysis was proposed as the
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support vector machine input [8]. Zhao et al. [9] then proposed a temporal–spatial model
combined with the k-nearest neighbor algorithm to extract meteorological data features for
air-pollution grade prediction. In recent years, deep learning has been applied to air-quality
prediction. Models based on deep learning methods usually achieve a higher accuracy
with a much more complex structure and larger amounts of data when compared with
traditional models. In 2016, the attention mechanism was introduced to attention-based
RNN to search for long-term features in a time series [10], and then followed by the Long
Short-Term Memory (LSTM) model to predict air quality in 2017 [11]. Ge et al. [12] used
the Multi-Scale Spatiotemporal Graph Convolution Network (MST-GCN) for air-quality
prediction. Compared to LSTM, the Root Mean Square Error (RMSE) of the MST-GCN was
reduced by 31%; however, it is very complex. Moreover, it is difficult to obtain sufficient
data for training state-of-the-art models based on deep learning [13] due to the limited
number of meteorological stations in each city. Therefore, most of the published models do
not meet both the accuracy and stability requirements [14].

Therefore, herein, we propose a novel Auto-Modal Attention Mechanism (AMAM)
and introduce an extra additive path to the Bidirectional Encoder Representation from
Transformer (BERT). In the proposed process, the transformer model with the AMAM
and extra path takes measured meteorology data as the input to predict the future AQI.
In particular, the proposed model requires a reference from data predicted by traditional
models such as WRF-CMAQ. In this paper, the meteorology or pollutant prediction from
the traditional model is referred to as first-stage predicted data, while the prediction from
the proposed model is referred to as second-stage prediction.

The main contributions of this paper are as follows:

1. A novel attention mechanism, i.e., AMAM, is proposed to extract different modalities
from input time-series data; from this, the decomposition weights can be automatically
learned in the training process.

2. An extra additive path is introduced to collect decomposed modalities, with these
values added to the first-stage prediction data.

2. Related Theoretical Background
2.1. Transformer

A transformer abandons the traditional CNN and RNN structure, i.e., the whole
network structure is entirely composed of the attention mechanism. To be more precise, the
transformer consists of encoder and decoder stacks. The encoder block contains two add-
norm layers followed by a multi-head self-attention mechanism and feed-forward neural
network, respectively. Each decoder block inserts a layer that performs attention over the
output of the encoder stack based on the same structure as the encoder block [15]. The
particular attention used in the transformer is known as the Scaled Dot-Product Attention
Mechanism (SDPAM), which can be described by the following formula:

SDPAM(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where Q, K, and V represent the queries, keys, and values of the attention mechanism,
respectively, and dk is the dimension of the queries and keys.

The transformer was originally designed for translation tasks. In common time-series
prediction tasks, it is not as impressive as it is in the field of natural language processing [16].

2.2. Informer

As an improvement of the transformer in time-series forecasting, an informer is capable
of predicting long-sequence time series by generating long sequential outputs through one
forward procedure [17]. This improvement reduces the accumulation of prediction errors
in the traditional step-by-step method. Moreover, the informer proposes an efficient self-
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attention mechanism, which performs scaled dot-product attention simply on dominant
queries with less computational cost.

2.3. Bidirectional Encoder Representation from Transformer

Bidirectional Encoder Representation from Transformer (BERT) is a state-of-the-art
method of extracting features from natural language by utilizing the encoder structure from
the transformer [18]. With the idea of embedding bidirectional context information, BERT
has been shown to achieve remarkable results on 11 different natural language processing
tasks. A summary of the BERT structure for next sentence prediction is show in Figure 1.
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Figure 1. BERT structure for next sentence prediction.

The dotted box denotes the same encoder block as the transformer. The bidirectional
context feature from the two input sentences flows through L numbers of consecutive
encoder blocks. Finally, a classifier, such as Softmax, outputs the probability that B is the
next sentence to follow A or not.

3. Materials and Methods
3.1. Data Collection

To predict air quality, a set of measured meteorology and pollutant data were collected
from a meteorological station in Shanxi, China, from 23 July 2020 to 13 July 2021. Both
types of data were obtained with a 1 h sampling frequency, and the pollutant data were
collected with the ZR-7250 ambient air quality continuous automated monitoring system
produced by Qingdao Junray Intelligent Instrument Co., Ltd., Qingdao, China. The air
quality monitoring system cloud measures sulfur dioxide (SO2), nitrogen dioxide (NO2),
PM10, PM2.5, ozone (O3), and carbon monoxide (CO), and meteorological variables such as
wind speed, wind direction, etc.

To evaluate the ambient air quality quickly and accurately, systematic and effective
evaluation methods have been developed, with the air-quality index (AQI) one of the
indices that is widely used at present. The AQI is calculated with the above six pollutants
and is a dimensionless index that quantitatively presents the air-quality status [19,20].
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Therefore, the AQI was set as a comprehensive forecast target to environmental air quality
in this study.

Finally, five measured meteorological variables—temperature, relative humidity, sta-
tion pressure, wind speed, and wind direction—were collected, while the six pollutant
concentrations above were collected. Table 1 lists the detail of samples for this work.

Table 1. Details of training, validation, and test datasets.

Datasets Number of Sample Couples Ratio

Training 6720 80%
Validation 840 10%

Test 840 10%
Total 8400 100%

3.2. Data Preprocessing

As a result of the abnormal and null values caused by device maintenance at the
meteorology station, neither the pollutant nor meteorology datasets could be directly used
for the proposed model. It was necessary to fill the time series and remove the effect
of outliers. In this paper, null values of measured data were repaired using the linear
interpolation method and the corresponding AQI was recalculated.

The wind direction and speed of the meteorological parameters indicate air motion
with great nonlinearity, and this is one of the major factors effecting the ambient air-
quality trend [20]. They were replaced by the eastward component, wx, and the northward
component, wy, of the wind speed as follows:

wx = ws · sin
(wr ·π

180
)

wy = ws · cos
(wr ·π

180
) (2)

where wr is the measured wind direction and ws is the measured wind speed.
After processing abnormal values and converting the wind parameters, data previews

were performed. As shown in Figure 2, the left axis measures the concentration of each
pollutant at 1 July 2021 in the form of the stacked area and the right axis denotes the
calculated AQI. More specifically, CO has the greatest stacked area, which means that it
comprises the highest content of these pollutants. It can be seen that the concentration of
pollutants varies considerably and CO is several orders of magnitude higher than SO2,
which is the pollutant of minimum proportion.
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It was therefore necessary to normalize the original data because they were comprised
of different units and scales, which may induce vanishing or exploding gradients and poor
signal propagation through the model [21]. Min-max normalization was used to rescale the
sets of meteorological and pollutant data in the range of 0 to 1. The formula is as follows:

xscale =
x− xmin

xmax − xmin
(3)

where xmin is the minimum of the data, xmax is the maximum of the data, and xscale is the
normalized result.

3.3. Auto-Modal Network for Predicting AQI

On the basis of the BERT structure, we propose an end-to-end Auto-Modal network
with pure encoders, which predicts the AQI directly instead of calculating the AQI on the
basis of predicted airborne substances individually. Figure 3 shows the structure of the
proposed model for predicting the AQI, which is a model with bidirectional time-series
inputs. One of the time-series inputs of the proposed model is the historical measured
meteorological parameters and pollutants which determine the AQI. The other time-series
input is the AQI, which is calculated with the six pollutants used for prediction in the
WRF-CMAQ model, and it is a baseline value to improve the prediction accuracy and
increase the generalization ability of the proposed model.
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Specifically, the historical measured meteorological variables include temperature,
relative humidity, station pressure, eastward wind speed, and northward wind speed,
while the six pollutant concentrations are CO, NO2, O3, PM10, PM2.5, and SO2. Finally,
11 measured historical variable time-series data for the previous 48 h are set as inputs of
the proposed model, so that the input dimension is 11 × 48 + 1, where the second item is
the predicted AQI from the first-stage prediction with the WRF-CMAQ model.

The proposed network consists of six encoder blocks with AMAM (the hidden dimen-
sion value is 48). The context from AMAM was treated as the input of the next layer, while
the correction value was added to the AQI predicted by WRF-CMAQ. As a result, it was
corrected six times and finally added between the two feed-forward layers in the output.
This works in the same way as the residual connect, thus limiting the floor level of the
prediction effect. The structure of the last two feed-forward networks is shown in Table 2.
It should be noted that the first linear layer in Table 2 is used to project the input features to
a shape that can perform the broadcast addition.

Table 2. Structure of the two feed-forward networks.

Type Neurons/Axes/Ratio Input Size Position

Linear 1 48 × 48 Feed-Forward 1
Transpose 1, 2 1 48 × 1 Feed-Forward 1

Broadcast Add - 1 × 1, 1 × 48 2 -
Linear 128 1 × 48 Feed-Forward 2

Dropout + ReLU 0.4 1 × 128 Feed-Forward 2
Linear 32 1 × 128 Feed-Forward 2

Dropout + ReLU 0.4 1 × 32 Feed-Forward 2
Linear 16 1 × 32 Feed-Forward 2

Dropout + ReLU 0.4 1 × 16 Feed-Forward 2
Linear 1 1 × 16 Feed-Forward 2

1 Axes 1 and 2 are to swap. 2 Input of 1 × 1 is repeated 48 times to the shape of 1 × 48 for addition operation.

The SDPAM from the transformer directly performs the dot product on queries and
keys to evaluate the distance, which represents the similarity between them. It is a rea-
sonable method to process embedded word vectors as there is no physical meaning in
neutral language. Unfortunately, SDPAM failed to achieve a similar performance with
meteorological and pollutant data in the form of a time series. The meteorological and
pollutant data contain a series of modals that represent hourly or daily periodic change,
or even random noise caused by sensors. In order to extract inherent timing information,
we propose an auto-modal scoring function, with the attention mechanism called the
Auto-Modal Attention Mechanism (AMAM). The structure of AMAM is shown as Figure 4.

Similar to SDPAM, AMAM takes queries, keys, and values as inputs. However, if
treated as a black box, there is a difference in the output, where AMAM adds another
output, i.e., the correction value. This component represents the correction value added to
the predicted AQI in the first-stage prediction. As can be seen in Figure 4, keys, queries,
and values are projected to the hidden dimension, m, of the attention mechanism by a
learnable linear layer:

Kl×m
proj = Kl×n

input ×Wn×m
K

Ql×m
proj = Ql×n

input ×Wn×m
Q

V l×m
proj = V l×n

input ×Wn×m
V

(4)

where the superscripts in the expression denote the size of the matrix and Kl×m
proj , Ql×m

proj ,

and V l×m
proj are the projected values that correspond to inputs Kl×m

input, Ql×m
input, and V l×m

input,

respectively. Finally, Wn×m
K , Wn×m

Q , and Wn×m
V are the weights matrices of the linear

projection layer.



Sensors 2022, 22, 6953 7 of 13

Sensors 2022, 22, 6953 7 of 14 
 

 

Linear 128 1 × 48 Feed-Forward 2 
Dropout + ReLU 0.4 1 × 128 Feed-Forward 2 

Linear 32 1 × 128 Feed-Forward 2 
Dropout + ReLU 0.4 1 × 32 Feed-Forward 2 

Linear 16 1 × 32 Feed-Forward 2 
Dropout + ReLU 0.4 1 × 16 Feed-Forward 2 

Linear 1 1 × 16 Feed-Forward 2 
1 Axes 1 and 2 are to swap. 2 Input of 1 × 1 is repeated 48 times to the shape of 1 × 48 for addition 
operation. 

The SDPAM from the transformer directly performs the dot product on queries and 
keys to evaluate the distance, which represents the similarity between them. It is a reason-
able method to process embedded word vectors as there is no physical meaning in neutral 
language. Unfortunately, SDPAM failed to achieve a similar performance with meteoro-
logical and pollutant data in the form of a time series. The meteorological and pollutant 
data contain a series of modals that represent hourly or daily periodic change, or even 
random noise caused by sensors. In order to extract inherent timing information, we pro-
pose an auto-modal scoring function, with the attention mechanism called the Auto-
Modal Attention Mechanism (AMAM). The structure of AMAM is shown as Figure 4. 

 
Figure 4. AMAM structure. 

Similar to SDPAM, AMAM takes queries, keys, and values as inputs. However, if 
treated as a black box, there is a difference in the output, where AMAM adds another 
output, i.e., the correction value. This component represents the correction value added 
to the predicted AQI in the first-stage prediction. As can be seen in Figure 4, keys, queries, 
and values are projected to the hidden dimension, m , of the attention mechanism by a 
learnable linear layer: 

l m l n n m
proj input K

l m l n n m
proj input Q

l m l n n m
proj input V

K K W

Q Q W

V V W

× × ×

× × ×

× × ×

= ×

= ×

= ×

 (4)

Figure 4. AMAM structure.

Thereafter, the three one-dimensional convolutions are successively performed along
the time axis over Kproj, with the residual connections acting to avoid a vanishing or
exploding gradient when it becomes deep. In this paper, the kernel size of one-dimensional
convolutions is 13 and the padding is 6, which makes the result the same length as the
input sequence. We obtained the result after each convolution, namely, Kconv,1, Kconv,2, and
Kconv,3. The expression in the forward phase is as follows: Kl×m

conv,i = DWConv1d(Kl×m
conv,i−1, W13×m

conv,i ) + Kl×m
conv,i−1, i ∈ N+

Kl×m
conv,0 = Kl×m

input

(5)

where W13×m
conv,i is the kernel of the ith depthwise convolution, Kl×m

conv,i is the sum of the ith
depthwise convolution and its input, and Kl×m

input is the input key of the attention mechanism.
In order to illustrate the effect of our network more clearly, the input and output of the
key decomposition component are plotted in Figure 5. Kconv,i[j] represents the jth column
vector from Kconv,i. Therefore, the first plot is the input signal intensity along with the
time sequence, with the following three plots denoting the intuited decomposed values.
The p-values of min-max normalized Kconv,i from an augmented Dickey–Fuller test are
0.0155, 0.0049, 0.0005, and 0.0002. They show that the deeper the time-series inputs go, the
smoother and more stable the signal curve is, which means that more useful information
concerned with time changing is extracted from the raw input, i.e., each Kconv,i consists of
time sequences with modals for details of different scales. All the convolutional kernels
extracting these modals are learned automatically when trained. Therefore, the whole
structure is named the auto-modal attention mechanism. Similarly, values are processed in
the same way except that one more convolution is performed.
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To evaluate the similarity between keys and queries, we introduced the dot product
from the transformer. Three copies of Qproj were made and paired with Kconv,1, Kconv,2,
and Kconv,3, respectively, to reflect multi-scaled sequential patterns and boost the effective
features. However, no Softmax was applied to the score before inner production with
the convoluted values, Vconv,i. The reason for this is that the exponential form of Softmax
may make the subsequent network structure lose sight of modals close to zero. These
modals often represent high-frequency components such as random wind. From the
perspective of the attention mechanism, the final value obtained by the query can be the
linear combination of existing values according to their scores:

Cl×m =
3

∑
i=1

(Kl×m
conv,i �Ql×m

proj )V
l×m
conv,i (6)

where Cl×m denotes the context value and � denotes inner production. The projection
network for the path of queries is the same as that for the path of values. It consists of a
feed-forward layer containing a norm and linear layer, as shown in Figure 6.
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As mentioned above, context and correction can be calculated with the
following formula:

Context = Norm(Cl×m)×Wm×n
Con

Correction = Norm(V l×m
conv,4)×Wm×n

Cor

(7)

where Wm×n
Con and Wm×n

Cor are the weights of the two linear layers. It should be noted that
the correction output is calculated based on V l×m

conv,4 because the convolution in the key-
decomposition and value-decomposition components share weights in the corresponding
layers. This means that W13×m

conv,i is the kernel of both the ith convolution of values and the
keys for that input of values are exactly the keys in the self-attention, with no need to update
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the weights repeatedly. It is obvious that W13×m
conv,4 acts only on the value-decomposition

component; thus, it is responsible for learning the feature of the correction value.
We also converted the multi-head structure into a multi-output compatible form by

adding two separate concatenate operations to the contexts and correction values, as shown
in Figure 7.
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4. Results and Discussion

To evaluate the performance of the models, our experiments were performed on a
server with Nvidia GeForce RTX 2080Ti and Intel Core I9-9900K CPU using the PyTorch
1.10 deep learning framework. In all experiments, Mean Squared Error was used as the
loss function.

4.1. Evaluation Metrics

Normalized Mean Bias Error (nMBE), Normalized Mean Absolute Error (nMAE),
Normalized Root Mean Squared Error (nRMSE), and Mean Absolute Percentage Error
(MAPE) [22] were used to judge the accuracy of the predicted AQI and evaluate the
performance of the models. The calculation formulae are as follows:

nMBE =
1
N

N

∑
i=1

ŷi − yi
y

(8)

nMAE =
1
N

N

∑
i=1

|ŷi − yi|
y

(9)

nRMSE =
1
y

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (10)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (11)

where N is the number of all samples, ŷi is the predicted value of the model, yi is the
measured value, and y is the mean of all measured values. In addition, the persistence
model is typically used as the baseline model when evaluating time-series data prediction
precision [23]. The output of the persistence model is defined as:

AQI(t + 1) = AQI(t) (12)

where, AQI(t) is the AQI calculated from the measured pollutants at the current moment
and AQI(t + 1) represents data at 8, 16, 24, 32, 40, or 48 h in the future, depending on the
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specific experiment. We used the Relative Forecast Power (RFP) to assess the performance
related to a baseline model:

RFP = sgn(−EnRMSE)

√∣∣∣ EnRMSEEMAPE
MAPEb×nRMSEb

∣∣∣× 100%

EnRMSE = nRMSE f − nRMSEb

EMAPE = MAPE f −MAPEb

(13)

where nRMSEf and nRMSEb are the nRMSE of the evaluated model and baseline model,
respectively, and MAPEf and MAPEb are the MAPE of the evaluated model and baseline
model, respectively.

4.2. Performance of Auto-Modal Network

In this section, we compare our model with two commonly used models in the fields
of Natural Language Processing (NLP). One of them is an RNN-based model, i.e., LSTM.
Another model is the transformer, the foundation of various state-of-the-art NLP methods.
To compare the performances under different horizon scales, we selected a wide range of
prediction lengths, from 8 h to 48 h: L ∈ {8, 16, 24, 32, 40, 48}. All the models were trained
with MSE loss using the SGD optimizer at a learning rate of 10−4 and were not interrupted
until convergence. The batch size was set to 1024.

In Table 3, the best entries are in bold. The auto-modal network exhibited the superior
performance in the experiment. Considering the average value of each metric along
different prediction lengths, LSTM and the transformer, respectively, were 11.5% and
4.2% behind for nRMSE, 14.0% and 6.1% for nMAE, 13.0% and 4.1% for MAPE, and,
most distinctively, 321.6% and 278.4% for nMBE. This means that the auto-modal network
achieved a superior performance for all prediction lengths.

Table 3. Metrics of the auto-modal and NLP models with different prediction lengths.

Models Metrics
Prediction Length (Hours)

8 16 24 32 40 48 Mean 1

Auto-
Modal

nRMSE 0.0363 0.0378 0.0379 0.0439 0.0308 0.0321 0.0365
nMBE −0.0099 0.0162 0.0032 0.0054 0.0168 −0.0014 0.0051
nMAE 0.1221 0.1086 0.1057 0.1121 0.1100 0.1124 0.1118
MAPE 0.1425 0.1299 0.1286 0.1326 0.1351 0.1332 0.1337

LSTM

nRMSE 0.0382 0.0398 0.0430 0.0543 0.0344 0.0345 0.0407
nMBE −0.0385 −0.0074 −0.0323 −0.0241 −0.0150 −0.0118 −0.0215
nMAE 0.1360 0.1173 0.1186 0.1479 0.1219 0.1231 0.1275
MAPE 0.1540 0.1404 0.1380 0.1782 0.1475 0.1485 0.1511

Transformer

nRMSE 0.0390 0.0396 0.0396 0.0452 0.0313 0.0336 0.0381
nMBE −0.0311 −0.0201 −0.0178 −0.0125 −0.0100 −0.0241 −0.0193
nMAE 0.1372 0.1151 0.1107 0.1161 0.1098 0.1226 0.1186
MAPE 0.1573 0.1342 0.1328 0.1348 0.1359 0.1403 0.1392

1 Average value of the metrics of prediction lengths of 8, 16, 24, 32, 40, and 48 h.

4.3. Performance of Prediction Models

Apart from the commonly used NLP models in Table 3, we also compared the perfor-
mance of the proposed model with the other four time-series prediction models, including
the baseline of the persistence model, the Temporal Convolutional Network (TCN), the
informer, and the first-stage model (WRF-CMAQ). The results are listed in Table 4. A lower
metric indicates a better prediction, with the best results in bold. It is obvious that the
proposed model returned the best results for nRMSE, nMAE, and MAPE. The results show
that the auto-modal network achieved a superior performance in all prediction lengths.
However, the persistence model with poor prediction accuracy achieved the best nMBE.
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This can be intuitively explained by Figure 8. As illustrated in the plot, the predicted AQI
had a fixed time lag after the ground truth value. Consequently, it caused the nMBE error to
produce similar components with different signs. These offset each other in the calculation
of the nMBE. Statistically, the AQI value is subject to Gaussian distribution, which has a
stable mean value, leading the nMBE value of the persistence model to tend to zero when
the quantity of samples is large enough, according to the large number theorem.

Table 4. Metrics of the auto-modal and prediction models with different prediction lengths.

Models Metrics
Prediction Length (Hours)

8 16 24 32 40 48 Mean 1

Auto-
Modal

nRMSE 0.0363 0.0378 0.0379 0.0439 0.0308 0.0321 0.0365
nMBE −0.0099 0.0162 0.0032 0.0054 0.0168 −0.0014 0.0051
nMAE 0.1221 0.1086 0.1057 0.1121 0.1100 0.1124 0.1118
MAPE 0.1425 0.1299 0.1286 0.1326 0.1351 0.1332 0.1337

TCN

nRMSE 0.0416 0.0499 0.0553 0.0496 0.0386 0.0364 0.0452
nMBE −0.0034 −0.0028 −0.0269 −0.0247 −0.0101 −0.0243 −0.0154
nMAE 0.1452 0.1512 0.1559 0.1318 0.1382 0.1330 0.1426
MAPE 0.1694 0.1848 0.1866 0.1583 0.1702 0.1593 0.1714

WRF-
CMAQ

nRMSE 0.1201 0.1388 0.1455 0.1507 0.1132 0.1122 0.1301
nMBE −0.1606 −0.1565 −0.1722 −0.1689 −0.1844 −0.1676 −0.1684
nMAE 0.4389 0.4180 0.4136 0.4216 0.4184 0.4176 0.4214
MAPE 0.4433 0.4213 0.4130 0.4229 0.4178 0.4132 0.4219

Informer

nRMSE 0.0371 0.0392 0.0383 0.0457 0.0316 0.0331 0.0375
nMBE −0.0262 −0.0249 −0.0230 −0.0306 −0.0302 −0.0237 −0.0264
nMAE 0.1298 0.1132 0.1082 0.1174 0.1148 0.1191 0.1171
MAPE 0.1513 0.1299 0.1261 0.1357 0.1382 0.1374 0.1365

Persistence

nRMSE 0.0805 0.0892 0.0882 0.0967 0.0969 0.0959 0.0912
nMBE 0.0001 −0.0002 −0.0006 −0.0005 −0.0010 −0.0016 −0.0006
nMAE 0.2908 0.3200 0.3018 0.3529 0.3576 0.3425 0.3276
MAPE 0.3418 0.3766 0.3458 0.4210 0.4331 0.4063 0.3874

1 Average value of the metrics of prediction lengths of 8, 16, 24, 32, 40, and 48 h.
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As shown in Table 4, another noticeable point is that the WRF-CMAQ model was
far worse than the other models. This was because the formation mechanism of O3 was
not clear, causing the physics-based or chemistry-based models to be unable to predict
accurately. In the experiment, we used WRF-CMAQ to predict the concentrations of
pollutants, including the poorly forecasted O3, and calculate the AQI based on these
concentrations. In other words, WRF-CMAQ was not suitable to forecast indices formed
of several components, such as the AQI. However, the auto-modal network was trained
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to make the best of the pollutants predicted in the first stage and extract their relationship
instead of following the unreliable AQI.

The state-of-the-art informer model took second position in the comparison. As
regards the advantages in prediction accuracy, the auto-modal network produced a 2.71%
nRMSE reduction, a 4.51% nMAE reduction, and a 2.05% MAPE reduction. In particular,
the proposed model produced a 119.15% reduction for nMBE, meaning that the overall
deviation was much lower than that of the informer, and the prediction distribution was
closer to the ground truth. This indicates that a stable projection function for historical
meteorology and pollutant data was achieved, and the first-stage predicted AQI to the AQI
in the future was learned.

Table 5 is the RFP of the informer and auto-modal network. The higher the RFP index,
the more accurate the prediction. The auto-modal network produced an average increase
of 0.83% compared with the informer in short-term predictions of 8, 16, and 24 h, and an
increase of 1.05% in long-term predictions of 32, 40, and 48 h. Putting aside the accuracy
of the metrics, the auto-modal network drew with the informer in terms of the stability
of the long sequence prediction over the range of {8, 16, 24, 32, 40, 48}. In particular, the
extended prediction accuracy slightly increased the informer’s superiority with the benefit
of WRF-CMAQ’s consistency.

Table 5. RFP of the informer and auto-modal network.

Models
Prediction Length (Hours)

8 16 24 32 40 48 Mean 1

Auto-Modal 56.57% 61.47% 59.83% 61.16% 68.50% 66.85% 62.70%
Informer 54.80% 60.60% 59.96% 59.80% 67.74% 65.82% 61.77%

1 Calculated with the average value of the metrics in Table 3.

5. Conclusions

An auto-modal network was developed to predict the AQI based on a novel auto-
modal attention mechanism and bidirectional encoder representation from the transformer.
The auto-modal network could extract different modalities from input time-series meteo-
rological variables and pollutants to predict the AQI for different prediction lengths with
a reference, a predicted AQI by the WRF-CMAQ model, in an additive path to ensure its
generalization performance.

Several experiments were undertaken to evaluate the performance of the proposed
auto-modal network to compare with the LSTM, TCN, transformer, informer, and persis-
tence models for a range of prediction lengths from 8 to 48 h. The results show that the
auto-modal network performed best on the evaluating indicator of nRMSE, followed by
the informer model. The relative forecast powers of the proposed model all exceed 50% in
different prediction lengths, with a maximum of 68.5%. The precise AQI predictions are
beneficial to public health and provide guidance for pollution prevention and control.

In this work, we only focused on the AQI prediction instead of a specific pollutant. In
future, we will attempt to determine the key meteorological and environmental factors for
each pollutant, and then adjust the proposed model to predict air pollutants.
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