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Abstract: Space-time adaptive processing (STAP) is a well-known technique for slow-moving target
detection in the clutter spreading environment. For an airborne conformal array radar, conven-
tional STAP methods are unable to provide good performance in suppressing clutter because of the
geometry-induced range-dependent clutter, non-uniform spatial steering vector, and polarization
sensitivity. In this paper, a knowledge aided STAP method based on sparse learning via iterative min-
imization (SLIM) combined with Laplace distribution is proposed to improve the STAP performance
for a conformal array. The proposed method can avoid selecting the user parameter. the proposed
method constructs a dictionary matrix that is composed of the space-time steering vector by using the
prior knowledge of the range cell under test (CUT) distributed in clutter ridge. Then, the estimated
sparse parameters and noise power can be used to calculate a relatively accurate clutter plus noise
covariance matrix (CNCM). This method could achieve superior performance of clutter suppression
for a conformal array. Simulation results demonstrate the effectiveness of this method.

Keywords: space-time adaptive processing; sparse learning via iterative minimization; Laplace prior;
clutter suppression; conformal array

1. Introduction

The conformal array radar has many advantages, including minimal payload weight,
the potential larger effective aperture, raised field of scan without the demand for cum-
bersome mechanical couplings, and easy integration with various sensor functions. The
conformal array design also avoids signal modulation caused by antenna rotation [1]. An
efficient model of the conformal array signal is a necessary prerequisite for conformal array
signal processing. Compared with the traditional linear array or planar array, the conformal
array has a different element pattern and normal because of the varying curvature. How-
ever, previous study assumed relatively simple element pattern and ignored the influence
of the polarization and mutual coupling in clutter model.

Space-time adaptive processing (STAP) is a technique for detecting moving target in
the presence of a spreading clutter background [2]. The optimal STAP weight vector is
expressed as the product of the inverse of clutter plus noise covariance matrix (CNCM)
and the target space-time steering vector [3]. When detecting whether the target exists in
the range cell, the CNCM of the range cell is usually estimated by the training samples
which are selected from the range cells adjacent to the cell under test (CUT) [4]. Traditional
STAP techniques using a linear array have the acceptable performance, and the relationship
between the spatial and Doppler frequencies is range-independent. Therefore, the training
samples from adjacent range cells are independent and identically distributed (IID) and can
estimate relatively accurate CNCM so that the STAP processor can be effectively produced
to improve the output signal-interference-noise-ratio (SINR) in the test cell [5]. However,
in a complex configuration, e.g., conformal array, the relationship between the spatial
and Doppler frequencies is non-linear and range-dependent, and the clutter appears non-
stationary over the range [6]. The Reed Mallett Brennan (RMB) rule [7] suggest that the
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number of IID samples should be at least twice as much as degrees of freedom to obtain a
good performance. In case of conformal array, the performance of STAP degrades due to
the inadequate IID samples.

In order to alleviate the influence caused by range dependence, a lot of signal process-
ing methods have been proposed. These methods are Doppler warping (DW) [8], angle-
Doppler compensation (ADC) [9], adaptive angle-Doppler compensation (A2 DC) [10,11],
and some related methods [12,13]. These methods try to align the peaks of the clutter ridge
of the training samples with that of the CUT. Unfortunately, the methods mentioned above
are only available for high directivity antenna beam-patterns [14].

To resolve the drawback of inadequate IID training samples and maintain the STAP
performance, many algorithms have been proposed over the last decades. The reduced-
dimension (RD) methods use a dimension reducing transformation before the adaptive
processing to reduce the number of the required training samples [15-17]. Based on the
low rank character of clutter, the reduced-rank (RR) methods use the data-dependent
transformation matrix to transform the clutter data into a lower dimension data [18].
Unfortunately, the training samples required by the RD and RR methods can hardly be
acquired in nonstationary background. The direct data domain (DDD) STAP method
proposed in Ref. [19] could avoid the problem of lacking training samples by exploiting the
data of the CUT only. However, because the DDD method only utilizes partial information,
the degree of freedom is reduced, and STAP performance degrades. Moreover, the DDD
method has a large computational burden.

Recently, inspired by the development of sparse recovery theory [20,21], clutter sparse
recovery STAP (SR-STAP) algorithms have been well developed. SR-STAP algorithms
intend to recover the complex amplitudes of clutter patches by using sparse recovery
theory and utilizing the clutter sparse property. By utilizing the inherent sparsity of
the clutter spatial-temporal spectrum, these methods can obtain accurate CNCM with
only a small number of IID training samples, even one [22,23]. A sparse representation
registration-based compensation (SR-RBC) has been proposed for conformal array STAP
and provide a good performance [24]. Unfortunately, these SR-STAP methods have the
drawbacks like high computational burden and user parameter which is difficult to select.
A STAP method based on knowledge aided sparse iterative covariance-based estimation
(KASPICE-STAP) has been presented which achieve excellent performance [25]. This
method utilizes the prior knowledge of the clutter ridge to construct the dictionary matrix
and can estimate the relatively accurate CNCM via covariance fitting. It overcomes the
drawbacks of conventional SR methods. A SR method named as sparse learning via
iterative minimization (SLIM) algorithm [26-28] has been presented recently and it shows
satisfactory performance in various applications. However, this method also has a user
parameter that should be determined by incorporating the Bayesian information criterion,
and the additional computational load will be brought. To overcome this problem, the
Laplace distribution [29] will be utilized in SLIM.

In this paper, a new signal and clutter model which consider the influence of polariza-
tion and mutual coupling is presented. This model can be used to arbitrary array geometry
and in the complex scenes. A novel KASTAP method based on modified SLIM named
with KA-MSLIM-STAP is proposed here. This method overcomes the problems mentioned
above. The proposed method is based on SLIM combined with Laplace distribution, which
provides a more accurate expression of signals. We utilize the knowledge of the clutter
ridge to obtain the ideal space-time steering vectors of clutter. These vectors will form
the dictionary matrix. Then, the proposed method estimates the clutter power and noise
power and calculates a relatively accurate CNCM, which can obtain good performance in
the conformal array clutter suppression.

The main contributions of the paper are listed as follows:

(1) A new clutter model which considers the influence of polarization and mutual cou-
pling is proposed. The following theoretical analysis and simulations are based
on this model.
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(2) The proposed method uses the accurate information of array geometry and radar
system parameters to construct the CNCM based on the new received data model.

(3) The original SLIM method has a hyper-parameter that should be chosen by user. The
KA-MSLIM-STAP method utilizes the Laplace distribution to avoid selecting the user
parameter. It can provide an excellent performance by using the CUT data only.

(4) The proposed method is an iterative algorithm. It finds a local minimum of the cost
function, but it converges rapidly. This method has lower computational complexity
compared with other SR-STAP methods.

The remainder of this paper is as follows. Section 2 introduces the signal and clutter
model based on the conformal array. Section 3 discusses the key theory of the proposed
method and illustrate the advantages over other methods. Numerical experiments with
simulated data are carried out in Section 4 to illustrate the performance of the proposed
method. A summary is provided in Section 5.

Notations: We use boldface lower case for vectors (a), upper case for matrices (A) and
the italics for scalars (). The transpose, conjugate transpose and inverse of a matrix are
represented by []T []H and [-] ! respectively. |- | stands for the absolute value. || - || is
Euclidean norm for vector and Frobenius norm for matrix. || - ||, represents the Iy norm.
Il - || is the I; norm. ® represents the Kronecker product. ® denotes the Hadamard product.
Diag(-) is Diagonal matrix with the vector on its diagonal. Iy is an N x N identity matrix.

2. Clutter and Signal Model
2.1. Signal Steering Vector Model

Consider a conformal array which consists of N radiating elements. As shown in
Figure 1, ¢ and 0 represent the azimuth and elevation angle of a clutter scattering point.
v stands for the radar velocity.

Figure 1. Schematic diagram of airborne radar system.

The v is written as
v=[vcosp,vsiny,0]” 1)

where 1 is crab angle.
The unit vector pointing to propagating direction of (¢, #) can be represented as

k(¢,0) = [cos 8 cos ¢, cos 8 sin ¢, sin 6] ()
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A circular arc array is used here, and the configuration of conformal array is shown in
Figure 2. The blue dots denote the position of the elements and red arrows represent the
normal direction of elements. A stands for the radar wavelength. The array is composed of
N elements and array inter-element spacing is A /2. The position pointing vector of the ith

. T
antenna elementis r; = [x;,v;,z] .

05—
N 04 I \\\
VARRERY
05 -
0.6
06 04
' 0 0.2 08
02 04 %
X ’ y

Figure 2. Geometry of conformal array.

The conventional normalized array manifold vector of the clutter patch from (¢, 9)
can be represented as a N x 1 vector

:2 2 2 T
so(,0) = [ef%k-rlref%krz,. .. ,e]%k‘rw] )

where ¢ is the azimuth angle and 6 denotes elevation angle.

We design a tangential individually- polarized dipole conformal array which is
composed of dipoles that are placed tangentially to circumference. Due to the differ-
ent orientations, their diverse patterns sample polarization diversely, making the array
polarization-sensitive.

We denote that f; is the ith element vector pattern. It can be decomposed into two
components of orthogonal polarization, and it is shown as

—

fi=fr(9,0)9 +f-(9,0)6 4)

where sz((P’G) and f;(go,@) are the ¢ polarized component and 6 polarized compo-
1

nent, relatively.
Because the installation direction and polarization of each element in the conformal array
are different, the element vector patterns are also different in the global coordinate system.
In general, each element vector pattern is determined in their local coordinate, where
Z is the normal to the surface, X is the horizontal tangent of the carrier surface and y is
the vertical tangent of the carrier surface. Thus, we can obtain the element vector pattern

f;(X,¥,2) in the local coordinate system. In this paper, f;(X,y,z) = [1,0,0]. This suggests
that the array elements are placed along the horizontal tangent of the carrier surface. We
should transform the element pattern from local coordinate to global coordinate to acquire
the expression of the element pattern in the global coordinate, and the exact expression
of the conformal array spatial steering vector can be further obtained. The Euler rotation
matrix [30,31] is a helpful tool for the transformation.
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As for the coordinate transformation (x,y,z) = (X,¥,z), the corresponding rotation
matrix can be written as T = T, T, T,

where
1 0 0

T, = |0 cosay —sinay 5)
0 sinay cosay

The above represents the rotation matrix with the x-axis as the rotating axis. ay is the
rotation angle. Counterclockwise rotation is positive.
Similarly,
[ cosay 0 sinay|
T, = 0 1 0 (6)
|—sinay, 0 cosay |

[cosa, —sina, O]
T, = |sina, cosa, O (7)
0 0 1]

With the Euler rotation matrix, we can get

£(%,5,2) = T-£i(x,,2) 8)

So, we can transform the element pattern from the local coordinate to the global
coordinate by

fi(x,,2) =T 6(%7,2) 9)

With regard to the polarized components transformation from the Cartesian coordi-
nate system to the spherical coordinate system, the following mathematical manipulations
are required.

— x
¢ _ | —sing cos @ 0 —

[9] N [sinQ cosg sinfsing —cos6 | | ¥ (10)
z

Then, we can obtain the fz@ (¢,0) and fl o (9,0).

In general, for the common conformal array (e.g., cylindrical, circular, conical, and
spherical array), two successive Euler rotation matrices are usually adequate. For the
generalization of the conformal array signal model, three Euler rotation matrices mentioned
would be used here.

Now, conformal array spatial steering vector can be expressed in the following form:

Ss(9,0) = [Fy(9,0) @ so(,0),Fo(e,0) ©so(p,0)],Ss € CN*? (11)

where
Fo(9,0) = [f,,(9.0), £, (9.0),- - /ng(fPr(’)]T (12)
Fo(g,0) = [flg(fl)rf’),fz;(fl)f@)w“ ,fN;((P/(’)]T (13)

Given the influence of mutual coupling, a mutual coupling matrix Z will be left-
multiplied to form a new spatial steering vector matrix. For simplicity, we ignore the
influence of mutual coupling in following section.

We assumed that array transmits a series of M pulse at a invariant pulse repetition
frequency (PRF) f, in a coherent processing interval (CPI). The normalized Doppler steering
vector can be written as a M x 1 vector.

- 27T 2 27T T
5a(,0) = [Le]mZk-v" B ,e]A—VZR-V(Mfl)] (14)
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The conformal array signal space-time steering vector can be expressed as
Sn(9,6) = su(9,0) @ Ss(¢,0), S € CVM2 (15)

2.2. Conformal Array Clutter Model and Received Data Model

In clutter simulation, we make this assumption that the radar coherent processing
interval (CPI) is short enough so that we can think that the velocity, RCS and polarization
characteristics of the target and the RCS, polarization characteristics of the clutter patch
are constant in a CPI. In this paper, we assumed that the wave received by radar array is
the completely polarized wave whose polarized state does not change with time. From
the above discussion, we can obtain that the conformal array can receive the polarized
information of the wave. The polarization angle is 4 € [0,71/2], and the polarization
phase difference is B € [—7, 7], where the definition of the polarization parameters is
given in Ref. [32].

The Jones vector which can be used to express the completely polarized wave is

showed as
_ | cospu
e = Lin ye]ﬁ] (16)
With the above description, the data of the clutter patch from azimuth ¢ and elevation
0 angle ¢ € CNM*1 can be expressed as

¢ =caSu (@, 0) - ep = cas(¢,0) (17)

where ¢ stands for a complex scalar with ¢ ~ CN(0, 1), a represents the complex amplitude
of the clutter patch, and e, denotes the polarized state of the echo wave from clutter patch.
Therefore, the received data of the kth range cell can be represented as

Nl N
Xk = Z Z ClcX1,cS1,c +n (18)
I=1c=1

where N is the number of ambiguous range gates, N, indicates the number of statistically
independent clutter patches of each range cell, and s, . = Sy (¢c, ;) - €, (1), where e, ;) is

CNMx1 i5 the Gaussian

the polarization vector of the echo of the J, cth clutter patch, and n €
white thermal noise vector.

The detection can be represented by following [25].

Hyp:x=c+n

Hi:x=wast+c+n (19)

where hypotheses Hy and Hj correspond to target presence and absence, respectively, «; is
the complex amplitude of the target and s; denotes the target space-time steering vector.
The precise formula of the target vector can be written as

st = S (o, 00) " ept (20)

where ¢ and ) is the azimuth angle and elevation angle of the target, respectively, ept
denotes the polarized state of the target.

Considering that clutter patches are mutually independent, clutter and noise are
independent of each other. The CNCM Ry € CNM*NM can be expressed as

N Ne
2 H, 2
Re=) ) 0r 81c81c +0yInm (21)
I=1c=1

where 0], is the complex amplitude of the /, cth clutter patch and o7 is the noise power.
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The STAP processor can alleviate the clutter component and provide coherent gain
on target by performing an inner product between the weight vector w and the data from
the CUT. The well-known optimal weight vector, which maximizes the output SINR, can
be written as

R]: 1 St

W= ——
Hp-1
stRk St

(22)

Because the statistics of interference environment are unknown, the CNCM is usually
unknown a priori. It should be estimated by some algorithms in order to obtain an excellent
performance of STAP.

3. The Proposed Method
3.1. Dictionary Matrix of Conformal Array

The range cell can be separated into N, cells. In this way, the snapshot can be rewritten as

Ni
X = ckkSy +n =Dy +n (23)
k=1

where D is a dictionary matrix, which contains steering vectors. D could be represented by
D = [Sm,lz Sm,2/ oy Sm,Nk] (CNMXZNk (24)

y € C?Nex1 can be expressed as

. . T
y= [gyxl COS {1, G141 sin yle]*gl, “* ,GNLAN, COS UN,, GN, &N Sin yNke]ﬁNk} (25)

We note that the space-time steering vectors which is obtained from the clutter ridge
are related with the array geometry and the radar system parameters. Because the elevation
angle 0 is constant in a certain range gate, the space-time steering vectors of clutter are
determined by azimuth angle ¢ in essence. Therefore, we could get enough values of
azimuth angle to produce the ideal space-time steering vectors corresponding to the clutter
ridge of the CUT by the prior knowledge.

Here, we choose Ny > NM, and then D is an over-complete dictionary matrix which
contains enough space-time steering vectors to recover the clutter accurately. y denotes
sparse coefficient vector where non-zero elements represent the presence of clutter on the
space-time profile. It also contains the complex amplitude and polarization parameter of
the clutter. n € CNM*1 j5 zero-mean Gaussian noise.

When given the range ambiguity situation, the dictionary matrix D €
be rewritten as

(CNszN]Nk can

D = [Su,11,Sm12 - SN » SmNN, ) (26)

The received data from /th range gate can be represented in the following form.
x; = Dy, +ny (27)
In the following subsection, we remark that K = 2N;Nj.

3.2. SR-STAP Model and Principle

In sparse recovery methods, we use as few atoms from dictionary matrix D as possible
to represent the measurement x; contaminated by noise. Hence, the objective function is
written as [24]

5, = argminlly o, sty ~ Dyl < e 8)
1
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where €7 is a parameter that controls the error. As all known, we cannot solve (28) because
it is a NP-hard problem. Hence, instead of minimizing the Iy norm, /; norm has been used
in the sparse represent problem [23].

9; = argmin|ly, |, st [x — Dy, <& (29)
yi

where ¢; is a user parameter.
It can be equivalent to the following optimization problem [20].

.1 2
rr;nEHXz—DylH +71llylly (30)

where 1 > 0 is the user parameter. This SR method is also known as LASSO, whose
disadvantages are that the user parameter is difficult to choose a compatible value and
it is easily affected by the number of steering vectors. The computational complexity
increases rapidly with the improvement of the size of the dictionary and the number
of measurements.

3.3. KA-MSLIM-STAP

In this framework, to utilize the above sparsity structure, we adopt the hierarchical
Bayesian model [33]. We suppose that the noise vector n; is a complex Gaussian random
vector. It has zero mean and covariance matrix 7I. 7 denotes an unknown parameter. From
the assumption, we obtain the following probability density functions (PDF) which can
be written as

1 _ 1y — 2
f(xl‘ypﬂ) = We 7 X —Dy, | (31)
In Ref. [27],
T - 2 (1)
fly)=1Te " (32)
n=1

where g is the hyper-parameter chosen by user. In order to making user parameter free,
Ref. [27] proposed incorporating the Bayesian information criterion (BIC) to estimate
g automatically. This will introduce additional computational burden. To overcome this
problem, we should consider other methods.

It is reasonable that we assumed that the signal coefficients follow complex Gaussian
distribution. In Ref. [28], the proposed SLIM-0 method assumed that the signal coefficients
follow a complex Gaussian distribution. However, we can see from Ref. [28] that the final
derived result in SLIM-0 is equivalent to the SLIM with g = 0. It does not always get the op-
timal performance in STAP. So, we consider another distribution like Laplace distribution.

In Ref. [29], we know that Laplace prior cannot be directly applied to coefficients. To
apply Laplace distribution, a hierarchical framework is modeled for the coefficient y;.

The following prior is employed on y;:

K
pyilv) =TT CNWnl0,7n) (33)
n=1
where y = (71,72, - - -, 7k)- Then, model the y,, by using the following hyper priors:

vrn

p(yalv) = T(mll,0/2) = Se= ¥ (34)

Combining the hierarchical Bayesian model, we can obtain:

K
K UK/2 VUL Yl

plo) = [py v )prioddy =TT [ palv)pCralo)dr, = See =™ @5)

n=1
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It can be seen that the p(y;|v) is Laplace distribution. In this paper, we assume the
signal coefficients present a Laplace distribution, that is

K
T W]
flyilv) = Sge = (36)
Then, we model v as the following form
1
fo) o 37)

The estimates of y;, v, and 7 are acquired by solving a maximum a posteriori (MAP)
problem as follow:

mingnrsrim (Y, U, 1) (38)
yi. P
where
gmsLim (Y, v, 1) = - log[f(xily;, 1) - f(y,|v) - f(v)] (39)

From (31), (36), (37), and later discarding irrelevant constants, gams.m(y;, v, 17) can be
indicated as

1 v K
gmsLim = NMlogn + 5”"! ~Dy,|* - Klogi +0Y Y| +logv (40)
n=1

The minimization problem of (38) could be resolved by utilizing the cyclic minimiza-
tion (CM) method [34]. First, suppose we have obtained y; in the tth iteration, and the
minimization problem can be written as

K
. v
mingsLim = —Klog 5+ vY |yuy| +logv (41)
n=1

We set the (9/9v)gumsiim to zero, and can get

ym KoL @)
;l |]/n,l |

Then, suppose we have obtained y;, v and 7 in the tth iteration, we aim to get the
y; and 7 in the t + 1th iteration and the minimization problem can simplified as follows:

: 1 2 K
ming s i = NMlogr + —|[x; = Dy, [|* + v} [yn,] (43)
yin n =1
We can set the complex derivative to zero and solve it for y;, this results in:

;DHDyl — ;DHXZ +Ply, =0 (44)

where P = diag(Z’yn,l|/v),n =12,---,K
Then, solving (44), we can get the solution

yi = [D"D+yP 1] 'Dix,

_ 45
— PDH[DPDH + 1] 'x, )
Similarly, setting the (9/9%)gmsrim to zero leads to
1=yl — Dyl (46)
NM !
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The solution of (38) can be obtained via repeating above iteration (42), (45), and (46)
until this convergence criterion is satisfied
Iy, —y, V]
Iy, 1l

where A is a small, positive number. If the maximum number of iterations is attained in
advance, the process suspends.

<A (47)

We initialize the iterative process by applying a match filter, so that y,, ;0 = dfx; /||d,, ||,

forn =1,2,--- ,K, where d, is the nth column of D, and 5(®) = (1/NM)||x; — Dy, H2
By the above iterative process, we can obtain the relatively accurate estimate of y; and
7. The CNCM can be calculated as follows:

K
R=Y" (llyns
n=1

The weight vector could be acquired by (22). The KA-MSLIM-STAP method is sum-
marized in Algorithm 1.

2) d,d + 71 (48)

Algorithm 1: KA-MSLIM-STAP Method.

Input: Steering Vector Dictionary Matrix D
Data x;

Output: Space-Time Adaptive Weight Vector w
Initialize values of parameters as:

Step 1 Yt = dffx/||d, |?

2
7% = ghlx — Dy, 0|
Repeat the following fort = 0,1,2,- - -
(1) K-1

— X
n§1|yn,1“)\
P(t+1) = diag(Z’yn,l(t)‘/U(t+1)>,n = ]_’2, Ce ’K
yl(t+1): P(l’+1)DH |:DP(f+1)DH + 17(,})1] 71)(]

2
7 = gy llx — Dy, (D]
Until convergence
Calculate CNCM

K
R= 1 (llynl)dudif 1
n=
Step 4 Compute KA-MSLIM-STAP weight w

Step 2

Step 3

Due to the cyclic minimization character, the cost function is monotonically non-
increasing in each iteration. This will indicate that the proposed method is convergent. We
note that the cost function is not convex. Global optimum is not guaranteed. However, as
we test numerically, excellent estimation results can be obtained, and the proposed method
converges quickly. In the following simulations, this method shows excellent performance
after five iterations.

The computational complexity of the methods is measured in terms of the number of
multiplications. Based on the analysis above, the proposed method consists of the estimate
of y;, v, P and  in each iteration. We can obtain that the computational complexity of the pro-

posed method is o ((N M)*>+2K(NM)? + 4KNM + 2K + 2) . The computational complexity

of the KASPICE-STAP method is 0 (2(NM)3+2(NM)2+2K(NM)2 +4KNM + NM + 31<) .
We can see the proposed method has lower computational complexity.

The proposed KA-MSLIM-STAP method could acquire better performance by using
the snapshot of the testing range cell only. The proposed method also possesses advantages,
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including low computational complexity and no need to select user parameters compared
with other SR-STAP methods.

4. Simulation Experiments

In this section, some simulation results will show the performance of different methods
with conformal array. In Figure 2, the conformal array contains 12 elements in a circular
arc. We use a uniform grid here and the size is determined as Nj = 300. We will verify the
performance of the sample matrix inversion (SMI) method, the angle-Doppler compensation
(ADC) method, the registration-based compensation with sparse representation (SR-RBC)
method, the STAP method based on knowledge aided sparse iterative covariance-based
estimation (KASPICE-STAP) method, the least absolute shrinkage and selection operator
(LASSO) method and the proposed KA-MSLIM-STAP method with the simulated data. In
this section, we consider forward-looking conformal array in the ideal condition and non-
ideal condition. The range ambiguity condition is taken into account here. Then, we use
the improvement factor (IF) as the measurement of performance, which can be expressed as

(49)

where R denotes the exact CNCM of the CUT.
The relevant radar parameters are given in Table 1.

Table 1. Radar system parameters.

Parameter Value Unit
Number of elements 12 -
Pulse number in a CPI 16 -
Wavelength 0.2 m
Distance between elements 0.1 m
Bandwidth 5 MHz
Platform height 3000 m
Pulse repetition frequency 5000 Hz
Platform velocity 200 m/s
Clutter to noise radio 60 dB

4.1. Ideal Conditoin

The clutter data of the 300th range cell will be the input data for the spectrums.

In Figure 3, there are four clutter capon spectrums figures in the ideal condition.
Figure 3a—d illustrate the clutter capon spectrums estimated by the ideal CNCM, the SMI
method, the KASPICE-STAP method and the proposed method. We can get that the clutter
capon spectra gained by the KASPICE-STAP and the proposed method are closer to the
accurate spectrum.

1
80
0.8
06 60
0.4
40
0.2
20
0.2
0
0.4
06 20
0.8
40
-1
-1 05 0 05 1

cos cos

(a) (b)

Figure 3. Cont.
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20
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-1 -0.5 0
cos

(d)

Figure 3. Clutter Angle-Doppler spectrums estimated by different methods in the ideal condition:
(a) ideal CNCM; (b) SMI; (c) KASPICE-STAP; (d) the proposed method.

05 1

Figure 4 exhibits the IF curves which are the IF versus normalized Doppler frequency
with various methods in the 300th and 500th range cells. The number of training samples is
chosen as 2N M in SMI, ADC, and SR-RBC methods. The number of iterations in KASPICE-
STAP method is set to 5. The user parameter in the LASSO method is set to 0.001. The
number of iterations in the proposed KA-MSLIM-STAP method is 5. The KA-MSLIM-STAP
will show good performance.
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Figure 4. The IF versus normalized Doppler frequency with different methods in different range
gates (a) the 300th range gate; (b) the 500th range gate.

(a)

Compared with the ADC, SMI, and SR-RBC methods, the excellent performance could
be seen to emerged at the 300th and 500th range cells with the proposed method, when
the number of IID training samples is inadequate. The proposed method only utilizes the
testing range cell and knowledge of the clutter ridge to construct the dictionary matrix and
estimate the CNCM, which can avoid the problem of inadequate IID training samples.

This subsection has exhibited the performance analysis of various methods in ideal
conditions. In following subsections, we are going to probe the factors that impair the
performance of these methods.

4.2. Model Errors

In Figure 5, we utilize four methods in the non-ideal condition with 0.5% amplitude
error and 0.5° phase error. Figure 5a—d exhibit the clutter capon spectra estimated by the
ideal CNCM, the SMI method, the KASPICE-STAP method, and the proposed method. We
can also get that the clutter capon spectra gained by the KASPICE-STAP and the proposed
method are closer to the accurate spectrum.
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Figure 5. Clutter Angle-Doppler capon spectrums estimated by different methods in the non-ideal
condition with model errors: (a) ideal CNCM; (b) SMI; (c) KASPICE-STAP; (d) the proposed method.
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Because of the presence of model errors, there is a mismatch between the steering vector
in dictionary matrix and the real steering vector of the clutter. This will result in the inaccurate
estimation of CNCM. The model errors consist of array amplitude and phase errors.

Figure 6 shows the IF curves with various methods with model errors, where the
model errors are 0.5% amplitude error and 0.5° phase error in Figure 6a and the model
errors are 1.2% amplitude error and 1.2° phase error in Figure 6b. Compared with ideal
condition, the proposed method demonstrates performance degradation. The results show
that the performance decrease more when model errors are large. However, we can know
that the effectiveness of the proposed method is still better than other conventional methods
and is excellent in terms of SR STAP methods.
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Figure 6. The IF versus normalized Doppler frequency with different methods (a) the model error
are 0.5% amplitude error and 0.5° phase error; (b) the model error are 1.2% amplitude error and
1.2° phase error.
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4.3. ICM

Intrinsic clutter motion (ICM) is an issue that will exist in practice. Many factors,
due to both the radar system design and the environment, may in practice cause small
pulse-to-pulse fluctuations in the clutter return. The presence of ICM requires a wider
clutter notch and more adaptive degrees of freedom for effective cancellation. According to
Ref. [35], considering the ICM influence, the received data can be rewritten as

x = ca(yv: ©sq(¢,0)) @Ss(¢,0) - ey (50)

where y; is the temporal covariance weight matrix.

In Figure 7, we utilize four methods in the non-ideal condition with ICM and the
standard variance of clutter spectrum spread is 0.22 m/s. Figure 7a—d exhibit the clutter
capon spectra estimated by the ideal CNCM, the SMI method, the KASPICE-STAP method,
and the proposed method. We can get that the clutter capon spectra gained by the KASPICE-
STAP and the proposed method are closer to the accurate spectrum.

2fd/ffr

=)

-1 -0.5 ] 05 1
cos

2fd/fr

o

(d)

Figure 7. Clutter Angle-Doppler capon spectrums estimated by different methods in the non-ideal
condition with ICM: (a) the ideal CNCM,; (b) SMI; (c) KASPICE-STAP; (d) the proposed method.

In the presence of ICM, the IF curves with different methods have been shown in
Figure 8. The standard variance of the clutter spectrum spread is 0.22 m/s in Figure 8a
and 0.56 m/s in Figure 8b. We can see that the proposed method still preserves desir-
able performance.
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Figure 8. The IF versus normalized Doppler frequency with different methods (a) the standard
variance of clutter spectrum spread is 0.22 m/s; (b) the standard variance of clutter spectrum spread
is 0.56 m/s.

I
0 0.1 0.2 0.3

4.4. Target Detection

To further prove the performance of different methods, we use the probability of
detection (PD) curves here. PD is a function of input signal-to-noise ratio (SNR) with a
constant probability of false alarm Py,. The detection curves will be acquired by the cell
average constant false alarm rate (CA-CFAR) detector. The CUTs in the area of the 8-12th
Doppler bins and the 301-500th range cells are selected as the 1000 runs in the Monte-Carlo
experiments. We set that Py, is 1074,

In Figure 9, we show PD versus SNR with ADC, SR-RBC, KASPICE, and the proposed
method. We can see that, compared with the detection performance of the KASPICE,
there is a slight advantage of about 1 dB in that corresponding to the proposed method.
Compared with the SR-RBC and ADC methods, the proposed method demonstrates great
detection performance. We can conclude that the result obtained from the probability of
detection performance is similar to that obtained from the performance of STAP. This can
further prove the superiority of the proposed method.
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Figure 9. PD versus SNR with different methods.

5. Conclusions

In this paper, we have presented a novel KASTAP method based on modified sparse
learning via iterative minimization named KA-MSLIM-STAP to suppress clutter for a
conformal array radar. The new method reformulates the clutter model by introducing the
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influence of polarization and mutual coupling. Then, a new sparse learning via iterative
minimization is derived with Laplace prior. The proposed method exploits the knowledge
of array geometry and radar system parameters to construct the dictionary matrix and
utilizes Laplace prior to avoid selecting user parameter. The effectiveness of the proposed
method is verified through numerical simulations under ideal and non-ideal conditions
(model errors and ICM). The results show the superiority of the proposed method in terms
of clutter suppression and target detection. Moreover, we show that the proposed method
has lower computational complexity compared with other SR-STAP.

For simplicity, we ignore the influence of the mutual coupling. Hence, this could be
the subject of future work.
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