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Abstract: The present work proposes a method to characterize, calibrate, and compare, any 2D SLAM
algorithm, providing strong statistical evidence, based on descriptive and inferential statistics to bring
confidence levels about overall behavior of the algorithms and their comparisons. This work focuses
on characterize, calibrate, and compare Cartographer, Gmapping, HECTOR-SLAM, KARTO-SLAM,
and RTAB-Map SLAM algorithms. There were four metrics in place: pose error, map accuracy, CPU
usage, and memory usage; from these four metrics, to characterize them, Plackett–Burman and
factorial experiments were performed, and enhancement after characterization and calibration was
granted using hypothesis tests, in addition to the central limit theorem.

Keywords: 2D SLAM; SLAM calibration; ROS; GAZEBO; Cartographer; Gmapping; HECTOR-SLAM;
KARTO-SLAM; RTAB-Map; APE; Knn-Search; Plackett–Burman

1. Introduction

SLAM algorithms are complex methods that allow a robot, without any external
system other than its own sensors, to create a map of the environment and locate itself into
this map. There are a large amount of non-linearities and imperfections in the mobile robot
system (e.g., robot drifts, sensor noise, irregular environment) that could lead the SLAM
algorithms to a bad representation of the environment, getting lost on this representation,
or spending a considerable amount of computational resources [1,2]. Therefore, since these
are the main difficulties a robot with a SLAM algorithm must overcome, this work focuses
on characterizing, calibrating, and comparing five different 2D SLAM algorithms towards
creating a good map, having a good track of its pose (position and orientation), but also
spending the less possible CPU and memory while doing so.

For longer than two decades, SLAM has been in the spotlight of many robotics re-
searchers, due its many possible applications such as autonomous driving [3,4], search and
rescue [5], autonomous underwater vehicles [6,7], and collaborative robotics [8], which is
why, nowadays, there are many different approaches trying to solve the same problem [9].
Below are shown the most frequent SLAM algorithms approaches.

A first approach to solve the SLAM problem was based on the extended Kalman filters
(EKF) [1]. Kalman filters [10] are based in the implementation of observers, which are
mathematical models of the linearized system that help estimate the behavior of the real
system, and in the utilization of an optimal state estimator, that considers white noise in
the measurements of the system [11]. For the SLAM problem, the EKF first predict the
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robot state (pose and a map represented by a series of landmarks or features) [1,12] using a
mathematical model of the robot movement and the environment, and then uses the sensor
data to correct the prediction. The sensor normally used in this approach is a LiDAR, but
there are solutions using sonars or monocular cameras [3].

Another strategy in the SLAM solution was made by using particle filters. This is
a modern approach, but its conceptualization is not since its origins are approximately
around 1949 with the Monte Carlo method [13]. The main methodology difference towards
Kalman filters is the data distribution type that this method can deal with. Kalman filters
are intended to deal with linear Gaussian distributions [10,14], while particle filters can deal
with arbitrary non-Gaussian distributions and non-linear process models [1]. Particle filters
in SLAM use a set of particles, each being a concrete guess of the robot state (pose and
map) [9]. As the robot moves into the environment and uses information from the sensors,
the filter removes erroneous particles (with low probability of occurrence) and adds new
particles close to those with the best probability of occurrence [15]. After a certain time, the
erroneous particles will have been eliminated while the correct ones will be similar between
them (similar pose and map estimates) [16]. The sensor normally used in this approach is a
LiDAR [9]. The algorithms Gmapping [17] and HECTOR-SLAM [18] are modern examples
of the SLAM particle filter solution.

A more recent approach considers using graph-based methodologies. This proposes
to use a graph [3] whose nodes correspond to the robot’s poses at different points in time
and whose edges represent restrictions between the poses. The graph is obtained from
observations of the environment or movement actions conducted by the robot. When this
graph is assembled, the map can be calculated by finding the spatial configuration of the
nodes that is most consistent with the measurements modeled by the edges [19,20], this
solution is usually obtained with standard optimization methods (e.g., Gauss-Newton,
Levenberg–Marquardt) [19] or with nonlinear sparse optimization [9]. The sensor normally
used in this approach is a LiDAR, but there are solutions using some time-of-flight cameras
(also known as RGB-Dept cameras) such as the Microsoft’s Kinect [9]. The algorithms Car-
tographer [21], KARTO-SLAM [22] and the original RTAB-Map [23] are modern examples
of the graph-based SLAM solution.

There are also modern methods that can be used for 3D SLAM, which can use different
sensor types, such as Visual SLAM (vSLAM) that use low-cost cameras (e.g., monocular,
stereo, and RGB-Dept cameras) to capture the environment data as the robot navigates,
and then extract the relevant information to solve the SLAM problem using the EKF, the
particle filter or the graph-based approach [24]. For example, the latest version of the
RTAB-Map SLAM algorithm also supports visual slam [23]. There is also the Visual-inertial
simultaneous localization and mapping (VI-SLAM) algorithm that fuses the information
obtained from the camera with the data obtained from an Inertial Measurement Unit (IMU),
such as the orientation and the change in the pose, to improve the accuracy of the SLAM
solution, that is obtained using a filter or an optimization approach [25,26]. Additionally,
direct 3D Slam methods exists, that use more modern 3D LiDAR systems, which are applied
to improve the SLAM algorithm performance in challenging environments (e.g., smoke in
the surroundings, fog or rainy situations) [27,28]. Finally, there are methods that combine
the vision and LiDAR approaches in order to improve the SLAM performance in cases of
aggressive motion, lack of light, or lack of visual features. These algorithms employ 2D
or 3D LiDAR sensors and the EKF or the graph-based methodologies to obtain the SLAM
solution [27].

In this paper we focus on the comparison of 2D Slam algorithms with similar pose
and map representation. These are based on the previously described SLAM solution
approaches, but with different capabilities and strategies to obtain the best possible map
and pose adjustment, or even better resources usage optimization. These capabilities
are important when dealing with different environments, such as robots with limited
resources, which might require an algorithm with the highest resources usage optimization
possible, while cases with robots dealing with complex environments might better select
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an algorithm that has deeply optimized the pose and map calculations. In the subsequent
sections the selected algorithms will be described with deeper emphasis.

In this work, four metrics are used for the comparison of 2D Slam algorithms, they
were created and processed in MATLAB, and are explained in the following paragraphs.

The map accuracy was measured using k-nearest neighbor method [29], by measuring
the euclidean distance from each of the ground truth points to the nearest map point
generated by the SLAM algorithm under test. A mathematical representation of the metric
can be found in Equation (1), where N is the amount of points to sample, x2i − x1i and
y2i − y1i represent the x-coordinate and y-coordinate difference between the ground truth
point and the nearest map point generated by the algorithm, respectively. The measurement
units used for this metric are centimeters.

Pose tracking accuracy was developed by a set of iterative loops calculating the
euclidean distance between the ground-truth pose and the estimated pose [30]. It can
also be represented by equation (1), but with a modified interpretation of the variables.
For this metric N is the number of poses to sample, x2i − x1i and y2i − y1i represent the
x-coordinate and y-coordinate difference between the ground truth pose and the estimated
pose generated by the algorithm, respectively. The measurement units used for this metric
are meters.

dE =
1
N

N

∑
i=1

√
(x2i − x1i)2 + (y2i − y1i)2 (1)

Finally, CPU and memory usage were recorded using Python psutil library [31]. These
both metrics are mathematically represented by averaging the whole measurements taken
during the test run, and their units are percentage of for CPU usage, where a number
beyond 100% means it is using more than a single core, and MB for memory usage.

Lastly, there are many SLAM comparison investigations done previously, such as
Ref. [32], which focuses on the algorithms processing time; Ref. [29] which evaluates map
accuracy, and CPU usage; Ref. [20] which evaluates map accuracy, CPU and memory usage;
Ref. [33] which only measures pose and map accuracy, and Ref. [34] which analyzes map
accuracy and CPU usage.

Based on the reviewed works, there are two differentiating factors of the method
proposed in this paper, which puts our investigation a step ahead:

1. The existing works focus only on map accuracy, pose accuracy, memory or CPU usage,
but none of them considers all of them together. Our investigation considers all of
them, giving a wider point of view to better characterize, calibrate, and compare the
SLAM algorithms.

2. None of the current methods takes a statistical approach to provide confidence levels
on the results obtained. With our investigation we can guarantee with 90% confidence
that each condition will happen when the populations are considered. In addition
with 95% confidence level that the characterization and calibration of the parameters
is the best fit for the ranges tested.

2. Materials and Methods
2.1. Generalities

For all these experiments, since the trials and algorithms were simulated, the only
equipment needed was a computer running Ubuntu 18 with ROS Melodic, the computer
was a server with an Intel Xeon Silver 4114 2.2 GHz. To simulate the environment, a software
called GAZEBO 11.0.0 release was used to simulate the test environment, while a robot
named TurtleBot 3 Burger was the one selected to be simulated in this work, because of its
2D LiDAR sensor and its differential driving mode, but other configurations can be used,
such as a mecanum omnidirectional robot [35].
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2.2. Simulation Needs

Regarding the ROS nodes, there are some nodes that were tailored for our needs, other
than simulated robot that can be easily implemented based on the TurtleBot 3 wiki [36]. The
first of them is the so-called Robot Pose Publisher, which basically reads the data published
by GAZEBO and stores every convenient time (20 times per second in this case) the actual
pose of the robot [37], second, a node that monitors the CPU and memory usage by the
SLAM algorithm [38], and last but not least, a node that makes the robot follow a fixed
path, to guarantee that all the samples were performed under the same conditions [39].

2.3. Data Processing Needs

Next, MATLAB 2020B was used to convert the data provided through rosbags in a
manner that can be easily analyzed and synthesized, the scripts used are Ground Truth
Generator, which takes the environment created through GAZEBO and builds a high
resolution 2D version of it [40]. This well-known Ground truth plot is then compared to
the SLAM algorithm result by using a script that takes advantage of knn-search method
provided by MATLAB [41], its output is the descriptive statistics of the whole comparison.

There are two other important scripts, in the first it is compared the real pose to-
wards the estimated pose of the robot, and returns some meaningful descriptive statistics
about the comparison [42], and a script that analyzes the CPU and memory usage by the
algorithm [43].

2.4. Data Analysis Needs

The data analysis software used to provide sufficient statistical evidence of the results
provided, was Minitab statistical tool version 2018.

2.5. SLAM Algorithms Used

There are five algorithms used, all of them as a 2D algorithm because of the robot
sensor limitation wanted, these are described in the following subsections.

2.5.1. Cartographer

Cartographer was created by Google and released for free worldwide access since
October 2016 [21]. The main idea with this algorithm was to improve the efficiency, by
optimizing the way to process the data from particle filters. So, instead of creating a big map,
it divides them by shorter sub-maps, which then are inserted on the way, besides a pose
optimization, concluding in an error reduction that is carried over from robot pose [44].

This algorithm is based in the combination of two separated 2D SLAM, one of them
working locally, and the other working globally, both using a LiDAR sensor and optimized
independently. Local SLAM is based in the collection and creation of sub-maps, one of
them is the recollection and alignment of multiple scans with respect to initial position.
Sub-maps are created like a dot net with an specific resolution, and with a probability
associated that one of its dots is blocked. This probability depends if it was measured
previously and if it is kept while more sub-maps are created. Once sub-map is created, it is
passed by an algorithm to find the optimal position to match with the rest of the sub-maps,
and then extrapolate the rest of them [45].

The second part of the algorithm, the global SLAM, is focused in the sub-maps
feedback. Once these sub-maps are created, all of them have robot poses associated. which
are used to improve the maps, making a reduction of the accumulated SLAM error. This is
well-known as loop closure [45].

By using the well-known optimization called Spare Pose Adjusment (SPA), every time a
sub-map is generated, a map-scanner is executed to close the loop and insert the just-created
sub-map into the graphic. Below are shown two formulas that determine if a cell is saved
as busy, empty, or empty into a map cell [46].

Mnew(cell) = P−1(P(Mlast(cell)Ṗ(phit)))
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where:

• Mlast(cell) is the error likelyhood.
• phit is the probability that a map cell is busy.
• P = P

1−P

The intention is to minimize the functional cost of updating the cells value that com-
pose the map.

arg min
ξ

K

∑
k=1

(1 − Mso f tened(Tξ hk))
2 (2)

where:

• Mso f tened(x) is the cell value x, softened by the neighbor values.
• hk is the laser reading related to cell.
• Tξ is the matrix transformation that displaces the point hk to ξ.
• ξ is the posture vector (ξx, ξy, ξθ).

This model is configured based on different parameters of the algorithm. Below, in
the Table 1 are shown the main parameters that have incidence in the functionality of the
algorithm [47].

Table 1. List of Cartographer parameters.

Parameter Description Range Default Value

local_slam_pose_translation_weight Weight for translation between consecutive nodes, based in the local SLAM 10 × 102–10 × 106 10 × 105

local_slam_pose_rotation_weight Weight for rotation between consecutive nodes, based in the local SLAM 10 × 102–10 × 106 10 × 105

odometry_translation_weight Weight for translation between consecutive nodes, based in the odometry 10 × 102–10 × 106 10 × 105

ceres_scan_matcher.translation_weight Weight to be applied to the translation, for next-submap joint 0.1–1.0 0.4
ceres_scan_matcher.rotation_weight Weight to be applied to the rotation, for next-submap joint 0.1–1.0 0.3
optimize_every_n_nodes Quantity of inserted nodes that will be used for loop closure optimization 40–120 90
global_sampling_ratio Sampling frequency for nodes trajectory 0.0001–0.0005 0.0003
submaps.resolution Map resolution in meters 0.0001–0.0005 0.0003
constraint_builder.min_score Minimum value for which will be considered that a match was found 0.4–0.8 0.6

2.5.2. Gmapping

This algorithm is based in the principles described in the particle filter with Rao-
Blackwellization, which makes the math to get the actual posture of the robot, right from the
probability given by the information collected in the past; with the help of this posture and
the past maps made. It also has the capability of correcting estimations by the odometry
and the calculation of the weights and the map [17].

This is one of the most studied types of SLAM algorithms, it came right after many
years of investigation around particle filters, using the Rao-Blackwellized particle filter
approach [48] to solve more efficiently the SLAM algorithm, reducing the number of
particles required for the estimation [48]. In addition, the robot pose uncertainty is greatly
decreased in this algorithm. However, it has a higher computational resource requirement,
as it usually has an elevated processing time and memory consumption when compared to
the EKF filter approach.

The main parameters responsible of the functionality of the algorithm are listed in the
Table 2, according to [49].

Table 2. List of Gmapping parameters.

Parameter Description Range Default Value

minimumScore Minimum score for considering the outcome of the scan matching good 0–50 50
iterations The number of iterations of the scanmatcher 5–10 5
lsigma The sigma of a beam used for likelihood computation 0.075–1.500 0.075
ogain Gain to be used while evaluating the likelihood, for smoothing the resampling effects 3.0–10.0 3.0
resampleTreshold The Neff based resampling threshold 0.0–0.5 0.5
particles Number of particles in the filter 30–100 30



Sensors 2022, 22, 6903 6 of 37

2.5.3. HECTOR-SLAM

This algorithm is named because of its development team, which is Heterogeneous
Cooperating Team Of Robots, an as it is explained in [18], it was developed because of the
necessity of an algorithm for Urban Search and Rescue scenarios (USAR).

HECTOR-SLAM was developed from a 2D SLAM using a LiDAR sensor that had
attached an IMU, this sensor provides the measurements for the navigation filter, and also
gives the capability to perform 3D mapping. This is the reason why HECTOR-SLAM can
be used into either 2D or 3D strategies.

As shown in [18], the algorithm uses an occupation grid map. Since LiDAR has
6 degrees of freedom, the scanned points must be transformed to a local coordinates
framework using the estimated behavior from the LiDAR. Reason why, using the estimated
pose, the scanned points are converted in a point cloud. With this point cloud, it is
performed a pre-processing of the data, HECTOR-SLAM uses a z axis filtering of the final
point, with this only the final points of the (x, y) plane are considered.

Regarding the list of parameters of HECTOR-SLAM, these are defined in the Table 3,
they were taken from [50].

Table 3. List of HECTOR-SLAM parameters.

Parameter Description Range Default
Value

update_factor_free The map update modifier for updates of free cells in the range. A value of 0.5 means no changes 0.0–1.0 0.4
update_factor_ocuppied The map update modifier for updates of occupied cells in the range. A value of 0.5 means no changes 0.0–1.0 0.9
map_update_distance_thresh Threshold for performing map updates (value in meters) 0.01–2 0.4
map_update_angle_thresh Threshold for performing map updates (value in radians) 0.01–2 0.9
map_pub_period Map publish period (value in seconds) 1.00–5.00 2.00

2.5.4. KARTO-SLAM

KARTO-SLAM is an optimized SLAM algorithm, it was developed by SRI Interna-
tional’s Karto Robotics with a ROS extension, as an open source code. Its working base lies in
the decomposition of Cholesky matrices to minimize the error, giving an optimized robot
pose and trajectory [22].

KARTO-SLAM builds the map by using nodes that save the location points of the
robot trajectory and the dataset of sensor measurements. Graph borders are represented by
transformations or trajectories between two consecutive poses in the space. when a new
node is added, the map will be reprocessed and updated according to the border restriction
in the space. These restrictions will be linearized as an scatter graph [51,52].

A loop closure condition can be shown if the robot revisits the same point twice or
more times in the same run. In other words, a border that connects two nodes with the same
world perception is made. Aligning these perceptions produces a virtual transformation.
Based on this information it is determined if the algorithm can adjust its estimations and
represents the environment with a good enough confidence level [53].

An optimization is used to calculate the most likely pose from the nodes collected, to
get the most probable graph. To use the optimization methods, it is necessary to define an
error function between the measurements obtained. Assuming x = (x1, x2, ..., XT)

T is the
nodes vector in the graph, and zi,j the odometry between nodes xi and xj. A border ˆzi, j is
produced, with an error expression that meets the Equation (3).

ei,j(xi, xj) = ˆzi,j − zi,j (3)

Together with the inverse covariation matrix ωi,j, an error function is established,
given by the Equation (4).

F(x1,T) = ∑
<i,j>εG

( ˆzi,j − zi,j)
Tωi,j( ˆzi,j − zi,j) (4)
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The goal is to compute a posture x, in a way that the Equation (4) goes to its minimum,
in a way that Equation (5) is accomplished.

x1,T = argminxF(x) (5)

At this point it is necessary to describe the algorithm parameters, these are shown in
the Table 4 and were taken from [54].

Table 4. List of KARTO-SLAM parameters.

Parameter Description Range Default Value

scan_buffer_size Sets the length of the scan chain stored for scan matching 30–100 70
link_match_minimum_response_fine Scans are linked only if the correlation response value is greater than this value 0.06–0.18 0.12

loop_match_minimum_chain_size
When the loop closure detection finds a candidate it must be part of a

5–15 10large set of linked scans. If the chain of scans is less than this value,
it will not attempt to close the loop

loop_match_maximum_variance_coarse The co-variance values for a possible loop closure have to be less 0.3–0.5 0.4than this value to consider a viable solution. This applies to the coarse search

loop_match_minimum_response_coarse If response is larger than this, then initiate loop closure search 0.75–0.85 0.80at the coarse resolution

loop_match_minimum_response_fine If response is larger than this, then initiate loop closure search 0.75–0.85 0.80at the fine resolution
correlation_search_space_dimension Sets the size of the search grid used by the matcher 0.2–0.4 0.3

correlation_search_space_smear_deviation The point readings are smeared by this value in X and Y to 0.03–0.04 0.03create a smoother response
loop_search_space_dimension The size of the search grid used by the matcher 7.0–9.0 8.0

loop_search_space_smear_deviation The point readings are smeared by this value in X and Y to 0.03–0.04 0.03create a smoother response
distance_variance_penalty Variance of penalty for deviating from odometry when scan-matching 0.2–0.4 0.3
angle_variance_penalty Variance of penalty for deviating from odometry when scan-matching 0.249–0.449 0.349
fine_search_angle_offset The range of angles to search during a fine search 0.00249–0.00449 0.00349
coarse_search_angle_offset The range of angles to search during a coarse search 0.249–0.449 0.349
coarse_angle_resolution Resolution of angles to search during a coarse search 0.0249–0.0449 0.0349
minimum_angle_penalty Minimum value of the angle penalty multiplier so scores do not become too small 0.85–0.95 0.90

minimum_distance_penalty Minimum value of the distance penalty multiplier so scores 0.4–0.6 0.5do not become too small
use_response_expansion Whether to increase the search space if no good matches are initially found True/False False

2.5.5. RTAB-Map

RTAB-Map comes from Real-Time Appearance-Based Mapping, it is a graph-based SLAM
algorithm, composed by a C++ library and a ROS package. This library is an open source
library, and has been improved and extended since its beginning in a way that the closed
loop algorithm implements a memory management strategy [23].

Its processing requires some distributed storage systems, these are short-term memory,
work memory, and long-term memory. These all together optimize the localization and
mapping for long periods or in wide spaces, because they limit the size of the space
processed, so that the loop closure can be executed in a short time lapse [55,56].

RTAB-Map implementation is based in a simultaneous processing. For graph-based
SLAM, as the map grows, the processing, optimization, assembly, and CPU load also grows.
Reason why, RTAB-Map stablishes a maximum response time at SLAM output, once it has
received the sensors data [23,57]. As the latest version of the algorithm admits 2D and 3D
LiDAR sensors and is capable of performing visual SLAM, the RTAB-Map 2D LiDAR based
SLAM option [23] was used for the tests performed in this work.

The list of parameters of RTAB-Map are shown in the Table 5, they were taken from [58].

2.6. Arenas Used

Three different arenas simulated through GAZEBO were created to test the SLAM
algorithms. The differences between them are mainly based on the number of irregularities
per area that they have, and also, by the kind of path that they force the robot to follow.
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Table 5. List of RTAB-Map parameters.

Parameter Description Range Default
Value

TimeThr Maximum time to update a map, in milliseconds with 0 as unlimited time 0.0–1.0 0
MemoryThr Maximum number of nodes in the work memory, where 0 means unlimited number of nodes 0.0 - 1.0 0
DetectionRate Detection ratio of images that RTAB-Map filters, value in Hz 0.1–10.0 1.0
ImageBufferSize Buffer size to save the data waiting for processing 0–10 1
MaxRetrieved Maximum amount of localizations returned at a time by the long-term memory 0–20 2
CreateIntermediateNodes Making of not inner nodes into the loop closure true/false false
LoopThr Time threshold to execute loop closure 0.0–1.0 0.11
VarianceIgnored Ignore or not the variation of the restrictions true/false false
FilteringStrategy Filtering defined for odometer data, two different strategies can be used, 0 means no filter, 1 means Kalman filter 0/1 0

2.6.1. Common Environments Arena

This arena simulates an apartment with a set of rooms and regular geometry objects
on it, in every single place there is a quite good number of irregularities, so that the robot
can easily handle the SLAM task, see Figure 1 for reference.

Figure 1. Common environments arena.

2.6.2. Training Arena

This arena is used for algorithms characterization and calibration, but also for the
comparison trials. It is shown in Figure 2. It can be considered as a middle point between
Common Environments Arena and Labyrinth Arena, since it has regular figures as Common
environments Arena does, but also has long corridors around the zero coordinate of the
arena, as Labyrinth Arena does. These are the reasons why it is used for characterization
and calibration of the algorithms.
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Figure 2. Training arena.

The arena tries to challenge the algorithms with some sort of general asymmetry, and
with angled obstacles to see how good it is dealing with this kind of obstacles, the arena
itself is nothing but a corridor with a center room containing a single obstacle, however,
something that can slip past is that the number of irregularities per area is a bit lower than
with Common Environments Arena, but higher than Labyrinth Arena.

This arena is also considered for comparison trials, to reflect how good the characteri-
zation and calibration was.

2.6.3. Labyrinth Arena

This arena is the hardest of the three for the SLAM algorithms, at glance it shows a
labyrinth easy to follow, however, it is a very difficult environment to map by any SLAM
algorithm, as this arena challenges the algorithms with more complex obstacles and with
long corridors, without any irregularity that could help the algorithms to easily locate
themselves and recreate the environment map. These two reasons make this arena the
hardest for the test performed in the algorithm comparison. For reference see Figure 3.
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Figure 3. Labyrinth arena.

2.7. Trajectories Used

There were fifteen trajectories used, six for Common environments Arena, six for Training
Arena, and three for Labyrinth Arena. The main objective of the trajectories is to make the
robot follow the arenas in diverse ways, first starting from coordinate zero (geometric
center of the arenas), then starting from a non-zero coordinate, and finally following twice
the trajectory starting from coordinate zero. All these three trajectories are followed in
the forward direction and then in reverse, except for the Labyrinth Arena, in which reverse
trajectories are the same than the forward direction, so only three trajectories were used in
this arena. The match between observations and scenario is shown in the Table 6.

Table 6. Observation translation to scenarios.

Observation Arena Trajectory Direction

1 Training arena zero coordinate Right
2 Training arena zero coordinate Reverse
3 Training arena non-zero coordinate Right
4 Training arena non-zero coordinate Reverse
5 Training arena Two laps Right
6 Training arena Two laps Reverse
7 Common environments arena zero coordinate Right
8 Common environments arena zero coordinate Reverse
9 Common environments arena non-zero coordinate Right

10 Common environments arena non-zero coordinate Reverse
11 Common environments arena Two laps Right
12 Common environments arena Two laps Reverse
13 Labyrinth arena zero coordinate Not applicable
14 Labyrinth arena non-zero coordinate Not applicable
15 Labyrinth arena Two laps Not applicable

All these trajectories are shown in a simplified version of each arena in the Figure 4a–c
for Training Arena, in the Figure 5a–c for Common Environments Arena, and in Figure 6a,b
for Labyrinth Arena. In these figures, the yellow arrow indicates the starting point and
direction of the forward trajectory, and the tip of the red arrow indicates the finishing point
of this path.



Sensors 2022, 22, 6903 11 of 37

(a) Zero coordinate (b) Non-zero coordinate

(c) Two laps

Figure 4. Training arena trajectories.
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(a) Zero coordinate (b) Non-zero coordinate

(c) Two laps

Figure 5. Common environments arena trajectories.
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(a) Zero coordinate (b) Non-zero coordinate

Figure 6. Labyrinth arena trajectories.

2.8. Characterization and Calibration Methods Used

To characterize each of the algorithms, a statistical approach was taken, it is not sensible
to the type of SLAM algorithm or sensors used, it is only sensible to the data provided
by each of the metrics for the trials, so that even SLAM approaches using sensors other
than LiDAR can be calibrated following this method, as long as the map representation is
compatible with the application of the knn-search metric, and the robot pose is obtained in
matching measurement units. However, a 2D LiDAR sensor approach was taken to match
the analysis with actual equipment available, and because these are the most common
sensor for the 2D SLAM approach, and especially applicable to low-cost robotic platforms.

The methodology focuses on finding statistical evidence of the effects of the algo-
rithms parameters on the output means of Pose Accuracy, Map Accuracy, CPU usage, and
Memory usage, it is important to highlight that this paper have used mean measurements
for characterization and calibration, but other descriptive statistical values can be used
if wanted.

There are three different stages for calibration, these are described below.
The first stage is only used when the algorithm has a large amount of parameters that

must be tuned, here comes into play the first statistical tool, which is a Plackett–Burman
experiment, which is a kind of Design of Experiments with a reduced amount of samples, but
with the weakness that only takes into account main effects, since main effects are aliased
with 2-way interactions (only the effect of each variable by itself can be obtained). With this
tool it can be ensured with some confidence level defined when analyzing the experiment
results, that a variable has an effect over an output.

Next, the second stage is when calibration comes into play. This part of the process
considers only the variables that demonstrated that, by themselves, have an effect over
at least one of the four outputs we are measuring, a full-factorial Design of Experiments is
used, it makes the combination of all the parameters in the ranges defined by the user, and
returns a Pareto chart and an equation, with these both we can determine which is the best
combination that reduces the error of the localization and mapping, or reduces the resources
usage, also with some confidence level defined when analyzing the experiment results.

Finally, to compare the algorithms, since the data obtained from each run not neces-
sarily shapes a Gaussian’s curve, the central limit theorem is used, population data are
considered the whole different tests that can be performed on these arenas with this robot
and with each algorithm, so that, calculating the mean of the means we can then compare
this value between the values obtained from other algorithms (for a full-data comparison),
using the statistical tools that can be used with Gaussian-behaving samples, in this case
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using hypothesis tests for the mean and the standard deviation of the means (Two-Sample T
for the mean, and Two-Sample Standard Deviation for the standard deviation of the means).

3. Results

There are three main stages considered along this work, Characterization, Calibration,
and Comparison, these are explained in the following sections.

3.1. Characterization and Calibration

Since the algorithms were already working and providing acceptable results to con-
sider them functional with the default parameters, a soft tuning with short modifications to
these parameters was performed, to enhance the performance for the training arena and
the simulated robot.

There were two statistical experiments and a set of hypothesis tests performed to tune
each algorithm. First, with a Plackett–Burman experiment, filter which parameters main
effects over each metric had enough statistical significance for the ranges of variation per
variable, next, with a full factorial experiment, tune these parameters to give the best output
for the metrics considered, and finally, confirm that the new parameters tune gives better
results than default parameters tuning with a set of hypothesis tests for the mean and/or
the standard deviation. This confirmation was performed with more than two trials, to be
able to take advantage of the central limit theorem and get valid hypothesis conclusions.

As disclaimer, Gmapping was not soft tuned for these trials, since it was already fully
tuned by a previous work [59].

3.1.1. Cartographer

For Cartographer, its output had the problem that default parameters did not give
a good map accuracy, for this reason the soft tuning was focused on enhancing the map
accuracy. There were identified ten different parameters that could be more significant for
the general algorithm outputs, these are shown in the Table 7.

Table 7. Default, tuning and final values for Cartographer.

Test Values

Variable Default Minimum Maximum Final

optimize_every_n_nodes 90 40 120 90
local_slam_translation_Weight 10 × 105 10 × 102 10 × 106 10 × 106

local_slam_rotation_weight 10 × 105 10 × 102 10 × 106 10 × 106

odometry_slam_translation_weight 10 × 105 10 × 102 10 × 106 10 × 102

odometry_slam_rotation_weight 10 × 105 10 × 102 10 × 106 10 × 105

ceres_scan_matcher.translation_weight 0.4 0.1 1.0 0.4
ceres_scan_matcher.rotation_weight 0.3 0.1 1.0 0.3

global_sampling_radio 0.0003 0.0001 0.0005 0.0003
submaps.resolution 0.0003 0.0001 0.0005 0.0003

constraint_builder.min_score 0.6 0.4 0.8 0.6

After Plackett–Burman and Full Factorial designs only three of the listed parameters
were modified from their defaults, those can be seen in the final values of Table 7. For the
improvement confirmation trials, there were five runs executed with default and improved
parameters, with 95% of confidence we can tell that map accuracy and pose accuracy
means were improved with the new parameters (given the Figure 7), by performing a set
of 2-Sample T tests, but at cost of memory usage degradation from default parameters.

3.1.2. HECTOR-SLAM

At the very beginning, with default parameters this algorithm showed up an adequate
performance for all the metrics, based on Figure 8, so the experiment was focused on really
short variations to see if there might be an enhancement on the outputs. For that reason,
the parameters identified for the experiment were the ones shown in Table 8.



Sensors 2022, 22, 6903 15 of 37

Figure 7. Map before and after the calibration of Cartographer.

Figure 8. Map built with default parameters for HECTOR-SLAM.

After all the experiments it was identified that none of the parameters had enough
statistical evidence to demonstrate any direct effect on the outputs. Furthermore, it was
evidenced that the best scenario for the four metrics was the default scenario, since all the
different variations have a worsened behavior from the default values.
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Table 8. Default, tuning and final values for HECTOR-SLAM.

Test Values

Variable Default Minimum Maximum Final

update_factor_free 0.40 0.10 0.45 0.40
update_factor_ocuppied 0.90 0.80 0.99 0.90

map_update_distance_thresh 0.40 0.10 1.00 0.40
map_update_angle_thresh 0.90 0.10 1.00 0.90

map_pub_period 2.00 1.00 5.00 2.00

3.1.3. KARTO-SLAM

For KARTO-SLAM, eighteen parameters were considered in the soft tuning stage,
these are shown in the Table 9. After completing Plackett–Burman experiment only three
parameters surpassed the statistical limit to be considered relevant for CPU usage. A full
factorial experiment was executed over these parameters with the same variation ranges
used in Plackett–Burman experiment.

Table 9. Default, tuning and final values for KARTO-SLAM.

Test Values

Variable Default Minimum Maximum Final

scan_buffer_size 70 30 100 30
link_match_minimum_response_fine 0.12 0.06 0.18 0.18

loop_match_minimum_chain_size 10 5 15 15
loop_match_maximum_variance_coarse 0.4 0.3 0.5 0.3
loop_match_minimum_response_coarse 0.80 0.75 0.85 0.75

loop_match_minimum_response_fine 0.80 0.75 0.85 0.75
correlation_search_space_dimension 0.3 0.2 0.4 0.2

correlation_search_space_smear_deviation 0.03 0.03 0.04 0.04
loop_search_space_dimension 8.0 7.0 9.0 7.0

loop_search_space_smear_deviation 0.03 0.03 0.04 0.04
distance_variance_penalty 0.3 0.2 0.4 0.2

angle_variance_penalty 0.349 0.249 0.449 0.449
fine_search_angle_offset 0.00349 0.00249 0.00449 0.00449

coarse_search_angle_offset 0.349 0.249 0.449 0.449
coarse_angle_resolution 0.0349 0.0249 0.0449 0.0449

minimum_angle_penalty 0.90 0.85 0.95 0.95
minimum_distance_penalty 0.5 0.4 0.6 0.4

use_response_expansion False False True True

After completing the factorial experiment, it was obtained a scenario that improved
the output for each of the metrics, demonstrated through hypothesis tests over the mean
and standard deviation, using five runs with default versus new parameters. The improved
map is showed in Figure 9.

3.1.4. RTAB-Map

Since RTAB-Map has a boosted capabilities than others, its model was coupled to deal
only with 2D SLAM problem. With this, the relevant parameters were selected to tune,
those are shown in Table 10.
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Figure 9. Map before and after the calibration of KARTO-SLAM.

Table 10. Default, tuning and final values for RTAB-MAP.

Test Values

Variable Default Minimum Maximum Final

TimeThr 0 0 1 0
MemThr 0 0 1 0

DetectionRate 1.0 0.1 10.0 0.1
ImageBufferSize 1 0 20 0

MaxRetrieved 2 1 10 1
CreateIntermediateNodes false false true false

LoopThreshold 0.11 0.00 1.00 0.00
VarianceIgnorance false false true false

FilteringStrategy No filtering No filtering Kalman filtering No filtering

From filtering stage, there were identified 3 parameters with enough statistical rele-
vance for pose and map accuracy those were detectionRate for pose error, and timeThreshold
and LoopThreshold for map accuracy. A full factorial experiment was performed with these
parameters, obtaining a total of nine experiments to perform. With this factorial experiment
the parameters were tuned for the best scenario; their final values are shown in Table 10.

After soft tuning, with six extra trials with the new parameters versus default parame-
ters, it was demonstrated with 90% of confidence that all the metrics perform better with
these new parameters configuration. Figure 10 is presented as proof of the improvement.

3.2. Individual Results
3.2.1. Cartographer

Results for Cartographer in terms of pose accuracy were quite stable throughout all the
different scenarios executed, excepting when executing labyrinth arena starting at non-zero
coordinate (observation 14 in Figure 11), this is a special case where the robot starts in a
corridor without irregularities or landmarks to reference itself, making it accumulate the
error quickly, and it is unable to take it back to near zero.

In terms of CPU and memory usage, it can be noticeable that the longer the test the
higher the usage, since observations related to two laps show a higher CPU and memory
usage, as can be seen in Figure 12 for CPU usage behavior, and Figure 13 for memory
usage behavior.
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Figure 10. Map before and after the calibration of RTAB-Map.

Figure 11. Pose accuracy mean behavior for Cartographer.
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Figure 12. CPU usage mean behavior for Cartographer.

Figure 13. Memory usage mean behavior for Cartographer.

In regards of map accuracy there are no trends by visually inspecting the results, as
there is no noticeable correlation to either arena type, trajectory type, or robot direction.
See Figure 14 for reference.
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Figure 14. Map accuracy mean behavior for Cartographer.

3.2.2. Gmapping

In regards of pose accuracy behavior it is the same behavior obtained with Cartogra-
pher, Figure 15 shows the time evolution of the pose error. The quick error increase at the
beginning of the test of the observation 14 (labyrinth arena starting at non-zero coordinate)
is quite visible, which is an expectable behavior because of the SLAM algorithms nature, as
was explained before in the Cartographer results. These overall results considering all the
tests for Gmapping can be found in Figure 16.

Figure 15. Pose error timeseries evolution for Gmapping on observation 14.
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Figure 16. Pose accuracy mean behavior for Gmapping.

In relation to CPU and memory usage, the only trend noticeable was the correlation
between them, when CPU usage increased memory usage decreased and vice versa. After a
Pearson test to confirm this correlation, it resulted in a strong negative correlation of −0.928.
Figure 17 shows visually their behavior, that can be explained by the way Gmapping
manages its resources. Gmapping processes the particles on the fly [48], and this can result
in timelapses where CPU is full of other tasks and memory must store these particles while
CPU gets some time to process them. The same occur when the CPU has a high availability
for processing the particles, releasing the allocated memory.

Figure 17. CPU and memory usage mean behavior for Gmapping.

For map accuracy there is no real trend noticeable by the dataset, as shown in Figure 18.
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Figure 18. Map accuracy mean behavior for Gmapping.

3.2.3. HECTOR-SLAM

A general commentary on HECTOR-SLAM is its highly noticeable susceptibility to
environments without irregularities, where HECTOR-SLAM gets completely lost in terms
of map and pose accuracy. The empirical rules observed is that it gets lost when interprets
that the places are longer than they really are (long corridor issue) or interprets that the
robot is stopped in the last place it detected an irregularity.

This behavior can be observed mainly in the pose accuracy in Figure 19, with the value
obtained in the observation 14 that is the labyrinth arena starting at non-zero coordinate,
as the robot begins its movement inside a corridor without irregularities or landmarks to
reference itself. This is similar to the results obtained for the Gmapping and Cartographer
SLAM algorithms.

Also, as the worst result is obtained for the observation 12 with a peak error value of
2255.05 m, which is the common environments arena (two laps in reverse). In this case,
the effect of running two laps instead of one has a negative effect on the metric. The cause
is associated with the algorithms difficulty to close the loop for this arena, which should
happen at about 1500 s in Figure 20, that represents the timeseries plot for pose error in
observation 12. At first, the trial was considered an outlier, however upon repeating the
test under the same conditions used for the other trials gave a similar result.

As for the map accuracy, in Figure 21 is visible that the output for common environ-
ments arena is better than the training arena, and that training arena is better than the
labyrinth arena (compare the visual mean of observations 7–12, 1–6, and 13–15 respectively).
This is confirmed by a hypothesis test between them at 90% confidence level, which is
associated to the number of irregularities per arena that lets the algorithm create a better
representation of the environment when there are more of them present.
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Figure 19. Pose accuracy mean behavior for HECTOR-SLAM.

Figure 20. Pose error timeseries evolution for HECTOR-SLAM on observation 12.
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Figure 21. Map accuracy mean behavior for HECTOR-SLAM.

Lastly, in regards of memory and CPU usage, it was verified that there is no wide
difference between them for the different scenarios, as Figure 22 shows. It looks like the
memory usage is better when repeating the trajectories. In addition, the algorithm is using
about 15% of one single core.

Figure 22. CPU and memory usage timeseries evolution for HECTOR-SLAM.

3.2.4. KARTO-SLAM

Examining the results for pose accuracy, KARTO-SLAM had a quite stable behavior
(see Figure 23), except for observation 14, which is the labyrinth arena starting at non-zero
coordinate, the root cause is the lack of irregularities at the beginning of the test, which
makes the algorithm wrongly estimate the pose of the robot and quickly accumulate a high
error for the pose. This behavior can be seen in Figure 24 where it is clear that, at time
zero, the pose accuracy was quite good, however, after a brief time driving the arena, the
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error goes up and keeps that way almost throughout the whole test, in a similar way as the
previously analyzed results of the other SLAM algorithms.

Figure 23. Pose accuracy mean behavior for KARTO-SLAM.

Figure 24. Pose error evolution for KARTO-SLAM on observation 14.

Next, for memory usage it was identified that the longer the test the higher the memory
usage, so that two lapped trials spent more memory compared to one lapped trial, it can
be seen in Figure 25, observations 5 and 6 are the two lapped trials for training arena, 11
and 12 observations are the two lapped trials for common environments arena, and 15 is
the observation for two lapped trial for Labyrinth arena. In addition, it was identified that
both CPU and memory usage had a highly evident correlation, confirmed with a Pearson
test, giving a correlation of 0.911 with a p-value of 2.4265 × 10−6.
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Figure 25. CPU and memory usage behavior for KARTO-SLAM on all the runs.

Lastly, for map accuracy it was evidenced and statistically supported that the higher
the number of irregularities per area the better the map accuracy. With a 90% confidence
level it was confirmed that maps generated with common environments arena gave a
more accurate map (lower population mean) than training arena. The same thing occurs
for the training arena against labyrinth arena. It can be visually confirmed by looking
at the Figure 26, where observations 1 to 6 pertain to training arena, 7 to 12 to common
environments arena, and 13 to 15 to labyrinth arena.

Figure 26. Map accuracy mean behavior for KARTO-SLAM.

3.2.5. RTAB-Map

Regarding pose accuracy, the algorithm behave as KARTO-SLAM did, with satisfactory
performance for all the trials excepting trial 14. This can be verified observing Figure 27.
The cause is similar to the other SLAM algorithms results, since the error grew up quickly
at the beginning of the test and stood the same through the test.
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Figure 27. Pose accuracy mean behavior for RTAB-Map.

For CPU and memory usage, it was identified a strong direct correlation between them,
visually evident through Figure 28, but confirmed with a Pearson correlation test, giving a
correlation of 0.942 with a p-value of 1.6380 × 10−7 at 95% confidence level. Visually, it is
also noticeable that CPU and memory usage grows when the tests late for longer periods,
since observations 5, 6, 11, 12, and 15, which are the two lapped trials, have higher means
compared to the trials on the same arena but running only one lap.

Figure 28. CPU and memory usage means behavior for RTAB-Map.

Lastly, in regards of RTAB-Map results analysis, map accuracy was noticeable better
performing on arenas with higher density of irregularities per area, since the maps obtained
were more accurate for common environments arena than for training arena. Same thing
for training arena against labyrinth arena, since the training arena gave better maps than
labyrinth arena. The Figure 29 shows all the observations compared with each other.
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Figure 29. Map accuracy mean behavior for RTAB-Map.

4. Algorithms Comparison

For algorithms comparison two statistical tools were used, a 2-Sample T and a 2-Sample
Standard Deviation using the central limit theorem. They compare the mean and standard
deviation of both samples, to conclude about the mean and standard deviation of their
populations at certain confidence level, in this case at 90% confidence level.

4.1. Pose Accuracy

In regards of pose accuracy, it was quite hard to plot all the samples from all the
algorithms together because of their range differences. To solve this, a timeseries plot was
used showing all of them in separate plots, as it can be seen in Figure 30.

Figure 30. Pose accuracy mean behavior for all the algorithms together.
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Comparing visually the samples by their ranges, the main result was that RTAB-
Map performed better than KARTO-SLAM, which also performed better than Gmapping,
followed closely by Cartographer and by far HECTOR-SLAM performing worse than all
of them. However, with the dataset obtained, there was only evidence to demonstrate at
90% confidence level that RTAB-MAP population mean was lower than KARTO-SLAM’s
population mean, which also had a lower population mean than Gmapping, Cartographer,
and HECTOR-SLAM. In addition, there was no evidence to demonstrate any difference on
the population mean and standard deviation between Gmapping and Cartographer, only
to demonstrate that both were superior to HECTOR-SLAM by their standard deviation,
which means that in terms of pose accuracy HECTOR-SLAM would give more variant
results through different scenarios than these two.

The data used for this section can be referenced in the Table 11.

Table 11. Observation means for pose accuracy.

Observation Cartographer Gmapping HECTOR-SLAM KARTO-SLAM RTAB-Map

1 0.0213 0.2304 0.0900 0.1113 0.0219
2 0.1869 0.18645 0.3598 0.0704 0.0297
3 0.1781 0.1424 0.1498 0.0874 0.0154
4 0.1385 0.2925 0.0424 0.0680 0.0157
5 0.4513 0.1572 0.0570 0.0965 0.0203
6 0.5102 0.1300 1.8450 0.0610 0.0206

Mean 0.2477 0.1898 0.4240 0.0824 0.0206
Standard Deviation 0.1908 0.0618 0.7057 0.0193 0.0052

7 0.0205 0.1879 0.0204 0.0912 0.0213
8 0.0395 0.2477 0.0395 0.0281 0.0204
9 0.0597 0.2087 0.0667 0.0543 0.0091
10 0.0803 0.1857 0.0090 0.0466 0.0165
11 0.2925 0.1126 36.2181 0.0794 0.0136
12 0.2424 0.1655 2255.0540 0.0411 0.0189

Mean 0.1225 0.1847 381.9320 0.0568 0.0167
Standard Deviation 0.1152 0.0450 917.7678 0.0240 0.0046

13 0.1113 0.3593 3.7858 0.0684 0.0179
14 4.1419 1.3317 28.7847 0.3438 0.1803
15 0.54303 0.5571 6.1407 0.0613 0.0168

Mean 2.2130 0.7493 12.9037 0.1579 0.0717
Standard Deviation 0.7994 0.5140 13.8036 0.1611 0.0941

Total Mean 1.0312 0.2997 155.5109 0.0873 0.0363
Total Standard Deviation 0.4678 0.3066 580.9297 0.0743 0.0515

4.2. Map Accuracy

For map accuracy, the data presented in the Figure 31 shows a box plot for all the
algorithms together, with a trend line centered on their means. With these results, it was
possible to confirm at 90% confidence level that RTAB-MAP outperformed all the other
algorithms, followed closely by KARTO-SLAM, then by Cartographer, next by Gmapping,
and finally by HECTOR-SLAM, which was impossible to demonstrate its difference towards
Gmapping by its mean, but not by its standard deviation.
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Figure 31. Boxplot for map accuracy with all the algorithms together.

The data used for this section can be referenced in the Table 12.

Table 12. Observation means for map accuracy.

Observation Cartographer Gmapping HECTOR-SLAM KARTO-SLAM RTAB-Map

1 11.3588 12.9296 11.5999 6.5996 3.4305
2 5.9485 17.5095 29.8954 4.2711 3.9316
3 7.2356 11.2784 9.0652 3.229 3.7825
4 6.2931 8.2523 4.9011 4.4964 3.3662
5 4.4964 7.4998 22.3552 7.3045 3.5179
6 3.3045 8.8719 56.0886 4.7307 2.9544

Mean 6.4395 11.0569 22.3176 5.1052 3.4972
Standard Deviation 2.7821 3.7546 18.9300 1.5360 0.3426

7 2.7658 11.2878 0.65188 1.6061 1.0293
8 3.5673 23.7350 1.0992 1.0173 0.9345
9 4.7307 26.2922 3.0891 1.7184 1.5389
10 5.4859 12.9511 1.7896 3.1379 1.2902
11 3.3662 18.8883 3.3990 1.7406 1.3364
12 7.6691 10.2534 9.8264 1.6209 1.4362

Mean 4.5975 17.2346 3.3092 1.8067 1.4940
Standard Deviation 1.7986 6.7746 3.3700 0.7046 0.4940

13 3.9316 20.3132 34.3039 9.0231 4.1498
14 4.9011 15.2718 37.7283 5.6719 4.5795
15 7.4998 19.7310 37.1870 7.8768 4.0350

Mean 5.4442 18.4387 36.4064 7.5239 4.2548
Standard Deviation 1.8450 2.7580 1.8408 1.7032 0.2870

Total Mean 5.5036 15.0043 17.5320 4.2696 3.0809
Total Standard Deviation 2.2658 5.8181 17.4748 2.5695 0.1071

4.3. CPU Usage

With respect to CPU usage, Figure 32 shows a boxplot representation of all the algo-
rithms with all their sample means. This figure shows that HECTOR-SLAM outmatch the
other algorithms, followed closely by RTAB-Map, then by KARTO-SLAM, next by far from
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Gmapping, and finally by Cartographer. This finds were verified for their means by four
hypothesis tests, all of them were demonstrated at 90% confidence level.

Figure 32. Boxplot for CPU usage with all the algorithms together.

The data used for this section can be referenced in the Table 13.

Table 13. Observation means for CPU usage.

Observation Cartographer Gmapping HECTOR-SLAM Karto RTAB-Map

1 79.9485 65.7767 14.9611 24.6362 21.9038
2 79.2709 64.4213 15.3271 25.1983 22.5627
3 85.2832 30.6667 15.4501 24.7791 19.1986
4 83.9482 29.9745 16.1314 27.2580 22.8742
5 125.5938 33.0631 15.4562 33.0401 22.1754
6 126.6733 31.8696 15.6368 30.8826 23.0957

Mean 96.7863 42.6286 15.4938 27.6324 21.9684
Standard Deviation 22.8497 17.4426 0.3852 3.5494 1.4257

7 157.0573 64.2396 15.7638 22.8283 21.8038
8 106.4543 64.9399 15.3108 23.356 22.6580
9 103.8126 58.5111 15.2690 23.1910 21.0382
10 168.8664 64.2727 15.6305 22.3582 21.4474
11 226.6733 85.0477 16.0144 29.0134 27.6719
12 225.4842 81.7984 15.2684 32.1010 27.6719

Mean 167.8463 69.8016 15.5420 25.4746 23.3506
Standard Deviation 54.2421 10.8534 0.3117 4.0706 2.6483

13 122.4997 33.6084 15.7692 34.9936 24.2222
14 135.0477 33.5639 13.8457 36.0513 27.0032
15 245.9916 38.4121 13.8691 48.7294 39.1275

Mean 167.8463 35.1948 14.4947 39.9248 30.1176
Standard Deviation 67.9660 2.7863 1.1038 7.6433 7.9257

Total Mean 138.1737 52.0110 15.3132 29.2278 25.1455
Total Standard Deviation 55.8754 19.6419 0.6646 7.1000 3.4543



Sensors 2022, 22, 6903 32 of 37

4.4. Memory Usage

For the last metric, in view of memory usage the data representation used was a set of
boxplots with a trendline pointing to their means, as seen in Figure 33. From these results it
was demonstrated with 90% of confidence that HECTOR-SLAM is the algorithm that best
manages memory resources, followed closely by KARTO-SLAM, then by far by Cartogra-
pher, next by RTAB-Map and finally by Gmapping. It was not possible to demonstrate any
population difference between Cartographer and Gmapping, neither between RTAB-MAP
and Gmapping, however there was enough evidence to demonstrate that Cartographer was
better performing than RTAB-Map by their means, and that population standard deviation
of Gmapping would be greater than population standard deviation of RTAB-Map, which is
the reason Gmapping is considered the worse of the algorithms for this metric.

Figure 33. Boxplot for Memory usage with all the algorithms together.

The data used for this section can be referenced in the Table 14.

4.5. Algorithms Comparison Summary

To summarize based on the previous sections the Table 15 was created. It shows in
a numbering scale which algorithm is the best, where one means the best of them. In
addition the nomenclature M represents that its superiority or inferiority was demonstrated
by a 2-Sample T, and S represents that its superiority or inferiority was demonstrated by a
2-Sample Standard Deviation.

With the Table 15, it can be stated that if map and pose accuracy are priorities, re-
gardless of CPU and memory usage, then RTAB-Map is the preferred algorithm to use.
However, if there are limited resources in the mobile robot platform, a better approach
could be using HECTOR-SLAM, with the highlight that it is the worse of them regarding
map and pose accuracy.
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Table 14. Observation means for memory usage.

Observation Cartographer Gmapping HECTOR-SLAM KARTO-SLAM RTAB-Map

1 103.4278 52.3380 31.1261 30.1372 192.5342
2 98.0524 46.1813 31.0173 32.7514 191.6726
3 135.3839 358.2813 31.0016 32.5083 165.7151
4 133.9238 355.8691 30.7399 32.7924 188.1644
5 187.343 360.0965 30.9364 55.4142 185.3953
6 185.394 368.0437 30.8741 50.3001 206.5993

Mean 140.5875 256.8016 30.9492 38.9839 188.3468
Standard Deviation 38.6141 160.82501 0.1329 10.9123 13.2967

7 133.2000 43.8983 30.9629 35.7139 183.4044
8 138.2426 43.9963 30.9473 30.8605 183.2011
9 134.5829 46.5603 31.0558 31.2307 187.8639
10 101.3176 43.5573 30.9196 28.9994 189.1245
11 235.8990 57.8269 30.8073 44.9256 234.9545
12 214.3226 54.55 30.7999 51.1971 214.3226

Mean 159.5941 48.3982 30.9153 37.1545 198.8118
Standard Deviation 52.8997 6.2158 0.0980 8.9540 21.1739

13 122.4997 355.2520 30.9678 42.4248 218.5724
14 143.8983 358.9191 31.0103 42.4906 188.9716
15 283.2011 361.3482 31.0145 75.1085 306.7033

Mean 183.1997 358.5064 30.9975 53.3413 238.0824
Standard Deviation 87.2622 3.0690 0.0258 18.8510 61.2427

Total Mean 156.7126 193.7812 30.9454 41.1236 208.4137
Total Standard Deviation 53.7130 160.7094 0.1039 12.7525 25.7147

Table 15. Final results for all the metrics together.

Cartographer Gmapping HECTOR-SLAM KARTO-SLAM RTAB-Map

Pose accuracy 3-MS 3-MS 4-S 2-M 1-M
CPU usage 5-M 4-M 1-M 3-M 2-M

Memory usage 3-M 5-S 1-M 2-M 4-S
Map accuracy 3-M 4-S 5-S 2-M 1-M

Nevertheless, a different approach can be taken, in order to classify all the algorithms
by their means in a range from zero to one hundred, where zero represents the algorithm
with the lowest mean, and 100 would be the algorithm with the highest mean. With this
classification, KARTO-SLAM comes up as the best choice between all of them, since is the
algorithm that shows the lowest average with this methodology. The Equation (6) details
this approach, and the results obtained are shown in Table 16.

AveAlg =
1
4

M.Acc.

∑
Met=P.Acc.

[
100 ∗

X̄Alg − X̄Min

X̄Max − X̄Min

]
Met

(6)

where:

• AveAlg Is the average to calculate, considering all the metrics.
• Met Is the metric to be averaged, either pose accuracy, map accuracy, CPU usage, or

memory usage.
• X̄Alg Is the sample mean obtained from the algorithm being analyzed.
• X̄Min Is the shortest sample mean obtained from any of the algorithms for that metric.
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• X̄Max Is the largest sample mean obtained from any of the algorithms for that metric.

Table 16. Final results considering all the metrics means together.

Pose Accuracy CPU Usage Memory Usage Map Accuracy Results
Algorithm Mean Score Mean Score Mean Score Mean Score Mean Score

Cartographer 0.4678 0.2821 138.1737 100 156.7126 73.3189 5.5036 18.0957 191.6966 47.9242
Gmapping 0.2997 0.1739 52.0110 29.8695 193.7812 94.9289 15.0044 82.7887 207.7610 51.9402

HECTOR-SLAM 155.5109 100 15.3132 0 30.9454 0 17.5320 100 200 50
KARTO-SLAM 0.0873 0.0373 29.2278 11.3255 41.1236 5.9336 4.2696 9.6930 26.9894 6.7474

RTAB-Map 0.0292 0 24.1511 7.1934 202.4799 100 2.8461 0 107.1934 26.7984

Min 0.0292 15.3132 30.9454 2.8461
Max 155.5109 138.1737 202.4799 17.5320

Based on the evidence of Table 16 and Figure 34, the result of evaluating the algorithms
by this procedure let to the conclusion that KARTO-SLAM brings the higher performance
considering the CPU and memory usage along with map and pose accuracy. Furthermore,
if the memory usage is not a limitation, RTAB-MAP has better results in all the other metrics,
followed by Cartographer, HECTOR-SLAM and the last one is Gmapping.

Figure 34. Radar plot with all the algorithms together.

5. Conclusions

The following are the main conclusions derived from the results of this work:

• The proposed methodology is useful to characterize, calibrate, and compare any
SLAM algorithm, no matter the robot sensors or SLAM type, as long as the map
representation is compatible with the application of the knn-search metric, and the robot
pose is obtained in matching measurement units, since the proposed characterization
and calibration is based on the final results of the SLAM algorithms, rather than on
their internal structure or on the sensors these algorithms use. The method proposed in
this paper provides strong statistical evidence, based on the pose error, map accuracy,
CPU usage, and memory usage, with descriptive and inferential statistics to bring
confidence levels about overall behavior of the algorithms and their comparisons.
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• It was quite noticeable that KARTO-SLAM outperformed all the other algorithms
because it balances the use of resources and holds a good SLAM performance, just by
looking at Figure 34 or by checking Table 16.

• Without considering resources usage, the best algorithm is RTAB-Map, which really
does an excellent job at mapping and calculating its own pose into the map.

• HECTOR-SLAM outperformed when saving resources is the feature that matters,
providing statistical evidence that it is the one which uses less CPU and memory than
the other algorithms, however it is the one that gave the worst results when talking
about localization and mapping.

• Localization metric (pose accuracy) gets worse as obstacle density decreases for all
algorithms, and this is something that makes sense, since SLAM algorithms require
irregularities to be able to refer the robot to this irregularity, without them, it must trust
on its odometry system, which is less accurate because it does not consider wheels
slippage, dimensional irregularities in robot model, etc.

• There was an hypothesis that repeating the trajectories two times would enhance the
localization and mapping output. However, there was no enhancement noticed for
both these metrics with statistical support.

• There was provided statistical evidence that, starting at a coordinate without any
irregularity for the robot to reference itself, can become a highly important issue that
it may not be able to correct in regards to pose accuracy. Confirmed through the
experiments performed in the labyrinth arena, when starting at a non-zero coordinate,
the pose error grows quickly and all the algorithms had troubles in correcting this
failure as the simulation continues, situation that does not happen this way when
starting at zero coordinate, where there are good enough irregularities for the robot to
locate itself.

As future work, the method can be extended to consider extended test time and
bigger areas in the arenas, to determine the best algorithms for these cases of indoor
SLAM applications. In addition new metrics can be defined for 3D SLAM and cooperative
distributed SLAM algorithms that do not have a compatible map representation for the
application of the knn-search metric.
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