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Abstract: In the wake of COVID-19, the digital fitness market combining health equipment and
ICT technologies is experiencing unexpected high growth. A smart trampoline fitness system is a
new representative home exercise equipment for muscle strengthening and rehabilitation exercises.
Recognizing the motions of the user and evaluating user activity is critical for implementing its
self-guided exercising system. This study aimed to estimate the three-dimensional positions of the
user’s foot using deep learning-based image processing algorithms for footprint shadow images
acquired from the system. The proposed system comprises a jumping fitness trampoline; an upward-
looking camera with a wide-angle and fish-eye lens; and an embedded board to process deep learning
algorithms. Compared with our previous approach, which suffered from a geometric calibration
process, a camera calibration method for highly distorted images, and algorithmic sensitivity to
environmental changes such as illumination conditions, the proposed deep learning algorithm utilizes
end-to-end learning without calibration. The network is configured with a modified Fast-RCNN
based on ResNet-50, where the region proposal network is modified to process location regression
different from box regression. To verify the effectiveness and accuracy of the proposed algorithm, a
series of experiments are performed using a prototype system with a robotic manipulator to handle
a foot mockup. The three root mean square errors corresponding to X, Y, and Z directions were
revealed to be 8.32, 15.14, and 4.05 mm, respectively. Thus, the system can be utilized for motion
recognition and performance evaluation of jumping exercises.

Keywords: smart fitness; trampoline; 3D foot contact position estimation; wide-angle camera;
footprint shadow; image processing; deep learning

1. Introduction

COVID-19 has had a significant impact on our daily life, especially our health [1-3].
In the wake of COVID-19, the digital fitness market combining health equipment and infor-
mation and communication technology (ICT) is facing a significant growth opportunity;
and the smart sports equipment market is also expected to grow in tandem. Smart sports
equipment is digitally connected to sensors to monitor, track, and analyze the motion
of athletes or exercises; and improve their performance [4,5]. Owing to the prolonged
pandemic, personal exercises and home trainings have increased; vitalizing the smart
sports equipment-related devices and service market. According to a report by Allied
Market Research, the global smart sports equipment market size is expected to grow from
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approximately $7 billion in 2019 to $12 billion in 2026; with a CAGR of 7.9% over the
same period [6].

Meanwhile, trampolines, which are familiar to men and women of all ages as playing
devices for children, have recently gained popularity as exercise equipment; in addition,
their effectiveness has been proven in muscle strengthening exercises [7-9] and rehabilita-
tion exercises [10,11]. Recently, jumping fitness, which uses the trampoline to implement
various movements of exercises indoors has gained popularity at home and abroad [12].
When trampolines are combined and linked with ICT, such as sensors, wired /wireless
communication, and immersive contents, it is expected that people can easily perform and
enjoy exercises at home to increase muscle strength and maintain balance. Moreover, it
facilitates quantitative assessment of exercises and management of exercise data history.
To implement smart sports equipment based on a trampoline, it is critical to recognize the
user’s motions and evaluate the user activity during exercise.

As listed in Table 1, studies have been reported on systems that combine trampolines
with ICT to recognize the motions of users. A previously conducted study classified
motions on the trampoline by attaching inertial sensors to the arms, legs, thighs, and waist
of trampoline players [13]. Studies have also been conducted on a system by integrating
a high-speed camera and a three-axial accelerometer system; and attaching sensors to
the hips to analyze the effect on motions based on the bouncing characteristics of the
trampoline [14]; as well as a system that classified trampoline athletes” motion using a
camera [15]. These studies were primarily aimed at analyzing the motions of professional
athletes. However, in all the aforementioned studies, the person jumping on the trampoline
had to wear sensors; this was an inconvenience. Studies have been reported on a system
that improves the motivation to exercise by connecting to an entertainment system via a
distance sensor installed under the trampoline; and implements different movements, such
as standing, walking, low jump, and high jump [16,17]; however, the system was limited
in recognizing the user’s detailed motions. Research has been conducted on a system
that connects a jumping game to a large trampoline using Microsoft Kinect; it improves
jumping ability and motivates the user to exercise by exaggerating the movements on the
screen [18]. Another study has been conducted on a system that recognizes head, arm, and
leg movements using a motion-capture camera based on the linkage with virtual reality
(VR) to determine the response level of the movements [19]. It increases the immersion
and entertainment in the game by using a head mounted display (HMD) device. In these
studies, user movements are primarily recognized using a camera installed outside the
trampoline; however, it is impossible to recognize the jumping force or the contacting
positions of the foot when jumping on the trampoline.

Table 1. Pros and cons of a trampoline system using sensors.

System Type Pros/Cons

Classification of trampoline athletes” motion using

Pros Allows the correct classification of athletes” movements.

Requires multiple sensors to be installed.

inertial sensors [10]. Cons -1 ) o .
Difficult to use for the public as it is designed for athletes.
P Effect of bounce characteristics on emotional response can be
Characteristic analysis system of trampoline TOS  etermined.
bounce using a high-speed camera and 3-axis — - -
accelerometer [11]. Cons o association with exercise and games.

Requires a sensor to be attached to the hip.

Classification of trampoline athletes” motion using

Pros  Allows the filtering and classification of players’ poses.

Requires secure spacing between the camera and trampoline.

a camera [12]. Cons (g . .. .
Difficult to use for the public as it is designed for athletes.
Pros Increases motivation for exercise through content integration.
Analysis of a status and content integrated system Available to the public.

using distance sensors [13,14].

Cons Can only classify walking, low jumping, and high jumping.
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Table 1. Cont.

System Type Pros/Cons

Pros Increases jumping power through content integration.

Jumping game integrated system using Kinect [15]. Available to the public.

Cons Requires secure spacing between Kinect and the trampoline.

VR integrated gaming system using a
motion-capture camera and HMD [16]. Cons

Pros Improves the immersion and enjoyment of games.

Requires complex safety equipment.
Requires arm and leg sensors and headgear.

In a previous study, we proposed a smart trampoline fitness system (STFS) capable of
recognizing the three-dimensional (3D) position of feet; more specifically, the feet position
on the trampoline transverse plane and depth pressed by feet [20]. The prototype of STFS
comprises a jumping fitness trampoline, ultra-wide-angle fish-eye camera, and an embed-
ded board. Image processing-based algorithms for 3D foot contact position estimation were
developed; and the positions were estimated using the binary image of the foot shadow
obtained by extracting the binary masks of the trampoline and foot. Although the system
cannot recognize the movement of the user’s entire body, the 3D foot contact position
estimation algorithms have several technological benefits. First, the users of the system
are not required to wear sensors such as those used in [13,14]; therefore, they can exercise
freely. Moreover, the user’s motions can be recognized in more detail compared to [16,17].
Moreover, the system is relatively simple and can be constructed at a lower cost compared
to [14,18,19]. Finally, the algorithms can detect the intensity of jumping as well as foot posi-
tion on a trampoline as compared to [15,18,19]. As a result of estimating the 3D position of
the foot using an image processing-based algorithm in the previous study [20], we encoun-
tered problems with linear coefficient extraction; an ultra-wide-angle correction coefficient;
and those that are significantly affected by surrounding objects and environments.

In order to solve these problems, we propose an algorithm using deep learning;
moreover, the objective of this paper is to estimate the 3D position of the foot using
the footprint shadow image processing and deep learning for STFS. The details of the
methodology for the proposed approach are described in this paper. The remainder of
this study is organized as follows. Section 2 introduces the method for the 3D position
of the foot using the footprint shadow image processing and deep learning. Section 3
describes the results of experiments on the deep learning-based algorithm. The proposed
methodology for the 3D foot position estimation is discussed in Section 4. Finally, the
conclusions of this study are presented in Section 5.

2. Methods
2.1. Overview of a STFS and Experimental Environment

Figure 1 displays a prototype of a STFS. It comprises a jumping fitness trampoline
(J6H130 FLEXI, W x D x H =1360 x 1360 x 285 (mm), maximum load of 130 kg, Jumping
Inc., Prague, Czech Republic); an embedded processor for real-time image processing and
deep learning (Jetson AGX Xavier, 512-core Volta GPU with Tensor Cores, 8-core ARM v8.2
64-bit CPU, 8 MB L2 + 4 MB L3, 32 GB 256-Bit LPDDR4x | 137 GB/s, 7-way VLIW Vision
Processor, Nvidia, Santa Clara, CA, USA); and a camera module (UC-626 rev. B, maximum
8 mega pixels: 3264 x 2448 pixels, maximum 30 fps at 1920 x 1080 pixels, Arducam, Hong
Kong) with a 220° wide-angle fish eye lens. The part of the trampoline where the user’s
feet makes contact is composed of a translucent material; thus, the shadow of the foot in
contact is clearly visible when viewed from below. The camera module was attached to
the bottom of the trampoline to capture the shadow of the foot. The extracted shadows
were used to estimate the contact position on the trampoline transverse plane (X-Y) and
the depth pressed by the foot (Z).
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'Jumping fitness tfampoline ' Embedded prdcessor
(J6H130 FLEXI, Jumping Inc.)  (Jetson AGX Xavier, Nvidia)

Camara module with wide angle
fish eye lens(UC-626 rev. B, Arducam)

Figure 1. Prototype of a smart trampoline fitness system (STFS).

Figure 2 shows the experimental environment for collecting learning and test data for
3D foot position estimation. First, the foot-shaped contact jigs were manufactured according
to human foot sizes ranging from 210-280 mm in 10 mm increments. The jig of each size
was changed and attached to the end-effector of the robot manipulator (iiwa 14 R820,
payload of 14 kg, precision of £0.15 mm, reach of 820 mm, KUKA, Augsburg, Germany).

obot manipulator

Foot shaped contact zig
(210~280 mm)

Figure 2. Experimental environment for collecting the learning and test data.

2.2. Network Structure for 3D Foot Position Estimation Based on Deep Learning

The correct detection coordinate labels are required to understand the existing image
detection process. However, the use of custom data rather than open data can limit the
labeling work. Therefore, the model was constructed using the obtainable image data
and coordinate data of the manipulator. Since the image data, foot size, and real contact
coordinates of the manipulator X, Y, Z are known, the image and foot size were used
as input data; and the coordinates of the manipulator X, Y, Z were learned as correct
data—that is, the model was devised such that the estimated coordinates X, Y, Z formed
the output. Accordingly, it was determined that the Z value estimated based on the foot
size could vary; consequently, the foot size could be added to the input data. Faster
R-CNN [21] using a region proposal network (RPN) is unsuitable as a real-time model;
however, owing to the lack of labels, the learning direction of the model needed to be
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conceived and verified. Consequently, the 3D foot position estimation based on a deep
learning (3DFPE-DL) algorithm was implemented using the corresponding model. Figure 3
illustrates the overall flow of the 3DFPE-DL.

Gray Image

l

@ " H \} Faster RCNN
\\_ S E K /
oy Feature Extractor
Foot Size (210~280mm) [—» RPN

v

Coordinates(X, Y, Z)

Figure 3. Flow of the 3DFPE-DL algorithm.

The image entered as the input in Figure 3 is shown in Figure 4a. Following conversion
from RGB to grayscale considering its use in the embedded processors, only the required
area was cropped (from 640 x 480 to 480 x 480 pixels). The image was then min-max
normalized to proceed with the learning process following the image preprocessing of the
grayscale image (Figure 4), as depicted in Figure 4b.

Figure 4. The input image. (a) Source image. (b) Preprocessing input image.

The feature extractor selected for the base network was ResNet [22], which has a
repeated shape of the residual block (using a bottleneck architecture). The network pre-
serves existing learning information and performs additional learning; in addition, it can
be characterized by solving the vanishing gradient problem in which the existing learning
information is forgotten as the number of layers increases by connecting the information
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learned in the previous layer. ResNet-50 comprises 50 layers, as presented in Table 2. The
output_size is downsampled as it passes through the convolutional layer in the convolution
block, as shown in Figure 5a; and learns the identity block, as shown in Figure 5b, which is
in the shape of a typical residual block.

Table 2. ResNet-50 structure in this study.

Layer_Name Output_Size ResNet-50 Layer
Convl 112 x 112 7 X 7,64, stride 2
3 x 3, max pool, stride 2
Conv2_x 56 x 56 1x1 64
3x3 64 X3
1x1 256
[1x1 128
Conv3_x 28 x 28 3%3 128 4
|1x1 512 |
[1x1 256 ]
Conv4_x 14 x 14 3%3 256 <6
| 1x1 1024 |
[1x1 512 ]
Convb_x 7x7 3%3 512 %3
| 1x1 2048 |
1x1 Average pool, 1000-d fc, SoftMax
FLOPs 3.8 x 10°
1x1, cony, 64, /2 1x1, conv, 64, 2
BatchMorm BatchMNorm
relu relu
¥ ¥
3x3, cony, &4, /2 1x1, cony, 256, /2 3x3, cony, 84, /2
BatchMorm BatchNorm BatchMNorm
relu relu
¥ ¥
1x1, conv, 256, /2 1x1, cony, 256, /2
BatchMorm BatchNorm
I relu I I relu I
(a) (b)

Figure 5. ResNet-50 structure and the residual block. (a) Convolution_block. (b) Identity_block.

In the existing Faster R-CNN, the feature map extracted through the feature extractor
is subjected to classification and box regression using the RPN. However, in the 3DFPE-DL,
location regression is performed instead of the box regression of the RPN; as illustrated in
Figure 6.

When performing the RPN, as shown in Figure 6, the previously extracted feature
map and foot size, as an input value, are merged using the concatenate step and en-
tered as an input to the RPN. The foot coordinates X, Y, Z can be estimated through the
corresponding network.

Since the correct data and extraction results are coordinates, the loss function between
the correct answer coordinates X, Y, Z and estimated X, ¥, Z was selected as the mean
square error (MSE); and learning was conducted.
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Figure 6. RPN in a Faster R-CNN for a 3DFPE-DL.

2.3. Experimental Method for Data Acquisition

Considering the operating range and diameter of the manipulator jig, the two-dimensional
contact position of the learning data was selected. The center of the trampoline was set
as the origin; and the position of the two-dimensional reference was selected within a
movable distance of 0, 50, 100, 150, 200, and 250 mm from the origin. The 48 positions
considered in the experiment are shown in Figure 7a. Measurements were performed in
units of 10 mm each; from 0 to 70 mm perpendicular depth at the blue point position and
from 0 to 100 mm at the green point position. In total, 403 3D positions were selected, data
were collected by rotating from 20° to 340° in steps of 10° at each position, and a total of
106,392 measurements were performed (13,299 for each size).

TITTUID

Area where the manipulator

I

180mm from origin

ZiMMITIAN
(a)

Figure 7. 2D contact positions of the manipulator on the trampoline. (a) Contact positions of the

learning data. (b) Contact positions of the validation and test data.

Furthermore, the contact position of the manipulator is represented as a two-dimensional
area, as shown in Figure 7b, to collect the validation and test data. The green area in
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Figure 7b represents an area of distance within 180 mm from the origin and can be measured
from 0 to 100 mm of vertical depth. The blue area corresponds to an area of distance within
250 mm from the origin, excluding the green area; and can be measured from 0 to 70 mm
of vertical depth. The coordinates and rotation angles of the manipulator were randomly
selected within the corresponding range; and a total of 24,000 test measurements were
performed with a total of 4000 confirmation measurements being collected (3000 and 500 for
each size, respectively).

2.4. Statistical Method for System Evaluation

The distance error between the actual position acquired by the manipulator and
estimated position computed by 3DFPE-DL was considered for the proposed system
evaluation. For this purpose, the root mean square error (RMSE) expressed in Equation
(1) was used as a statistical method. RMSE is a standard method to measure the error of a
model in predicting quantitative data. Here, P; indicates the actual contact position, X, Y, Z;
and P; indicates the estimated contact position, XY, 2.

¥V, (P - B)?

RMSE =
N

M

3. Results

Table 3 lists the standard error between the 3D point and each coordinate axis. Figure 8
presents the results of Table 3 as a graph. It can be confirmed that while the difference
between the minimum and maximum values is large due to some measurement noise, the
average values show that the distance error is less than 12 mm. Relatively higher error
values of x and y coordinates than that of z coordinate apparently result from the lens
distortion effect of the wide view camera. Moreover, the results indicate that the y-axis
distortion is greater that of the x-axis.

Table 3. RMSE of the X-Y-Z estimation position.

RMSE [mm]
Min Max Average
X-Y-Z 0.2 77.1 11.7
X 0.0 81.2 8.3
Y 0.0 1109 15.1
zZ 0.0 14.9 4.1
120 : :
— ! T Min~Max
100 4 m Average
80 _ T
€
E 60
i1}
2
o 40-
20
[m}
J L o+ 1 i
T T T T
X-Y-Z X Y Z

Figure 8. RMSE graph of the X-Y-Z estimation position.
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Table 4 and Figure 9 present the results obtained by analyzing the average error based
on the area from the origin. The green area in Figure 7b includes distance ranges of 50, 100,
and 150 mm; and the blue area includes a distance of 200 and 250 mm. From the table, it is
evident that the largest error occurs at 250 mm in the range including the blue area; with an
error at 200 mm greater than the average error occurring in the green area. In other words,
the closer to the boundary of the trampoline, the greater the increase in error.

Table 4. RMSE based on the X-Y distance.

Area Distance RMSE [mm]
Col Range
olor [mm] X Y Z X-Y-Z
50 8.1 13.7 4.1 11.0
Green 100 7.1 16.2 4.0 11.7
150 7.0 14.8 3.9 11.1
Bl 200 12.5 16.0 45 13.9
ue 250 39.9 47.4 5.7 38.2
% Distance [mm]
= 50
¢ 100
%0 A 150
—_— v 200
E 40 250
m
2
v 30 4
o
(@)
o
@ 20
<
. 4 v
10 2
|
1
0 T T T T
X Y z X-Y-Z

Figure 9. RMSE graph based on the X-Y distance.

Table 5 and Figure 10 present the average error based on the area of distance from the
origin to a vertical depth. The trends indicated in Table 4 can also be observed in Table 5;
that is, the error is smaller based on a depth of 70 mm. It is evident that the depth of
0 to 70 mm includes both the green and blue areas of Figure 7b. However, that of 70 to
100 mm includes only the green areas; indicating the error including the blue area is larger,
as confirmed in Table 4.

Table 5. RMSE corresponding to the Z distance.

Depth RMSE [mm]

Range X Y z X-Y-Z

[mm]
10 8.4 14.8 40 115
20 9.0 15.8 42 125
30 9.6 159 41 126
40 85 16.1 34 123
50 9.6 204 42 14.0
60 7.8 18.1 3.6 12.7
70 85 149 40 117
80 6.3 142 39 10.0
90 7.5 15.1 3.6 114

100 9.0 13.3 4.8 11.3
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Figure 10. RMSE graph based on the Z distance.

Unlike the experimental environment of [20], here, the data were randomly extracted
for a certain area rather than a certain location. Consequently, an error could be confirmed
by dividing the area into a range. During analysis of the cause of errors in the blue part
of Figure 7b, data—which included interference of the shade of the manipulator with the
outer periphery of the trampoline—were generated; as displayed in Figure 11. It should be
mentioned that it was difficult to organize all the interference data with random coordinates
and rotation angles within a certain area.

o LT

N

—

Figure 11. Interference image between the manipulator and the trampoline.

It can be stated that the results did not deviate from the purpose of this experiment,
considering that there was versatility for each size compared to the previous experiment;
the locations of the learning data and test data differed; and the surrounding objects
changed when collecting the data. Figure 12 shows the 3D foot position estimated when an
experimental subject jumped step-by-step on the trampoline.
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Figure 12. 3D foot position of the experimental subject estimated by the 3DFPE-DL algorithm (left:
images acquired by the camera module; right: numerical values of the 3D foot position estimated in
0.1 s increments).

4. Discussion

In this study, as a basic experiment, the 3D position of one foot was estimated by acquir-
ing one foot shadow data using a robot and jig. To estimate the contact positions of two feet,
the experimental environment comprising a robot manipulator and foot contact jig should
be improved; and then, the learning and verification processes of the 3DFPE-DL algorithm
are required to proceed. However, it is also possible to review the estimation method using
the 3DFPE-DL algorithm by integrating with the image processing-based algorithm in [20].
Nevertheless, the results of this study can be considered as a function of supplementing
the existing 3D foot position estimation algorithm based on image processing.

The experimental results revealed that the 3SDFPE-DL algorithm could solve problems
with a linear coefficient extraction; with an ultra-wide-angle correction coefficient; and
those which are significantly affected by surrounding objects and environments. However,
the estimation of the foot contact position in the Z-direction compared to that in the X-Y
direction was relatively inaccurate; a similar trend was reported in a previous study [20].
A possible reason can be the use of distorted images due to the use of a wide-angle lens
for learning. Considering the linkage with the content, the foot contact position in the
Z direction is used to determine the relative strength or contact; therefore, it would be
sufficient to produce a relative numerical value from a practical perspective.

As an example, a STFS linked with game contents, as shown in Figure 13a, can be
made based on the result of this study, by designating a range of pressing areas (Figure 13b).
This case may not require high accuracy for the 3D foot position estimation. However, it is
also possible to link content that analyzes the motions of professional athletes. In this case,
a relatively high accuracy of the foot contact position estimation may be required because
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the location of the landing point on the trampoline is crucial [23-25]. Therefore, for general
usage, such as home exercise equipment, as shown in Figure 13c, the results derived from
this study may be sufficient. However, when the results are used for professional use,
additional performance improvement may be necessary.

Figure 13. Example of a STFS linked with game contents based on the results of this study.
(a) Example of game contents (rhythm game) for a STFS. (b) Example of a range of pressing ar-
eas. (c) Usage example of a STFS for home exercise equipment.

5. Conclusions

In this study, we proposed a 3DFPE-DL for STFS. A system prototype of the STFS was
developed using a trampoline for jumping fitness, an embedded processor capable of deep
learning, and an ultra-wide-angle fisheye camera. Experiments for collecting learning and
test data for 3D foot-position estimation were conducted in an environment that consisted of
foot-shaped contact jigs and a robot manipulator. The 3DFPE-DL algorithm was configured
with a ResNet-50 based Fast-RCNN, where the RPN was changed to suit the purpose of
3D foot position extraction. As an experimental result, RMSE values corresponding to X,
Y, and Z directions of 8.32, 15.14, and 4.05 mm, respectively, were derived through the
3DFPE-DL algorithm.

As a future work, the 3DFPE-DL algorithm should be stabilized and improved to a
1-stage model; referring to the problems considered in the conceptual stage. Moreover, the
3DFPE-DL algorithm could be applied to low-cost embedded processors by simplifying
the algorithm. The results for foot position estimation in the Z direction can be linked to
the trampoline energy consumption prediction mathematical model [26], and it is expected
to present exercising effects to users of the STFS.
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