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Abstract: Ploidy analysis is the fundamental method of measuring DNA content. For decades, the
principal way of conducting ploidy analysis was through flow cytometry. A flow cytometer is a
specialized tool for analyzing cells in a solution. This is convenient in laboratory environments, but
prohibits measurement reproducibility and the complete detachment of sample preparation from data
acquisition and analysis, which seems to have become paramount with the constant decrease in the
number of pathologists per capita all over the globe. As more open computer-aided systems emerge
in medicine, the demand for overcoming these shortcomings, and opening access to even more (and
more flexible) options, has also emerged. Image-based analysis systems can provide an alternative to
these types of workloads, placing the abovementioned problems in a different light. Flow cytometry
data can be used as a reference for calibrating an image-based system. This article aims to show an
approach to constructing an image-based solution for ploidy analysis, take measurements for a basic
comparison of the data produced by the two methods, and produce a workflow with the ultimate
goal of calibrating the image-based system.

Keywords: digital pathology; cytology; cytometry; calibration; ploidy analysis; DNA content

1. Introduction

Analyzing a cell population based on its DNA content is an everyday task for cytology
labs today. The aim is ploidy analysis, which provides information about the populations of
entities in the sample based on their DNA content. This information is fundamental in the
diagnosis of cancer. Although DNA sequencing technologies have emerged and developed
since its existence, DNA ploidy analysis remains a dominant method, as it provides answers
to diagnostically relevant questions in a simple and quick manner. Flow cytometry (FCM),
described in [1], and more vividly illustrated—albeit on plant material—in [2], analyses
a sample in a fluid form, making the long-term storage of the original input data (i.e.,
the cell population itself) non-viable. Image-based technologies (e.g., image cytometry
(ICM)), described in detail in [3], have the benefit in terms of storage that they obtain more
information in the acquisition phase, opening the possibility of reanalyzing the sample
later. One approach is to modify flow cytometers for imaging (IFC), as described in [4],
although the storage aspect here is still not addressed usually; another approach is to use
motorized microscopes and/or glass slide scanners for cytometry, which is the method
used in this paper. Comparison of the results of the two methods for different use cases
for validation is performed frequently [5], showing similar [6] and very similar results to
this work [7]. This opens the possibility of not only reproducing the exact same results,
but also using new techniques for extracting more information from the images for the
reassessment of the samples.

The acquisition phase and the exact methodology we employed to extract the DNA
content information from the propidium iodide (PI)-stained samples through image anal-
ysis were described previously in [8–11], and a validation study was also conducted to
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compare this approach to results achieved manually by experts in terms of concordance
with the cell-level image segmentation level [12].

The next step towards the goal of a well-founded ICM-based ploidy analysis is to
construct a method for calibrating the ICM system; this article aims to inspect possibilities
regarding this direction.

2. Materials and Methods
2.1. Samples Analyzed

The assay was based on 17 specimens of healthy human blood containing only PI-
stained cell nuclei. These were digitized using a glass slide scanner produced by 3DHIS-
TECH Ltd., Budapest, Hungary (Pannoramic Scan, fluorescent setup, 5MP sCMOS camera,
40* (Carl Zeiss AG, Jena, Germany) objective, and an LED-based lighting method to excite
the fluorochrome). The resulting resolution of the samples was 0.1625 µm per pixel (jpeg
compressed). Three of the twenty scanned digital slides from the specimens were not
sufficient in quality (these samples were used to tune the digitization method and parame-
ters, and were not comparable to the other samples by the end of the process due to dye
bleaching). These three samples were excluded from the assay. The FCM measurements
were conducted using a Becton Dickinson FACSCAN flow cytometer with the CellQuest
software (version 3.1, both hardware and software by Becton Dickinson, Franklin Lakes,
NJ, USA). The samples were stained with PI for visualization of DNA content.

The ICM measurements were taken on subsamples of these samples, sampled as
demanded by lab protocols, in amount that would fit on a glass-covered glass slide. The
samples were identified by their sequential indices throughout the assay. Care was taken
to avoid any changes to sample quality during preparation, handling, and storage in the
time interval between the two measurements.

2.2. Analysis Method

To achieve calibration, three straightforward methods were considered:
The first was to conduct cell-by-cell measurements with both FCM and ICM ap-

proaches, and form mathematical relations based on the results. This method seems to
be non-viable because of the nature of the measurements. To achieve this, each object
would need to be uniquely identifiable in both approaches’ results to be able to pair and
compare the two approaches, and this is not feasible within the technological limits of these
measurements, mainly because both are constructed to conduct a statistical type of analysis
with a great number of entities, and no simple (and, thus, financially viable) method is
available to label these entities.

Another method would be to artificially create calibrating samples from multiple
types of plastic beads of appropriate size and fluorescence properties, in a way that would
be useful in the calibration process. The linearity of intensity with regard to changes
in exposure was analyzed in [13,14]; we used fluorescent beads to analyze the intensity
relationship between the ICM (scanning fluorescence microscopy (SFM) in the referred
article) and FCM methods. The drawbacks of this approach are its price and out-of-
workflow nature. The calibration must be conducted at regular intervals, while temporarily
stopping the everyday laboratory workload.

The third possible method is to analyze the results of both methods (ICM and FCM)
for a real sample with known properties, composed of multiple populations of objects, and
find a method to define a mathematical relation between the two, thus creating a transfer
function that describes the relation between the two approaches. This article aims to show
findings regarding this third approach.

In this investigation, we chose the healthy sample to be the real-world sample with
known properties as the calibration data. Healthy samples are a usual portion of the data
analyzed every day and, thus, are a good candidate for this purpose. Of course, these are
biological samples; as such, they are heterogeneous by nature [15]. Their special property
is containing two populations of entities that generate two peaks on the DNA content
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histogram. These, in turn, have a special relationship, where one peak represents double
the amount of DNA of the other peak.

In the case of the selected method, there is one more level of complexity: the FCM
samples are too great in volume to be placed on the glass slides analyzed by the ICM
method. This means that the ICM method used subsamples of them, which were digitized
via a digital microscope, thus creating the input data used in this article. The act of taking
a blood sample from the patient is for now considered to be analogous to the creation of
the subsample of the FCM sample for the ICM analysis (regular laboratory practices were
used to prepare the glass slides with the subsamples, where dilution and division of fluid
samples are everyday tasks—consider a patient’s blood sample going through multiple
types of analyses).

The segmentation, as presented in previous works, was implemented as a plugin for
the application QuantCenter (3DHISTECH Ltd., Budapest, Hungary).

For data manipulation and statistical evaluation, MATLAB (version R2019b, Math-
Works Inc., Natick, MA, USA) was used.

The FCM generated one data file per sample for all of the samples. The ICM results
were also extracted into one data file per sample.

The pairs of ICM–FCM measurements were analyzed in parallel. The FCM results
were kept unaltered and used as the reference.

2.2.1. Flow Cytometry Output

A regular flow cytometry analysis contains a few measurement channels. There are
usually two detectors, which provide a forward scatter (FSC) and a side scatter (SSC)
measurement. Each detector provides the time function of the voltage of the detector for
the passing of a measured object between the light source and the detector. These functions
are described with measurements such as maximum, width, and area (integral). The FSC
area is proportional to the object size, while SSC is proportional to the internal complexity
(i.e., granularity) of a cell. Multiple light sources (of different spectra) can be used, and the
resulting light (in case of using special fluorescent staining) may be filtered again through
band-pass filters. In our case, the FSC area measurement was enough to capture the ploidy
histogram generated by the appropriate lighting and filtering for the PI staining.

2.2.2. Image Cytometry Output—DNA Content

The ploidy analysis itself consists of the analysis of the DNA content histogram of the
measured population. The staining used is designed to produce intensity proportional to
the amount of DNA present at a given location. As the observed intensity is proportional to
the DNA content, the DNA content of the objects measured (in our case, the cell nuclei [16])
is defined as the integrated intensity of the nuclei, normalized against the background
intensity as displayed on Figure 1.
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This measurement was conducted on a grayscale digital image, and in discrete format,
as follows:

ID = ∑i=m,j=n
i=j=1 ((Im,n ∗ Jm,n)− BkgInt) (1)

where ID is the integrated density, and I denotes the image intensities in the m,n neighborhood.
If Oi is the currently analyzed object:

Oi =
⋃

Jm,n Im,n (2)

then J is an indicator function that has the value of 1 when it is a pixel corresponding to the
measured object Oi, and 0 otherwise.

BkgInt designates the background intensity, which was approximated by the average
non-object intensity around each object (sample and image tile-level background approxi-
mation was examined and rejected based on visual inspection; dye accumulation regions
and changes in background intensity was observed). The following is a simple average
of intensities:

BkgInt = ∑ B
|B| (3)

where B is the set of background pixel intensities.

∑ B = ∑i=m,j=n
i=j=1 Km,nLm,n Im,n (4)

Here, L’ indicates the complement set of all non-foreground pixels:

L′ =
|O|⋃
i=0

Oi (5)

K is again an indicator function:

K =

{
1, i f OiB > d
0, otherwise

(6)

where the shortest distance between the current object O and background B is greater than
parameter d.

The neighborhood m,n was defined to ensure at least D distance from Oi.
D was selected to be 35 pixels (the average object size in pixels at this magnification)

so as to exclude other entire objects from the neighborhood; d was selected to be 5 pixels
based on visual inspection (this is the distance where bulk of the effect of object proximity
is eliminated from intensity values).

2.3. Image Cytometry Output—Object Area

The measurement of the area of an object using image-processing-based segmentation
can be performed simply through counting the number of pixels that constitute the object.
In this case, labeled masks were used to designate the different objects and the background
region. If real-world size is important, it can be multiplied by the scale of the processed
image. The FCM method uses a relative scale (the integral of the curve generated by the
object passing in front of the detector).

2.4. Image Cytometry Output—Object Granularity

In the ICM approach, only one channel was recorded, but the location information
retained in the planar images enabled the construction of a model of these measurements.
Because there is no means to trace every measurement point of the FCM-measured solution
to the image location of the ICM approach, the heuristics described below were used. The
sample preparation caused the DNA to unwind from chromosomes to the well-known
double-helix form, to be able to stain the DNA in such a way that the visible stain was
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proportional to the amount of the DNA. This caused the cell nuclei to show on the ICM
images as cohesive, separated, well-formed objects. This enabled the usage of the area of
these objects as the model of the FSC measurement of the FCM approach (both being a
measure of the size/area of the object).

The SSC is a measure of the inner granularity of the objects. Through image processing
to capture this property, a summarized gradient type of measurement seemed appropriate
to model the original SSC measurement. Discrete morphological gradient [17] and edge
detection methods—Roberts, Prewitt, Sobel, and Canny operators [18] (p. 728)—were
inspected. The evaluation was based on clustering (k-means). The goal was to find the best
model for SSC that enabled the most robust clustering of the populations in the area–SSC
model space throughout the 17 samples. Cluster gap values [19,20] were measured using
MATLAB to find the best cluster count for all samples. A scoring system was used to
determine the best candidate; this consisted of a simple fault count—a difference from the
majority vote among all of the edge detection algorithms’ results was considered a fault.
The algorithm with the least faults was selected.

3. Results
3.1. DNA Content

The FCM data show the signature features of a (healthy patient’s) DNA sample—the
two peaks, located roughly at one and two units from the origin on the horizontal axis. A
similar shape is visible on the ICM-generated data, but with much more noise, and a less
prominent second peak (Figure 2.).
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Figure 2. FCM (a) and ICM DNA content (b) histograms of one of the samples. Both x-axis values 

are intensity sums: in the FCM case, the maximal integral recorded at the detector during a nucleus 

Figure 2. FCM (a) and ICM DNA content (b) histograms of one of the samples. Both x-axis values
are intensity sums: in the FCM case, the maximal integral recorded at the detector during a nucleus
passthrough; in the ICM case, the sum of the pixel intensities belonging to the segmented nucleus
region (corrected by approximated background intensity). The dual peaks typical of samples from
healthy donors are identifiable on the plots of both methods.

Looking at these histograms for all 17 samples, similarities were visible. The ICM
method uses only a single channel to generate these measurements, although it is two-
dimensional. The ICM-measured DNA content of a nucleus is closely related to the
segmentation results through the area of the object itself. The question emerged as to
whether the two measurements were independent of one another. First, the scatterplots of
these parameter pairs were visually inspected; samples are shown in Figures 3 and 4.
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Figure 3. Flow cytometry data on a DNA content–object area scatterplot. Each data point represents
a cell nucleus. The units of both axes are intensity-based: on the y-axis is the DNA content; on the
x-axis is the forward scatter (a value proportional to the object size). The two populations of the 2N
and 4N peaks are identifiable from looking at the y-axis.
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Figure 4. Image cytometry data on a DNA content–object area scatterplot. Each data point represents
a cell nucleus. The unit of both axes are intensity-based: on the y-axis is the integrated optical
density—the proposed model for the DNA content; on the x-axis is the object area, measured after
segmenting the nuclei from the image. Some subpopulations are identifiable, but not as clearly as on
the FCM plot.

To further investigate this suspicion, principal component analysis (PCA) [21] was
carried out to measure this connection. To be able to compare all three cellular parameters
of the FCM approach, an ICM measure for cell granularity was introduced.

3.2. Principal Component Analysis (PCA)

Based on the PCA analysis, the three proposed measurements seem to be close to their
respective major principal components. Table 1 can be interpreted as positive feedback
for the assumption that these proposed measurements are lightly correlated at most, with
each adequately describing the purpose for which it was constructed. Figure 5 contains
the visual summary of the principal components for all 17 samples. The PCA components
define a transformation to model data better, the result of the correction of a sample is
visible on Figure 6.
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Table 1. PCA coefficient matrix of one of the samples.

Parameter PC 1 PC 2 PC 3

Area 0.0002 −0.0036 1.0000
DNA Content 0.9985 −0.0547 −0.0004
Granularity 0.0547 0.9985 0.0036
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Figure 5. Principal component analysis (PCA) coefficient values across all 17 samples: The three
input dimensions are area, granularity, and integrated fluorescence. Such high PCA coefficients
mean that there is low dependence between these measured values, and they represent the associ-
ated measurements well. PC1 explains DNA content, PC2 explains granularity, and PC3 explains
object area.
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Figure 6. ICM data after the correction defined by the PCA: The resemblance to the FCM data
plot (Figure 3) was improved. Each data point represents a cell nucleus, but now in the PC1–PC3
coefficient plane (representing the underlying, noise-filtered area, and DNA content measurements).
The subpopulations of the 2N and 4N peaks are more prominent.

3.3. Granularity

A parameter called side scatter (SSC) is usually measured in the FCM method. This
value is proportional to the measured object’s internal structure, its granular content.
Figure 7 shows an overview of a selection method of a model parameter for this measure-
ment for the ICM approach. Table 2 summarizes the inspected algorithms proposed as a
measure of nuclear granularity.
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Figure 7. For each of the 17 samples, clustering gap analysis was conducted to approximate the
possible object population counts. The results of a single sample are presented here with gap values
(top), k-means method, with the different colors designating different populations (middle), and
c-Means with the different colors designating different populations, with the cluster centers (bottom).
These measurements were used to identify a model for the side scatter measurement of the FCM
method that was proportional to the object granularity, with the internal structures identifiable.

Table 2. Median match counts for all samples.

Parameter Median Match Ratio

DMG 100.00%
Prewitt 100.00%
Roberts 94.44%
Sobel 5.56%

Canny 16.67%

3.4. Identification of Populations

The initial idea behind the construction is based on the identification of the two
populations containing one and two units of DNA. These populations can be simply
identified on the respective DNA content histograms of both the ICM and the FCM methods.
Here, we used the PCA-filtered data already at hand to reduce the (already small) effect of
the inherent correlation of the original measurements (Figure 8).

3.5. Curve Fitting to Cell Populations

The populations thus identified needed to be represented by their expected value
(Figure 9) shows the curve fitting result of a single sample; projecting back clustering results
on the original IOD-Area scatterplot for the same sample is visible on (Figure 10).

3.6. Calibration Research Results

Figure 11 is a representation of the process of calibration. The next step is comparing
the ICM and FCM methods from the point of view of these peak values statistically
(Figure 12) and comparatively (Figure 13). The ultimate goal of calibration is to attempt to
fit a model (Figure 14) to the transformation of the ICM peak points to the FCM data scale.
Figure 15 is a visual help for the investigation of why fitting the model was unsuccessful.
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Figure 8. The results of c-means clustering on a single sample, with the clusters projected back to the
DNA content distribution of the sample (blue, green, orange). These measurements were used to
identify the approximate locations of the subpopulations of the 2N and 4N peaks.
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Figure 9. The DNA content distribution of sample #2, with the clusters projected back to the DNA
content distribution of the sample (blue, green, orange), and normal distributions fitted to the latter
two populations (magenta, red).
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Figure 11. Overview of the reference (FCM) and the proposed (ICM) methods: The two approaches
attempt to measure the same physical property through two different appliances. The ICM method
was shown to have a linear response to uniform-intensity sources (i.e., fluorescent beads) with
the parameter of exposure time (within the detection range of the appliance). Measuring nuclei,
the same method is proposed to also have a linear relationship with the values produced by the
reference method.
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Figure 12. The ratio of the 2N and the 4N peak DNA content ratios for the histogram bin-based image
cytometry (top), for flow cytometry (middle), and the reference and normal distribution fit-based
image cytometry (bottom) results: The horizontal axis contains the 17 samples by index; the vertical
axis shows the peak ratio value (the actual data with blue, the average with red, yellow and purple
lines represent the ± 1 SD interval). The diagrams show the same range for comparison. The lower
standard deviation of the bottom plot compared to the original (top) one is prominent.
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Figure 13. Graphical comparison of the peak ratios for the 17 samples in two equivalent representa-
tions: The datasets are marked with the same color on both plots. Peak ratio is the ratio of the DNA
content at the 4N peak to the DNA content of the 2N peak. This theoretically equals 2.0 because,
during mitosis, a normal body cell first replicates/doubles its DNA content before dividing into two
new daughter cells.
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Figure 14. Graphical results of the linear regression for the more exact, ICM-fit dataset with the
standard regression model: The data do not seem to align well with linear regression. Residuals seem
to be non-normal. Removing hand-selected outliers based on overall image intensity did not improve
the dataset considerably in this regard.
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Figure 15. The DNA content of the first peaks of the samples (as a very rough approximation of
the image intensity), the data points labeled with the sample indices. Samples #1, #12, and #18 are
of lower intensity than the other samples. This is probably due to extended exposure to excitation
light during multiple attempts to select the digitization parameters. These samples were treated as
outliers for the rest of the process. Samples #7, #8, and #9 were not digitized in the expected quality
(unfocused), and were omitted from the study altogether.
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4. Discussion

When creating an alternative method for an already-established process, it is manda-
tory to set milestones and compare the results of the proposed method to the reference.
Between these milestones, a possible route is to model the reference process and validate it
at the milestones. In the case of ploidy analysis and flow cytometry, the direct comparison
is only possible at a few points in the process, and is statistical in nature. In [22], the authors
successfully conducted a study specifically on esophageal cancer, in a similar population-
based manner. In the first stage of this endeavor, the goal was to detect the objects—i.e., the
cell nuclei—for later measurement. The second goal was to find a way to measure similar
model parameters that approximate the reference measurements well, while the third was
to compare the results achieved and create a way of defining the relationship between the
reference and the proposed method. This article deals with the second and third goals.

The parameters of the reference method were reconstructed using the model parame-
ters; these were provided by well-known image processing algorithms (Figures 1 and 2).
The median match ratio used for the granularity measure selection was based on the
majority vote model.

The results generated by the reference and the proposed method can be compared
visually (Figures 3 and 4). Their similarity is visible, but the differences motivated the
application of principal component analysis to identify and remove internal dependencies
between the model parameters. The results showed that the model parameters were
strongly independent of one another, and there seemed to be no unexplained variables
present (see Table 1 and Figure 8). Applying the small noise filtering provided by PCA in
this case, the similarity to the FCM result is slightly more prominent (Figure 6).

The denoised data were then used to identify the object populations defining the peaks
of the DNA histogram. As the DNA content is a biochemical measure that contains noise,
we decided to opt for a direct classification method that enables a robust approach—fuzzy
c-means clustering, described in [23], and further detailed in [24] (pp. 133–149); the actual
implementation was based on filtering the data points through classification uncertainty
(Figure 8).

Using these populations, we could already compare the proposed method to the
reference method. At first, we approximated the expected value of the DNA content of an
object of a single population, using the bin center value of the DNA histogram’s highest
corresponding peak. We compared the ratios of the two expected values of the two relevant
populations (where the expected values were in 1:2 relation) to the FCM results (Figure 10,
top and middle). These are the main anchor points to compare across the two methods—
definite on both datasets, and the basis of the proposed approach. The results showed that
the ICM method provided values closer to the theoretical value of 2.0, but with noticeably
greater standard deviation.

Visual inspection revealed that the peak approximation method initially selected was
not precise enough, so the next step was to find a more accurate one. We chose to fit a
normal distribution curve on the population histogram and use the expected value of this
ideal distribution as the next step. As can be seen in Figures 12 and 13, this resulted in a
lower standard deviation (though still double that of the reference method) and a mean
value closer to the theoretical expected value (Table 3).

Table 3. Peak ratio properties of all of the samples combined.

Population Mean SD

FCM Histogram Peaks 1.8868 0.022131
ICM Histogram Peaks 1.9101 0.101460

ICM-Fit Peaks 1.9348 0.039905
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The next stage was to compare the ICM results to the FCM results at the sample
level, in an attempt to create a single transfer function mapping the proposed method to
the reference.

Nonlinear methods were omitted for this stage of the experiment, due to the linear
nature of the natural connection between the peak locations, which was also the reference
and basis of the proposed approach. Using a nonlinear transformation on the data could
change the relative relation of the measured 2N and 4N peaks, thus providing a better
fit to the reference FCM data, but also possibly covering possibly important differences
between the two data acquisition approaches. Moreover, the measurement appliance—the
digital microscope—was shown to have a linear response to the change in exposure time
on plastic beads [13]; we presumed the same behavior in the case of these nuclei. The basic
idea was to find a scaling value that established the best mapping of the peaks. The two
approaches measuring the same physical properties of the nuclei are visually represented
on the graphical abstract, included as Figure 11.

To unite (or attempt to unite) the pairwise transformations into a single function for
all the samples, two methods were implemented: the first was a naïve method (Figure 12)
that simply uses the arithmetic mean of the scaling values, while the other was to use linear
regression (Figure 14). The residuals of the regression fitting showed signs of non-normality.
This prevented the application of some more robust techniques, and reduced the reliability
of the linear model created. This usually occurs due to outliers or non-normality of the
input data themselves. The sample size of these 17 samples is probably not sufficient for
conclusive results in this regard.

On this topic, the naïve approach was informative. In Figure 12, the scaling component
is visible. It shows that, although slightly less reliably, the ICM-fit method can produce
similar results to the flow cytometry method. The mean value is closer to the theoretical
2.0 value, and the standard deviation is of the same magnitude compared to the FCM
results, although almost double the value.

Both the RMSE and R-squared values (Table 4) could be significantly improved by
removing the outlier samples that were probably used for determining the digitization
parameters. The results after omitting data from samples #1, #12, and #18 (after visual
inspection, all three of these samples were of considerably lower overall intensity) are
visible in Table 5. These are significantly better measures, but in the case of such a low
sample count, investigating the possible causes is important. The exposure and gain values
defining the image intensities were fixed, and were the same for all of the samples, so the
errors can have only a few sources—the sample, the preparation process, or the image
segmentation. The experimental processes resulting in these settings were not thoroughly
documented (partially because the glass slides had no identifier before digitization), so the
experiment itself can be improved in that respect. In a real-life setting, where the main goal
is the calibration itself, a higher number of samples and the use of a separate slide set for
parameter setting would probably result in less uncertainty.

Table 4. Linear regression results (values rounded to 4 decimal places).

Method Scale (10−4) Intercept RMSE R-Squared

ICM 4.8627 324.7997 135.0 0.284
ICM-fit 4.9973 318.3169 133.0 0.303

Table 5. Linear regression results after manual, visual-inspection-based outlier exclusion (values
rounded to 4 decimal places).

Method Scale (10−3) Intercept RMSE R-Squared

ICM 1.0286 70.6179 94.0 0.832
ICM-fit 1.0281 67.6189 89.8 0.846
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This study shows the differences between the two measurement methods, prioritizing
the peak distance ratios. This is rooted in the initial goals—the evaluation of the image
processing, the underlying segmentation, and the biological nature of the samples of the
study. It answers the initial question—that the populations of the healthy samples’ 2C
and 4C peaks are as present and detectable in the case of the ICM approach as they are
with the FCM approach. Another way of describing the differences would have been to
prioritize the 2C peak location and the measurement of the differences in that way. The
input data being the same, the numbers, although with different values, would have the
same meaning.

Dye bleaching is a phenomenon that causes fluorescent stains to fade with time and/or
excitation. One aspect of sample digitization is the ability to circumvent this by storing a
pristine state that can be re-evaluated without loss of quality. Digital slide scanners them-
selves are also gradually getting better at causing less and less bleaching during digitization,
but the sample is often not lit in a homogeneous way, causing the dye in certain areas to
bleach in a heterogeneous way. It would complement this study to take measurements for
investigating this phenomenon, and even to formulate a compensation method.

Other conditions of the sample affect the segmentation results (e.g., degrading cells
are less intensive; their proportion in the sample is a marker of sample quality). Usual
processes of sample acquisition, storage, and handling are recommended before similar
measurements. A conference article [10] also explored the sample concentration’s effect on
the segmentation accuracy.

5. Conclusions

The basic idea of using two-dimensional images instead of analyzing the passage
of objects in front of a simple detector was shown to give similar information about the
populations’ DNA contents.

The basic idea of using healthy samples in a lab to calibrate an image-based cytometry
system is possible. The ICM method generated results regarding the measurement of the
cell populations’ relative DNA content that were comparable to those of the FCM method.

Lab desk space is a fixed cost; the ability to consolidate tools can reduce that cost (not
to mention the maintenance of multiple machines and operating personnel). In the case
of diagnostic labs that are smaller in area but willing to expand in the direction of digital
pathology, or those with a greater imaging workload, researchers might consider using
the ICM approach—even as a replacement technology for FCM. In the former case, the
introduction of ICM ploidy can be simpler, because the preparation process needs only to
be extended with sample placement on glass slides and coverslipping. In the case of the
latter, a glass-slide-only workflow can be implemented.

The inherent benefit of being able to store specimens for indefinitely longer periods
is another important facet to consider; either glass slides or digital images can be of great
importance as a database for later research projects.

When the continuous (or even automatic) calibration of such a system comes into view,
fitting a linear model to create a function transforming one method of data measurement to
the other based on the samples in this study does not seem possible. In Figure 15, samples
#1, #12, and #17 are good examples, showing the difficulty in fitting a model—the same
biological sample was represented as low-intensity by one system and high-intensity by
the other (relative to the set population). The same sample’s histograms’ relative positions
on the x-axis (i.e., the intensity, the DNA content) result in the necessity of quite different
per-sample transformation functions, to which we failed to fit a linear model. Further
investigation would be needed to confirm this system behavior, since neither method gave
more consistent measurements than the other regarding this measure.

The sample count of 17 is also too low; a study aiming at direct calibration needs to be
designed, and should include more samples to obtain more reliable statistical results.
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