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Abstract: Adversarial machine learning (AML) is a class of data manipulation techniques that
cause alterations in the behavior of artificial intelligence (AI) systems while going unnoticed by
humans. These alterations can cause serious vulnerabilities to mission-critical AI-enabled applications.
This work introduces an AI architecture augmented with adversarial examples and defense algorithms
to safeguard, secure, and make more reliable AI systems. This can be conducted by robustifying
deep neural network (DNN) classifiers and explicitly focusing on the specific case of convolutional
neural networks (CNNs) used in non-trivial manufacturing environments prone to noise, vibrations,
and errors when capturing and transferring data. The proposed architecture enables the imitation of
the interplay between the attacker and a defender based on the deployment and cross-evaluation of
adversarial and defense strategies. The AI architecture enables (i) the creation and usage of adversarial
examples in the training process, which robustify the accuracy of CNNs, (ii) the evaluation of defense
algorithms to recover the classifiers’ accuracy, and (iii) the provision of a multiclass discriminator to
distinguish and report on non-attacked and attacked data. The experimental results show promising
results in a hybrid solution combining the defense algorithms and the multiclass discriminator in
an effort to revitalize the attacked base models and robustify the DNN classifiers. The proposed
architecture is ratified in the context of a real manufacturing environment utilizing datasets stemming
from the actual production lines.

Keywords: adversarial machine learning; adversarial training; AI security

1. Introduction

Image classification algorithms fueled by artificial intelligence (AI) and realized via
deep neural network (DNN) architectures are commonly used into several application
domains for image recognition and classification [1], object detection [2], and image
retrieval [3]. These algorithms are trained over many image examples to create mathe-
matical representations or statistical models to predict with high accuracy whether the
pixels of a new image are more likely with the set of classes/categories under examina-
tion. In fact, AI-based image processing and recognition are not just methods evolved in
research papers and evaluated in lab environments. Those barriers were broken a long
time ago, and nowadays, AI-based image processing and recognition constitutes the core
of critical applications of high technology readiness levels, leaving a wide footprint on
industrial applications.

Among others, Industry 4.0, which will be the focal point of the evaluation of this
work, capitalizes on AI methods to enable flexible production lines and support innovative
functionalities such as mass customization, predictive maintenance, zero-defect manufac-
turing, and digital twins. Large-scale AI deployments in manufacturing involve many
interactions between the AI systems and other elements of the surrounding environment,
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including hardware, software, and physical systems. Thus, in order to ensure the success
of this blend of technologies, the design of trusted and reliable AI systems positioned in
the manufacturing floors is of the utmost importance.

On the downside, the emergence of adversarial machine learning (AML) has become
a major concern towards the adoption of AI technologies for critical applications and has
already been identified as a barrier in multiple application domains. AML is a class of data
manipulation techniques that cause changes in the behavior of AI algorithms while, usually,
going unnoticed by humans. An ever-increasing problem is that AML can create slight
modifications over the mathematical representations and, therefore, over the model, which
may remain imperceptible to the human eye while changing the output of an AI system.
Suspicious object misclassification in airport control systems [4], computer vision systems
of autonomous vehicles resulting in moving into the opposite traffic lane [5,6], tricking
healthcare image analysis systems into classifying a benign tumor as malignant [7,8],
and abnormal robotic navigation control [9] in the context of human-robot collaboration
setups are only a few examples of AI models’ compromise that advocate the need for the
investigation and development of robust defense solutions.

The challenges posed by AML have recently attracted the attention of the research com-
munity, the Industry 4.0, and the manufacturing domains [10,11] as possible security issues
on AI systems which can pose a threat to systems reliability, productivity, and safety [12].
The densely interconnected systems of the modern manufacturing floors in conjunction
with their transition to open networks give room to adversaries to infiltrate into the facto-
ries’ ICT networks by exploiting vulnerable services. In this context, DNN-based systems
become a potential target of advanced adversaries that may employ different attack tactics
and techniques for compromising the operation of a DNN either by taking control over the
system or by altering the input data in a way that outputs malicious decisions. For example,
an adversary can attack an AI system to access confidential data or proprietary learning
models that could lead to intellectual property (IP) theft. By having access to systems,
an adversary can compromise the data used for training an AI system or even disclose the
rules of an AI-based operation used for decision making. These attacks can lead to IP theft
while also compromising the proper operation of AI systems that may introduce risks in
the production processes or degrade their benefits. Beyond cyber security attacks, data
unreliability can be caused by other factors such as data transfer errors, signal distortion,
communication channel interference, and more. Unreliable data represent one of the major
challenges for the graceful operation of AI systems, as such data can lead to biased and
erroneous AI applications and thus decisions.

In this reality, defenders are not just passive spectators. On the other side of the
same coin, AML defense algorithms have made significant progress in uncovering the
space of AML, providing solutions that act both on the digital domain (i.e., AI-based
digital services and system operations) and even on more recent cases which are applicable
to the physical dimensions [13] considering emerging physical systems using DNNs in
safety-critical situations. The emergence of AML has led the community to the systematic
documentation of adversary tactics, techniques, and case studies for AI systems based on
real-world observations (e.g., MITRE ATLAS [14]) in an effort to raise awareness of these
threats and form a common understanding among security researchers and professionals.
The most prominent attack techniques may occur in both the training (i.e., poisoning) and
the operational (i.e., evasion) phases of DNNs.

In this context, there is a pressing need for robustifying image classifiers against
diverse perils of adversarial attacks against AI systems. Research needs to be intensified
and drill into the details and the specificities of existing AI systems, investigate their
vulnerabilities, and introduce solutions that make DNNs more resilient against adversarial
inputs, attempts of poisoning, and evasion attacks.

In this paper, we introduce a robust AI architecture empowered with multiple AML
attacks and defense algorithms using the open-source Adversarial Robustness Toolbox
(ART) [15]. The toolbox supports multiple programmable methods to defend and evaluate
the proposed architecture against the adversarial threats of evasion and poisoning of
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a real-world AI system coming from the manufacturing domain. The AI architecture
implements a preprocessing module for image curation and cleaning before the AML
attacks. A multiclass discriminator, as a post-processing module, generates alerts and reports
on the detection of evasion attempts. The proposed architecture and the individual attacks
and defenses are evaluated in the context of a real manufacturing environment, utilizing
real industrial datasets stemming from the DNN-based Visual Quality Inspection system
deployed in Philips’ factory. Our evaluation results advocate that the proposed approach
offers advanced resilience and recovery to the quality inspection system by augmenting the
training dataset with adversarial examples and by training the multiclass discriminator in
order to distinguish between non-attacked and attacked classes of the datasets. In addition,
the designed evaluation testbed gives the opportunity to investigate the behavior of attack-
defense pairs in order to conclude to the most appropriate defense which can deliver a
more robust AI system based on DNN models, which, in this specific case, are built on
convolutional neural network (CNN) classifiers.

Overall, the contributions of this paper are as follows:

• We introduce a reproducible AI architecture for robustifying CNN image classifiers
that has been evaluated in the context of a real manufacturing environment which is
prone to noise, vibrations, and errors when capturing and transferring data.

• We present a thorough evaluation of attack-defense pairs for uncovering the pecu-
liarities of different adversarial techniques and investigating the applicability and
effectiveness of the defense strategies under real conditions.

• We deliver a modular approach for the recruitment of different modules (i.e., a pre-
processing module) and techniques to robustify and guide the deployment of AML
attacks and defense algorithms (i.e., via the creation of adversarial examples augmented
in the model’s training phase and defense algorithms) for revitalizing CNN classifiers’
accuracy and detection (i.e., through the multiclass discriminator).

• We document a generic and applicable solution which adapts to domains dealing with
computer vision and image processing applications using CNN classifiers.

The rest of this paper is organized as follows. In Section 2, we present in a grouped
manner different techniques and how these address the problem of AML attacks. These tech-
niques have been selected because they are closely related to the hybrid but combinatorial
solution we introduce in this work. In Section 3, we present the datasets, the manufacturing
ecosystem and the usage of the proposed solution in real settings. In Section 4, we present
the proposed AI-based quality inspection architecture along with its software modules.
Section 5 outlines the evaluation methodology and describes the experimentation results.
Finally, Section 6 provides an overall discussion on the findings and concludes.

2. Related Work

Adversarial machine learning attacks are considered a severe threat to AI systems
since they can easily change their output using different manipulation techniques. These cir-
cumstances necessarily force the research community to devise new robust and resilient
methods to safeguard AI systems. Therefore, this section will briefly cover the most rele-
vant and up-to-date research works, mostly related to robustifying image classifiers and
enforcing defensive strategies against the perils of adversarial attacks. The literature review
shows that either denoising the image classifiers, training the target model with adversar-
ial examples, known as adversarial training, or applying defense algorithms is a common
countermeasure to tackle AML attacks.

Akhtar et al. [16,17] presented a comprehensive study in this area including the first
generation of AML attacks and their defenses in computer vision and machine learning
(ML) research. Additionally, Kloukiniotis et al. [5] investigated strategies for robustifying
scene analysis of adversarial road scenes. Through their review, they introduced a taxon-
omy of the defense mechanisms for countering adversarial perturbations by classifying
those mechanisms into three major categories: those that modify the data, those that pro-
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pose adding extra models, and those that focus on modifying the models deployed for
scene analysis.

Denoising image classifiers is an approach currently adopted to address the prob-
lem of AML attacks. Specifically, Yan et al. [18] investigated the adversarial robustness
of deep image denoisers. They studied how well they can recover the original informa-
tion from noisy degraded observations. For this reason, a novel adversarial attack called
observation-based zero-mean attack was introduced to evaluate the robustness of the
proposed deep image denoisers. Moreover, a hybrid adversarial training strategy was pro-
posed to ensure the quality of the reconstructed information. Similarly, Pawlicki et al. [19]
proposed some preprocessing defenses, including a block-matching CNN for image denois-
ing. The advantages of such defenses include the absence of retraining the classifier, which
usually, in computer vision problems, is a demanding and computationally heavy task.
Furthermore, spiking neural networks (SNNs) can be easily implemented on neuromorphic
chips providing energy-efficient learning capabilities with event-based dynamic vision
sensors (DVS). The robustness of SNNs against adversarial attacks on such DVS-based
signals by using noise filters for such sensors has been studied by Marchisio et al. [20].
The results were promising, and they prevented SNNs from misleading identifications.
Liu et al. [21] proposed new ways of investigating the robustness of CNNs, widely used for
image segmentation.

In addition to the approaches mentioned above, training the target model with ad-
versarial examples is another countermeasure to AML attacks [22]. The effectiveness of
adversarial training via data augmentation and distillation has also been studied to tackle
adversarial attacks efficiently. Specifically, Bortsova et al. [23] focused on adversarial black-
box settings, in which another AI model is usually used for the target model. The effects
of weight alterations and the differences while developing target and surrogate models
have been thoroughly studied. Hashemi and Mozaffari [24] trained CNNs with perturbed
samples manipulated by various transformations and contaminated by different noises to
foster the robustness of neural networks against adversarial attacks.

Finally, applying defense algorithms is another strategy to tackle AML attacks. Xi [25]
discussed three main categories of attacks against AI systems. Then, she introduced some
defense approaches to tackle the problem. A coherent benchmark to evaluate adversarial
robustness on image classification tasks has been proposed by Dong et al. [26]. In this work,
large-scale experiments with two robustness curves have been conducted. Kyrkou et al. [27]
proposed a cyber threat detection system called CARAMEL. The system offers many
detection techniques to combat incoming security risks in automotive driving systems with
embedded camera sensors. Moreover, since the solutions developed by CARAMEL are
lightweight and low power, they can be easily hosted on energy constraint processors and
platforms, offering additional robustness and energy efficiency.

In reality, defenders of AI systems are uninformed about the tactics and mechanisms
that are applied by the attackers. Therefore, it is pivotal to utilize hybrid but combinatorial
approaches and more focused alternatives to improve AI systems’ robustness. Motivated
by the limited number of research works in this area, we introduce a hybrid approach
against AML attacks. Our approach uses input transformation operations as preprocessing,
generates adversarial examples to augment with noise the input dataset, and evaluates the
robustness of the AI system under several adversarial attack setups and defense algorithms
for recovery.

3. Datasets and Manufacturing Ecosystem

We briefly present the datasets, the manufacturing ecosystem and the usage scenarios
to let the reader follow different references about them across the paper.

3.1. Dataset Description

Each dataset used in this study has its own characteristics and specificities. To preserve
business-related details, we refer to them as Dataset_1 and Dataset_2.
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3.1.1. Images from Dataset_1

Dataset_1 contains images of a decorative part of the Philips shavers that are pro-
duced in high volume. Since Philips maintains the highest standards regarding the visual
appearance of produced products, 100% quality inspection of these parts is required to
guarantee perfect quality. Dataset_1 has 592 samples, of which 203 are normal samples, 198
are samples with flow lines, and 191 are samples with marks, as presented in Figure 1.

Figure 1. Variability of Dataset_1.

3.1.2. Images from Dataset_2

Dataset_2 contains images of the printed Philips logos on Philips products. This dataset
is limited to the prints of one product type. The visual inspections of these parts is crucial
to ensure that only perfect quality is shipped from the factory to the different customers.
Dataset_2 has 2700 normal samples, 244 double-print samples, and 620 interrupted-print
samples, as presented in Figure 2.

Figure 2. Variability of Dataset_2.

For example Dataset_2, in order to support a classification task, has been separated
into three subcategories, e.g., good, double-print and interrupted-print. The proposed
data-centric solution aims to build a deep neural network architecture that predicts to
which subcategory a new image from the application field belongs. The architecture also
enables to distinguish the three original subcategories and the three attacked subcategories
generated via the adversarial imagery examples and reports on their category, e.g., attacked
vs. non-attacked and more.

As aforementioned, each dataset has its own characteristics. In fact, this is also reflected
in the number of instances of each class of a dataset. As can be noticed, Dataset_1 is more
balanced than Dataset_2. This is actually a strategic choice in the context of our evaluation
testbed, as the distributional characteristics of the datasets reflect the actual conditions
met in the production lines of the manufacturing environment. Based on our experience
on the behavior of the manufacturing process and the quality inspection system in place,
the datasets constitute representative samples of data captured for a given duration of
the production line operation. Of course, the dataset sample distributions may affect the
behavior of the trained algorithms, especially for the case of the unbalanced Dataset_2.
However, it is important to convey this balance in order to stress test the adversarial
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concept, consider realistic and aggressive AI attack strategies and design defenses as close
as possible to realistic conditions.

The data-centric AI architecture of Figure 3 performs a preprocessing step that helps
to clean, filter, resize and extract the essential features from the images. Then, in the
proceeding step, we train a base CNN model as a baseline and evaluate its accuracy to
investigate how much the latter is affected by different ART attacks [15]. We also want to
see the contribution to generating adversarial examples augmented in the adversarial training
of the base CNN model and at which percentage its accuracy can recover by applying
different defense algorithms. The multiclass discriminator is trained to distinguish between
attacked and non-attacked images and their categories. The following sections present more
details about the different modules and scenarios to assess the data-centric AI architecture.

Figure 3. AI-based quality inspection architecture.

3.2. Manufacturing Ecosystem and Threat Model

The Philips factory in Drachten, the Netherlands, is an advanced factory for the mass
manufacturing of consumer goods (e.g., shavers, OneBlade, baby bottles, and soothers).
Current production lines are often tailored for the mass production of one product or
product series in the most efficient way. However, the manufacturing landscape is changing.
Due to global shortages, manufacturing assets and components are becoming scarcer, and a
shift in market demand requires the production of smaller batches more often. To adhere
to these changes, production flexibility, re-use of assets, and a reduction of reconfiguration
times are becoming more important for the cost-efficient production of consumer goods.
In this context, one of the topics currently investigated within Philips is the painless setting
up of the automated AI-based quality inspections that aim to make the reconfiguring of
quality control systems faster and easier.

The setup used to inspect the quality of the printed logo on the Philips products
can be seen in Figure 4. In this setup, the printer will trigger the visual quality control
system whenever a print has been applied upon a product. This system comprises a
few different assets, including a camera, lighting and a light reflection box. The lighting
combined with the box ensures that the image taken from the product is visible and creates a
consistent environment for the quality control algorithm to determine whether a product is
of good quality or not. This decision is made by a quality control algorithm running on the
industrial server based on the DNN-based system destined to classify the images captured
by the inspection camera. More specifically, the system is based on a convolutional neural
network (CNN) to perform pattern recognition and classification over visual imagery. The
CNN-based classifier has been trained based on manually collected historical data reflecting
all possible flaws generated by the automated manufacturing line. During production time,
the captured images are given as input to the pre-trained CNN-based quality inspection
system to perform the necessary checks on the quality of the product. Based on the decision
taken by the latter app, the product will continue its journey to the factory’s assembly lines,
or it will be discarded. One can easily understand that the quality inspection system is
a mission-critical asset in the production workflow to ensure the high quality of the end
products and avoid the undesirable assembly of faulty parts. This is also translated into
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increased production cost and the waste of essential time due to unnecessary machine
engagement, slowing down the production rates.

Figure 4. Manufacturing ecosystem and adversarial threat model.

The DNN-based quality inspection is based on a classic machine learning model
setup. Its training takes place on the servers for external control, under human supervi-
sion. The historical datasets reside on the file system of the external server and have been
manually gathered and stored. The human has the necessary ML domain and application
knowledge to carry out the experimentation and the classification model training. The re-
sulting model is then placed manually in the file system of the industrial server, and the
CNN-based QI app puts the model in the inspection workflow.

Evasion Attacks: In this work, we consider adversaries, under the notion of ML
model evasion attacks [28], who can craft adversarial data which can lead a machine
learning model to identify the contents of the data incorrectly. This technique can be used
to evade a downstream task where machine learning is utilized to empower a detection
system. In this context, the adversary tries to manipulate systems and data and evade the
model during the inference mode. For instance, the adversary may exploit a vulnerability
on the visual inspection camera and compromise the integrity of the captured data by
manipulating this business resource operational behavior. Under this adversarial approach,
the corresponding business processes can look fine, but may have been altered to benefit
the adversaries’ goals.

ML Attack Staging: In addition, we consider an adversary who may attempt to poison
the target model and craft adversarial data [29] to feed the DNN model and obtain the
intended result. This approach will enable the adversary to create “vulnerable” trained
models using data that may not be easily detectable during the training phase. The injected
vulnerability can be activated at a later time by injecting poisoned data samples in the
testing phase after the adversary gains access to the system (e.g., by exploiting a remote
access vulnerability of the targeted systems).

In this context, the attacks and defenses generated and evaluated in Section 5 consider
the aforementioned adversary capabilities and proceed to the evaluation of defensive
strategies to conclude with the most robust setup in the context of the above-mentioned QI
setup. Our aim is to identify the model and strategy that will be interposed in the dataflows
of the training or the testing phases to try to sanitize the data pipelines by filtering out
malicious instances or by detecting the injection of adversarial examples in the process.
Hence, we assume that the attacker can gain access to the environment’s resources by
exploiting system vulnerabilities that enable her to gain access to critical systems or inject
the malicious samples remotely, and thus, to interfere with the DNN-based QI model. Thus,
we assume that the attacker can target the industrial servers, the server for external control,
or the inspection camera per se.
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3.3. Usage of the AI-Based Quality Inspection Solution

The generation and augmentation of adversarial examples (i.e., adversarial training)
while training an AI model to boost its resilience is a common defense strategy to let the
latter classify and predict more enhanced features. While the adversarial examples are
useful for the purposes of augmenting benign datasets, there is an imminent need for
frameworks that enable the exploration of realistic adversarial attacks with varying threat
models. For instance, in our case, we define realistic attacks for image classification tasks
involved in an AI-based quality inspection solution in a shop-floor. This enables early
decision-making before the product is released to the next step of the production line,
i.e., right after the label printing. Attacks may come in at different stages. For example,
digital attacks such as the projected gradient descent (PGD) are injected at the recognition
stage. In Section 5, we present in detail a comparison among varying methods of attacks
and defenses captured by the proposed architecture as part of a quality inspection solution.

4. Logical Modules and AI-Based Quality Inspection Architecture

This paper considers a data-centric AI architecture that is applied for quality inspection
(QI) in a shop-floor production line. Figure 3 presents how the data travel and are modified
through the proposed architecture.

The logical modules of the architecture are the following:

• A preprocessing module, which is responsible for images curation, cleaning and performs
resizing and filtering;

• Training and evaluation of the base CNN model, which serves as the baseline for the
evaluation of the model’s accuracy before and after the attacks and defenses;

• Adversarial imagery example generation and adversarial CNN model training, which takes
as input the preprocessed images, passes them through different ART attacks to
modify them to generate adversarial imagery examples, and then trains an adversarial
CNN model;

• A multiclass discriminator, which combines the preprocessed images and their labels/categories
along with the adversarial imagery examples with their labels/categories. We build a multi-
class classifier which lets the model distinguish images between attacked and their
category vs. non-attacked and their category;

• Defense algorithms, which enforce methods enabling the recovery of the attacked images
and raise the accuracy of the base CNN model.

For this study, we analyzed and processed datasets coming from a shop-floor produc-
tion line at the level of quality inspection. This step of quality inspection is critical to the
business of manufacturing because it determines if the product will be propagated to the
finalization stage, packaging, and route to market or will be withdrawn.

4.1. Preprocessing Module

The preprocessing module is necessary to curate the images in order to let more features
be extracted during the training of the models. The module has been implemented using
Keras as the preprocessing library [30]. After data visualization and exploration, we applied
filtering, resizing, and data normalization under a specific numeric range. We then prepared
and split the images for multiclass or binary classification. The multiclass classification
predicts the image category and whether it has been attacked, while the binary classification
only distinguishes between attacked (i.e., malicious) and non-attacked (i.e., usual) images.

Dataset_1 is natively challenging to distinguish the differences in two out of three
categories because it has good and flow lines, rendering the samples not trivial to process
and extract features due to their close similarity. Dataset_2 is easier to handle for feature
extraction, as presented in the following paragraphs.

More specifically, for Dataset_1, we took the following steps. The images were loaded
from the local database and transformed to arrays by using the Keras library. Next, we ap-
plied some filtering methods to clean and make the dataset more visible. More specifically,
we used exposure filters and the histogram of oriented gradients (HOG) technique [31].
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HOG is a feature extraction method primarily used in computer vision and image process-
ing applications for object detection. This method counts events of gradient orientation in a
specific portion of an image or a region of interest that we choose. Finally, we normalized
the images arrays within the range [0,1]. An example of applying the HOG technique over
Dataset_1 to extract more features is depicted in Figure 5.

Figure 5. Histogram of oriented gradients applied to Dataset_1 in order to extract useful information
and disregard the unnecessary information from the image.

The images of Dataset_2 were loaded from the local database and transformed into
arrays using the Keras library. In addition, to ensure that all the features are visible and can
be extracted to train the models, we applied Otsu’s threshold [32], which has the ability to
filter features out of the images. Next, a normalization step was followed in the range of
[0,1]. An example of applying the Otsu’s thresholding method over Dataset_2 to extract
more features is depicted in Figure 6.

Figure 6. Otsu’s threshold applied to Dataset_2 to apply image thresholding for image binarization
based on pixel intensities and contribute to better pattern recognition.

4.2. Training and Evaluation of the Base CNN Model

The training and evaluation of the base CNN model facilities to build a model which
serves as the baseline to investigate its robustness measured by means of accuracy under
two concrete conditions: (i) after applying different attack methods by using the ART
tool [15]; and (ii) after applying different defense algorithms to quantify at which percent-
age the accuracy of the base CNN model can recover from the attacks. Table 1 presents the
configuration parameters. The same model is then fed to the ART tool [15] by performing
different attacks in order to generate the adversarial imagery examples. To build the base
CNN model, we used different Keras layers, including Sequential, Dense, Flatten, Conv2D,
MaxPooling2D, Activation, and Dropout layers. The activation functions were accord-
ingly different based on the multiclass or the binary classification task that we supported.
The output model was evaluated by means of accuracy using confusion matrices and
classification reports. The model evaluation was performed using an independent test set
that had not been used for the training.
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Table 1. Base Convolutional Neural Network (CNN) model configuration parameters.

Multiclass and Binary Classification

Dataset Dataset_1 Dataset_2

Num of Epochs 15 10

Batch Size 30 200

Input Layer (400,400,1) (220,360,1)

units: 8 units: 16

kernel_size: (3,3) kernel_size: (3,3)

activation_function: relu activation_function: relu

max_pool_size: (2,2) max_pool_size: (2,2)

dropout: 0.25 dropout: 0.25

Output Layer activation_function: softmax activation_function: softmax

Crossentropy Loss categorical and binary categorical and binary

Optimizer adam adam

4.3. Adversarial Imagery Example Generation and Adversarial CNN Model Training

The binary output of the base CNN model was used as the main input to craft the dif-
ferent attack algorithms. Several algorithms from the ART tool [15] were used to generate
adversarial imagery examples and feed them along with the preprocessed images to train the
adversarial CNN model. Table 2 presents the configuration parameters of the the adversarial
CNN model. In the scenario of the adversarial CNN model, the attacked and non-attacked
images laying under the same category are labelled with the same original label. The attack
algorithms that we used are the fast gradient descent (FGD) attack, DeepFool, Newton-
Fool, projected gradient descent (PGD), BasicIterative using PGD, SpatialTransformation,
SquareAttack, CarliniLIn Method, CarliniL2 Method, and UniversalPerturbation using
EAD-elastic-net attacks. The different attack algorithms were used to investigate how
effective the attack was and at which level by means of decreasing the model’s accuracy.
Decreased accuracy has a direct effect on the model’s robustness, with each attack resulting
in adding noise to the images and misclassifying their category.

Table 2. Adversarial Convolutional Neural Network (CNN) model configuration parameters.

Multiclass and Binary Classification

Dataset Dataset_1 Dataset_2

Num of Epochs 15 10

Batch Size 100 200

Output Layer activation_function: softmax activation_function: softmax

Figure 7 shows an example of an original and an adversarial attack by FGD, while
Figure 8 depicts an example of an original and an adversarial square attack, both using
Dataset_1. We have selected two representative examples of non-attacked vs. attacked
images. Although in the first example, according to the visual inspection, the effect of the
attack is slight, the model’s accuracy is greatly decreased.
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Figure 7. Original vs. FGD attack—Dataset_1. The attacked image includes perturbations that were
used to distort the original image.

At the same time, in the second example, the image cannot be easily distinguished via
visual inspection; however, the model’s accuracy is slightly decreased.

Figure 8. Original vs. square attack—Dataset_1. The original image is attacked using localized
square-shaped updates at random positions.

A Dataset_2 example of non-attacked (i.e., original) and attacked images by the fast
gradient descent (FGD) and the projected gradient descent (PGD) are depicted in Figure 9.
We have selected two representative examples of original vs. attacked images. In the first
example, the effect of the FGD attack is slight, while in the second example, the image
has more noise and thus can not be easily distinguished. The figure shows that the FGD
attack slightly affects the image, while the projected gradient descent highly affects the
robustness of the model, resulting in an image that has much noise and color alteration
with destroyed resolution.

Figure 9. Original (left) vs. FGD (middle) and PGD (right) attacks—Dataset_2. FGD attack is slight,
while PGD adds a significant amount of noise and color alteration.

We performed prediction tasks over the adversarial imagery examples to assess the
accuracy of the base CNN model compared with the adversarial CNN model. A detailed exper-
imental study is presented in Section 5. As an outcome, the base CNN model misclassified
the adversarial imagery examples, and its accuracy was dramatically decreased. Given this
model’s accuracy decrease, we devised a multiclass discriminator as a countermeasure to
distinguish between original and attacked images and report on each category, as presented
in the following section.
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4.4. Multiclass Discriminator

The multiclass discriminator is a model that combines the preprocessed images and
the adversarial imagery examples with their labels and is trained to distinguish the non-
attacked from the attacked data, i.e., data that an attack algorithm has generated. Table 3
presents the configuration parameters of the multiclass discriminator. The scenario of the
multiclass discriminator labels attacked and original images in different categories. The latter
results in multiplying by two (2) categories of the original and the attacked images. In this
case, the adversarial imagery examples are labeled with a new label to let the model be
trained and predict more accurately if an image lies within an adversarial or an original
image category.

Table 3. Multi-class discriminator configuration parameters.

Multiclass and Binary Classification

Dataset Dataset_1 Dataset_2

Num of Epochs 25 25

Batch Size 100 200

Output Layer activation_function: softmax activation_function: softmax

4.5. Defense Algorithms

Defense algorithms are used as another countermeasure to recover and increase the
accuracy of a model. We used specific defense algorithms from the ART tool and evaluated
the model’s accuracy before and after the recovery from an attack to quantify its score.
We used the FeatureSqueezing, JpegCompression, SpatialSmoothing, and TotalVarMin
algorithms as defense. We used the test set from the adversarial examples to evaluate how
the defense algorithms facilitate recovery from the attacks. We also visualized the results to
investigate how the defense algorithms recovered the adversarial examples, as can be seen
in Figures 10 and 11.

Figure 10. Original and pre-processed images vs. recovered images using the corresponding
defenses—Dataset_1. The recovered images are used to evaluate a model’s accuracy after the recovery
from an attack.

Figure 11. Original and pre-processed vs. recovered images using the corresponding defenses—
Dataset_2. The recovered images are used to evaluate a model’s accuracy after the recovery from
an attack.

5. Experimental Evaluation

This section presents experimental results on the presented datasets over different
attack methods and defense algorithms. Furthermore, we present the experimental results
by means of accuracy for the multiclass discriminator. The experimental evaluation is based
on the current version of the Adversarial Robustness Toolbox (ART version 1.11.0) [15],
Keras (version 2.8.0) [33] and Jupyter Notebooks [34].

The preprocessing module takes care to set the labels of the images. We execute
separate experiments for multiclass and binary classification. As far as the multiclass
classification is concerned, the images receive the original labels they have, e.g., normal = 1,
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flow lines = 2 and marks = 3 with respect to Dataset_1; and normal = 1, double print = 2
and interrupted print = 3 with respect to Dataset_2. We split both datasets into two cate-
gories for the binary classification task, e.g., non-attacked = 0 (i.e., usual) and attacked = 1
(i.e., malicious).

5.1. Experiments

More than half of the attacks are unable to poison or evade ML algorithms such as
SVMs, decision trees or DNNs. Additionally, some attack algorithms are designed and
implemented to support only a specific ML/DNN model, library, algorithm and application.
In our experiments, we executed different ART attacks to generate the adversarial examples
and various defense algorithms to recover the base CNN model’s accuracy. Table 4 presents
the different algorithms along with their parameters. The set of algorithms both for the
attacks and the defenses has been selected based on the criterion to best affect and recover
the model’s accuracy according to the data specificities.

Table 4. ART attack/defense configuration parameters.

Attack Algorithms Parameters

FastGradientMethod norm: np.inf, eps: 1.0, eps_step: 0.1, targeted: False,
num_random_init: 0, batch_size: 5, minimal: False

DeepFool max_iter: 5, epsilon: 1e-6, nb_grads: 10, batch_size: 1,
verbose: True

NewtonFool max_iter: 5, eta: 0.01, batch_size: 1, verbose: True

ProjectGradientDescent
norm: np.inf, eps: 0.3, eps_step: 0.1, max_iter: 10,

targeted: False, num_random_init: 0, batch_size: 5,
random_eps: False, verbose: True

BasicIterative eps: 0.3, eps_step: 0.1, max_iter: 5, targeted: False,
batch_size: 50

SpatialTrans f ormation max_translation: 10.0, num_translations: 3,
max_rotation: 30.0, num_rotations: 3, verbose: True

SquareAttack norm: np.inf, max_iter: 100, eps: 0.3, p_init: 0.8,
nb_restarts: 1, batch_size: 128, verbose: True

CarliniIn f
confidence: 0.0, targeted: False, learning_rate: 0.01,

max_iter: 5, max_halving: 5, max_doubling: 5, eps: 0.3,
batch_size: 128, verbose: True

CarliniL2

confidence: 0.0, targeted: False, learning_rate: 0.01,
binary_search_steps: 10, max_iter: 5, initial_const: 0.01,
max_halving: 5, max_doubling: 5, batch_size: 1, verbose:

True

UniversalPerturbation
attacker: ead, attacker_params: [max_iter: 5], delta: 0.2,

max_iter: 1, eps: 10.0, norm: np.inf, batch_size: 32,
verbose: True

De f enseAlgorithms Parameters

TotalVarMin
prob: 0.3, norm: 2, lamb: 0.5, solver: L-BFGS-B, max_iter:
10, clip_values: None, apply_fit: False, apply_predict:

True, verbose: False

FeatureSqueezing clip_values: [0.0, 1], bit_depth: 8, apply_fit: False,
apply_predict: True

JpegCompression clip_values: [0.0, 1], quality: 50, channels_first: False,
apply_fit: True, apply_predict: True, verbose: False

SpatialSmoothing window_size: 3, channels_first: False, clip_values: None,
apply_fit: False, apply_predict: True
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Our motivation is to compare and assess the robustness of a DNN model, i.e., the
base CNN model, considering its architecture’s specificities, as well as gradient-based
attacks, which are more infectious to the backpropagation method used for DNN model
training. With these considerations, the reason behind our choice is twofold. On the one
hand, our purpose was to be aligned with the existing model used in the actual visual
inspection setup described in Section 3.2. In this way, we ensure the applicability of our
attacks and defenses to the actual environment being tested. On the other hand, CNNs
are the prominent solution used nowadays in the context of computer vision applications.
Therefore, our work leaves a wider fingerprint in the AI adversarial literature.

All the following figures visualize the comparison of the model’s accuracy before any
attack, on the attacked data, and on the recovered data by the defense. The discriminator’s
accuracy has been evaluated on the original and adversarial examples by assessing its
predictive capabilities to efficiently identify the correct data category, e.g., for Dataset_1,
normal = 1, flow lines = 2, and marks = 3. Furthermore, we have used the K-fold cross
validation method in all the experiments. This method enables us to measure the model’s
accuracy in different data samples. Using this method, we also manage to avoid overfitting
the data over the model since, before the model training task, the dataset is split into
different training and test sets. Specifically, in the experiments conducted, we used K-fold
to split the dataset into buckets containing all the image categories for both Dataset_1 and
Dataset_2.

5.1.1. Binary Classification

In the binary classification task, the data were separated into two categories/classes,
i.e., usual = 0 and malicious = 1. This task was evaluated towards the accuracy of the
adversarial CNN model and the recovery rate/percentage that the defense algorithms
achieved. The algorithms used for attacks are the FastGradient, DeepFool, NewtonFool,
PGD, BasicIterative, SpatialTransformation, SquareAttack, CarliniLInf, CarliniL2, and
UniversalPerturbation algorithms. We observe in Figure 12 that the class of gradient-based
algorithms (e.g., FastGradient, DeepFool, NewtonFool, PGD, BasicIterative, CarliniLInf,
and CarliniL2) highly affect the model’s accuracy in Dataset_1.

Figure 12. Binary classification—adversarial examples—Dataset_1.

At the same time, according to Figure 12, the creation of adversarial examples has
contributed to recovering the impact of the above-mentioned attacks and improving the
model’s performance to a satisfactory level.

Regarding Dataset_2, we observe in Figure 13 that the gradient-based attacks have
slightly affected the model’s accuracy. In particular, it is obvious that for binary classification
on Dataset_1, the attack algorithms have a bigger impact on the model’s accuracy than on
Dataset_2. This proves once again the importance of the specificity of the data.
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Figure 13. Binary classification—adversarial examples—Dataset_2.

Regarding the results of defense algorithms, the following figures concentrate the out-
comes of the TotalVarMin, FeatureSqueezing, JpegCompression, and SpatialSmoothin algo-
rithms. As far as Dataset_1 is concerned, in Figure 14, we observe that the SpatialSmoothing
and TotalVarMin experience the same recovery rate against the NewtonFool, SpatialTran-
formation, CarliniLInf, CarliniL2, and UniversalPerturbation attack algorithms.

Figure 14. Binary classification—defenses—Dataset_1.

Regarding Dataset_2, Figure 15 shows that TotalVarMin is the best defense algorithm
with the highest recovery rate. A noteworthy aspect is that the Carlini family attackers
do not have severe consequences on this dataset, as the model’s accuracy increases as it is
trained with more data.

Figure 15. Binary classification—defenses—Dataset_2.
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Overall, for binary classification tasks in both datasets (i.e., Dataset_1 and Dataset_2),
we observe that training the base CNN model with adversarial examples results in making it
more robust and recovering its accuracy compared to the defense algorithms.

5.1.2. Multiclass Classification

The experimental results are not quantitatively equivalent when conducting the same
series of experiments for the multiclass classification task. This is because either more data
split over the different categories are required to come up with a robustified multiclass
model, or the attacks slightly affect images coming from multiple categories, and therefore
this does not affect the model’s accuracy.

The adversarial examples results, as presented in Figure 16, make the model more
vulnerable to attacks. It is obvious that the attack algorithms modify the samples, and as a
consequence, the model’s accuracy is decreased.

Specifically, Figure 16 gives information on the performance of adversarial training
of Dataset_1 multiclass case attacks. Again, similarly to the Binary Classification task of
the same dataset, by applying adversarial training, the accuracy of the model is recovered
from the impact imposed by the gradient-based attacks.

Figure 16. Multiclass classification—adversarial examples—Dataset_1.

Figure 17 shows that there are attacks, e.g., Carlini’s, NewtonFool, that do not affect the
images. Also, the model injected with adversarial examples has a slight accuracy decrease.
On the other hand, Figure 17 for Dataset_2, shows that there are attack algorithms that can
reduce the model’s accuracy. For instance, Basic Iterative and Project Gradient Descent
achieve the lowest performance levels.

Figure 17. Multiclass Classification—Adversarial Examples—Dataset_2.

The defense algorithm results, as presented in Figures 18 and 19, show variable re-
covery rates based on the method. Overall, for Dataset_1, the defense algorithm named
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TotalVarMin appears to achieve a slight increase in accuracy compared to other defense
algorithms. More specifically, regarding the attacks FastGradient, DeepFool, PGD, BasicIter-
ative, SpatialTransformation, and SquareAttack, the model’s accuracy shows a measurable
increase, where NewtonFool, CarliniLinf, CarliniL2, and UniversalPerturbation do not
change the model and thus do not alter its accuracy.

Figure 18. Multiclass classification—defenses—Dataset_1.

Similarly, the model that is trained over Dataset_2 has lower accuracy for the same
attack algorithms. The defense algorithm TotalVarMin regarding the FastGradient, Deep-
Fool, NewtonFool, SpatialTransformation, CarliniLinf, and CarliniL2 methods has a lower
impact on the model’s accuracy.

Figure 19. Multi-class classification—defenses—Dataset_2.

Upon closer analysis, however, one might note that each attack method can be effi-
ciently treated by at least one or a set of different defense algorithms. Based on the data
characteristics and complexity, a careful selection of the best-performing defense algorithm
may result in recovering the model’s accuracy at a high rate. At the same time, if an end
user looks for a one-size-fits-all solution, adversarial training seems to be the most effective
way to recover the overall robustness of the model. The experimental results demonstrate
an average increase on the model’s accuracy after augmenting its training with adversarial
examples. However, adversarial training is ineffective when we need a clear criterion
to distinguish between the original and the adversarial examples because they are both
labeled as good/usual samples. This is the reason why we implemented and conducted
experiments with the multiclass discriminator.
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5.1.3. Binary and Multiclass Discriminator

The binary and multiclass discriminator obtains as input the original N categories
from the datasets. Then, after generating the adversarial imagery examples using one
attack algorithm per experiment, another N categories are created. The combination of
2*N categories along with their labels as the target variables are used for training the
discriminator model in order to classify and predict the right category, i.e., attacked vs.
non-attacked and image origin, i.e., normal = 1, flow lines = 2 and marks = 3 with respect
to Dataset_1 and normal = 1, double print = 2 and interrupted print = 3 with respect to
Dataset_2.

By observing Figures 20 and 21, we can deduce that ART attacks can significantly
destroy the model’s performance. For instance, FGD, basic iterative, and PGD attacks have
a major influence on the model’s accuracy.

On the other hand, after discriminator implementation and application, the improve-
ment of the model’s performance is unquestionable both in multiclass and binary experiments.

Figure 20. Binary discriminator—Dataset_1.

Figure 21. Binary discriminator—Dataset_2.

Regarding the accuracy of the multiclass discriminator of Dataset_1 (See Figure 22),
the model has high performance. For example, using the PGD attack, the discriminator
model can predict and distinguish the differences between the original and the adversar-
ial examples.
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Figure 22. Multi-class discriminator—Dataset_1.

In addition, the multiclass and binary discriminator model’s overall behavior seems
to follow the same norm. Something worth noticing is that in Dataset_2, NewtonFool and
the Carlini family attackers do not have a notable impact on the model’s performance (See
Figure 23).

Furthermore, after considering the discriminator’s model performance according to
the evaluation and plots, the impact of the NewtonFool and the Carlini attacks on the
model’s accuracy is high. Therefore, the model’s accuracy is not able to be recovered to any
level close to where it was before the attacks.

Figure 23. Multi-class discriminator—Dataset_2.

6. Conclusions and Future Work

This work presented a comparative study on adversarial machine learning (AML)
attacks on deep neural networks (DNNs), and more specifically, convolutional neural
networks (CNNs). In a nutshell, CNNs are prone to adversarial attacks, which present a
challenge to safety-critical domains where calibrated, robust, and efficient measures of data
uncertainty are crucial.

We introduced a reproducible AI architecture for making CNN image classifiers more
robust, which has been evaluated in non-trivial manufacturing environments prone to
noise, vibrations, and errors when capturing and transferring data. The proposed architec-
ture’s reproducibility is guaranteed through open-source tools and adversarial and defense
algorithms, synthesized and engineered under a systematic approach to guarantee the
security and operational assurance of the native systems used in the production lines. In ad-
dition, the architecture is composed of modules that robustify and guide the deployment
of AML attacks and defense algorithms for recovering the CNN classifiers’ accuracy. That
is, new modules can be added to easily extend the architecture’s functionalities and the
protection coverage of classifiers used in the underlined systems.
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We presented a qualitative study showcasing how the different attacks and defense
methods affect the resolution and clarity of the images. This study was further enriched
by quantitative experiments measuring the base CNN model’s accuracy in various attack-
defense contexts. Overall, it is evident that binary classification results achieve higher
accuracy categorizing as usual vs. malicious data, enabling fewer opportunities to uniquely
detect from which class the image was originally from. At the same time, despite multi-
class classification results achieving lower accuracy, defense algorithms still achieve high
recovery rates, enabling the unique prediction of the class of new images.

We may conclude that each case and dataset may require a different defense strategy
to be deployed in order to safeguard a baseline model. Different adversarial approaches
can be addressed by different defenses, but there is no clear indication that there is a
defense strategy that can cover the wide range of attack techniques in an adequate manner.
As expected, between the adversarial training and the tested ART defenses, the former
seems to be the most effective way to recover the overall model robustness. According to
the results of the plots that demonstrate an average accuracy increase after the adversarial
training technique, one can observe that it has better performance than the evaluated
off-the-shelf defenses offered by ART. Of course, this does not imply that these defenses
should not be considered in future experiments, but there is evidence suggesting that,
at least for the evaluated datasets, they cannot adequately limit the impact of an adversarial
technique. Again, the challenging nature of the problem is that, as advocated by the results,
each dataset and each different attack imply the need for the placement of a different
defense strategy.

The high success rates of the adversarial attacks against a real-world case, utilizing
actual data stemming from a real manufacturing environment, make evident that today’s AI-
enabled manufacturing system can become the low-hanging fruits of intelligent attackers.
That is, research and innovation need to be fostered in order to design robust architectures
for sanitizing the data pipelines of manufacturing environments, filtering out malicious
instances and detecting the injection of adversarial examples in the process.

In the near future, we plan to assess the efficacy of the data-centric AI architecture in
other application contexts and extend it to other imagery categories with variable features
and resolution characteristics.
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