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Abstract: The accurate segmentation of the optic disc (OD) in fundus images is a crucial step for
the analysis of many retinal diseases. However, because of problems such as vascular occlusion,
parapapillary atrophy (PPA), and low contrast, accurate OD segmentation is still a challenging task.
Therefore, this paper proposes a multiple preprocessing hybrid level set model (HLSM) based on
area and shape for OD segmentation. The area-based term represents the difference of average pixel
values between the inside and outside of a contour, while the shape-based term measures the distance
between a prior shape model and the contour. The average intersection over union (IoU) of the
proposed method was 0.9275, and the average four-side evaluation (FSE) was 4.6426 on a public
dataset with narrow-angle fundus images. The IoU was 0.8179 and the average FSE was 3.5946 on a
wide-angle fundus image dataset compiled from a hospital. The results indicate that the proposed
multiple preprocessing HLSM is effective in OD segmentation.

Keywords: optic disc segmentation; multiple preprocessing; hybrid level set; wide-angle fundus
images; four-side evaluation

1. Introduction

The optic disc (OD) is a region where blood vessels and optic nerves pass through
the retina [1]. The area ratio of OD to optic cup (OC) is the main criterion of glaucoma
diagnosis [2]. The OD position is the benchmark for determining the extent of the macula [3],
for example, the macula always presents on the left side of OD for the right eye, and on the
right side of the OD for the left eye. Moreover, macular edema can be used to diagnose
diabetic retinopathy (DR) [4]. Therefore, accurate OD segmentation may play important
roles in many fundus disease diagnoses such as glaucoma [5] and DR [6].

OD is a highly bright oval-shaped yellowish region [7] in fundus images. There are two
types of fundus images that are distinguished on the basis of the field of view (FOV) [8,9].
One is posterior part fundus images that have a narrow FOV, as shown in Figure 1. The
FOV is from 30◦ to 60◦ [10–13]. The other type is wide-angle fundus images with a much
wider FOV, as shown in Figure 2. The FOV is from 130◦ to 200◦ [14,15]. Accurate OD
segmentation in fundus images is a challenging task for the following reasons (Figure 3):
(1) Some parts of OD boundaries are covered by blood vessels; (2) some types of noise
such as parapapillary atrophy (PPA) and bright area affect OD segmentation. For Reason
(1), blood vessels can be removed by using a mathematical morphology [16]; however,
some bright noise and PPA are mixed in the OD area, resulting in undersegmentation.
For Reason (2), according to the different textures between PPA and other regions, a gray
level co-occurrence matrix (GLCM) can be used to detect the PPA [17]. However, it is easy
for misdetections or false detections to occur when the texture features of PPA are not
obvious. Therefore, the effects of bright noise and PPA regions in OD segmentation are
still unresolved.
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Figure 1. Example of posterior fundus image.

Figure 2. Example of wide-angle fundus image.

(a) PPA and blood vessels. (b) Bright noise.

Figure 3. Problems in OD segmentation.

This paper proposes a multiple preprocessing hybrid level set model (HLSM) to solve
the problems in which OD segmentation is affected by bright noise and PPA. The contour
in HLSM is mainly controlled by area-based and shape-based terms. The area-based term
represents the difference of the average pixel values between the inside and outside of
the contour, while the shape-based term measures the distance between a prior shape
model and the contour. Moreover, this paper proposes a novel evaluation method of
four-side evaluation (FSE), and addresses the limitation of objective evaluation methods
such as intersection over union (IoU) in over- and undersegmentation around the entire
OD. Furthermore, the FSE is a subjective evaluation from clinicians that can prove whether
the segmentation results are accurate enough in the view of clinician. The effectiveness of
the proposed approach is verified in two types of fundus image, posterior and wide-angle.
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The proposed method achieved results with an average IoU of 0.9275 and an average FSE
of 4.6426 in the DRISHTI-GS posterior fundus image dataset, and an average IoU of 0.8179
and average FSE of 3.5946 in the TMUEH wide-angle fundus image dataset.

The contributions of this paper are as follows:

1. The proposed method has higher robustness that could successfully segment the OD
in both the posterior and wide-angle fundus images.

2. The effect of PPA and bright noise causes undersegmentation, and the OD being oc-
cluded by blood vessels causes undersegmentation. The proposed approach achieves
high accuracy in OD segmentation results by solving these problems.

3. A new evaluation method, FSE, is proposed for clinicians to subjectively evaluate OD
segmentation results.

This paper is composed as follows: Section 2 briefly introduces some research back-
ground on OD segmentation in fundus images; Section 3 proposes and explains the multiple
preprocessing hybrid level set model; Section 4 outlines the experiment and discussion;
Section 5 draws some conclusions.

2. Related Work

Proposed OD segmentation algorithms can be roughly divided into five categories:
threshold- [18,19], pattern- [20–23], classification and clustering- [24–26], active contour
model- [16,27–33], and deep learning- [34–36]-based methods. In threshold-based methods,
the ODwas segmented by OTSU and other thresholding methods in [18,19]. Although they
adopted multichannel information and achieved fast processing speed, it was susceptible
to bright noise around the OD, and the segmentation accuracy was low. In pattern-based
methods, a limited ellipse fitting method was used to segment the OD [20]. However,
the OD is not completely elliptical, so this method was not accurate enough. Segmenting
the OD with an active shape model is easily effected by the PPA and bright noise [21–23].
Regarding classification and clustering-based methods, in [24], superpixels were first
segmented according to the similarity between each pixel and then classified with a random
forest method. The K-means clustering method [25] and density-based spatial clustering
method [26] are also used to segment the OD. However, both classification- and clustering-
based methods require pre- and postprocessing, and cannot dispose of the effects of PPA
and blood vessels. With the rapid development of deep learning in recent years, it has
also been applied to OD segmentation. In deep learning-based methods, U-Net combines
encoding and decoding information; due to this characteristic, U-Net, improved U-Net, or
structures inspired by U-Net are widely used in OD segmentation. For example, U-Net
was directly trained to segment the OD in [37,38]. A deep-learning structure, M-Net, was
developed in [34] that combines features in polar coordinates and Euclidean coordinates.
U-Net and ResNet block were combined in [36] and [39], and U-shaped DenseNet was
introduced in [40]. NENet, which was inspired by U-Net, was utilized to segment OD in [41].
In addition to the U-shaped network, a segmentation adversarial network (SAN) based
on generative adversarial networks (GANs) was proposed in [35], and a fully connected
network was improved by combining the distance and density features in [42]. A structure
that combines DeepLabv3+ and MobileNet was proposed to segment the OD in [43].
However, it is difficult to obtain a large amount of training data, which is the difficult aspect
of deep-learning methods in OD segmentation.

Because of the high robustness and fewer parameters, the active contour model is also
widely applied in OD segmentation. Some researchers proposed various types of active
contour models, for example, variation-based [44], gradient-based [45], area-based [46]
and shape-based [47]. In active-contour-model-based methods, the gradient-based level
set model was used in [27,29–31]. However, segmentation fails if the OD boundary is
extremely smooth. The level set model was improved in [16,28] by applying multiple
energy functionals that included gradient-, area-, and shape-based energy functionals. A
shape-based functional is able to limit the shape of the contour, the area-based functional is
adopted to change the position and size of the prior shape model, and the gradient-based
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functional is the main source of energy to find the OD boundaries. This method solves the
above problem of OD segmentation failure, but the changed shape model is easily effected
by PPA and bright noise. The area-based level set model was used in [32,33], which mainly
drove the contour according to the average pixel values inside and outside the contour.
However, the contour is sensitive to blood vessels, PPA, and bright noise if only using an
area-based energy functional, resulting in a reduction in segmentation accuracy.

3. Multiple Preprocessing Hybrid Level Set Model

Because of the problems of OD segmentation being affected by PPA, bright noise,
and blood vessels, this paper proposes a multiple preprocessing HLSM. A morphological
method is able to avoid OD segmentation from being affected by blood vessels; the hybrid
level set method with shape constraints is used to control the evolution of the contour and
avoid the effect of bright noise; adaptive threshold-based ellipse fitting can find a more
appropriate initial value of level set function and the effect of PPA can be simultaneously
avoided. Figure 4 shows the flowchart of the proposed approach. In this section, “contour”
means the contour of zero-level set, and “boundary” means the boundary of OD.

Figure 4. The flowchart of the proposal.

3.1. Hybrid Level Set Model

The level set model is robust and flexible. It is not sensitive to small noise and can
flexibly change the model to be suitable for specific tasks. So, we designed a model that
is based on the level set model to segment OD. The level set model is a type of active
contour model [45] that embeds the contour into a level set function φ that has a higher
dimensional number and uses a certain level set (usually zero-level set) to represent the
current contour. The activity of the contour is shown in Equation (1). F is the energy
function, and for different tasks, the corresponding F needs to be designed. |∇φ| is the
gradient of level set function. This equation means that level set function φ changes along
the gradient direction under the action of energy function F. The change in unit time t is
the product of F and |∇φ|.

∂φ

∂t
= F|∇φ| (1)

For solving the problems in OD segmentation, the corresponding F should have the
following characteristics: (1) Because some areas in OD are occluded by blood vessels, OD
segmentation results have a depression in these areas. To avoid the effect of blood vessels,
the smoothness of the contour should be controllable. (2) There are some PPA regions and
bright noise surrounding OD. To avoid being affected by this noise, the contour evolution
should be limited. (3) Due to the existence of PPA regions and bright noise, the OD contrast
is low, and the gradient of the boundary is poor. So, segmentation failure caused by a poor
gradient should be avoided.
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According to the above characteristics, as shown in Equation (2), this paper proposes a
level set model that has four terms: the distance-regularized, line integral and area integral,
area-based, and shape-based terms, which is why it is called HLSM. The most important
terms in HLSM are the area- and shape-based terms. The area-based term is used to avoid
segmentation failure in low-contrast images. The shape-based term is utilized to avoid the
effects of bright noise and PPA regions. Apart from this, the distance-regularized term is
used to avoid reinitialization, and the line and area integral terms are able to control the
contour smoothness and evolutionary direction, respectively.

F = Fdistance−regularized

+ Fline integral & area integral

+ Farea_based

+ Fshape_based

(2)

The distance-regularized term is represented by Equation (3), where µ is the weight of
this term, Ω is the image domain, (x, y) is each point in the image. Since the signed distance
function (SDF) has the property of |∇φ| = 1, the contour is usually embedded in SDF for
level set model. However, when it is applied to an image, SDF needs to be discretized, so
that the level set function no longer remains as the SDF in the process of evolution. The
level set function needs to be reinitialized after each evolution. The distance-regularized
term can keep |∇φ| near 1, and keep the level set function as an SDF as much as possible.
Thus, this term is able to avoid reinitialization and speed up the evolution.

Fdistance−regularized = µ
∫

Ω
p(|∇φ|)dxdy (3)

where,

p(s) =
{ 1

2π sin(2πs), i f s ≤ 1
s− 1, i f s > 1

(4)

The line integral term is expressed in Equation (5), while the area integral term is
expressed in Equation (6). α is the weight of the line integral term, β is the weight of the
area integral term, and function δ is the differential of function H. The line integral term
is able to control the smoothness of the contour. As shown in Figure 5b, the line integral
term was applied, while in Figure 5a, α was set to 0. The blue contour in Figure 5b was
evidently smoother than the blue contour in Figure 5a. The area integral term controlled
the evolutionary direction.

Fline integral = α
∫

Ω
δ(φ)|∇φ|dxdy (5)

Farea integral = β
∫

Ω
H(φ)dxdy (6)

where,

Hε(x) =


1, i f x > ε

0, i f x < −ε
1
2

[
1 + x

ε +
1
π sin

(
πx
ε

)]
, i f |x| ≤ ε

(7)

δε(x) = H
′
ε(x) =

{
0, i f |x| > ε

1
2ε

[
1 + cos

(
πx
ε

)]
, i f |x| ≤ ε

(8)
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(a) Line integral term is not used. (b) Line integral term is used.

Figure 5. Comparison of using and not using a line integral term; (b) the contour was significantly
smoother than that in (a). (blue contour: results of segmentation, red area: obviously smoother part).

The formula of the area-based term is shown in Equation (9), where u0 is the average
pixel values of the whole image, and c1, c2 are the average pixel values inside and outside
the contour, respectively. The area-based term evolves the contour through the difference
of the average pixel values between the inside and outside of the contour, and the weight
of inside and outside can be controlled by λin and λout. As shown in Figure 6, when the
boundary of an object is fuzzy, the gradient of the boundary is low. If using the gradient-
based energy functional, the contour does not converge or even disappear. The area-based
term is based on the pixel difference; therefore, it can achieve excellent performance in
low-contrast and low-gradient images.

Farea_based = λin

∫
Ω
|u0 − c1|2H(φ)dxdy

+ λout

∫
Ω
|u0 − c2|2(1− H(φ))dxdy

(9)

Figure 6. Segmentation result with the gradient-based level set model.

The shape-based term is expressed in Equation (10), where λshape is the weight of this
term, and φinitial is the initial value of level set function. The shape-based term measures
the distance between the current contour and shape model, thereby limiting the contour
evolution. In this paper, the shape model was the initial value of level set function. Thus, if
a great initial value is detected, the HLSM can avoid the effects of PPA regions and bright
noise under the action of the shape-based term. Likewise, if the detected initial value
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contains PPA and bright noise, these regions cannot be ignored by HLSM, resulting in
oversegmentation. This means that the initial value is extremely important for HLSM. The
detection of the initial value is introduced in Section 3.2.4. As shown in Figure 7a, λshape
was set as 0, and in Figure 7b, the shape-based term was utilized; the segmentation result
in Figure 7a was affected by bright noise.

Fshape_based = λshape

∫
Ω
(H(φ)− H(φinitial))

2dxdy (10)

(a) Shape constraint is not used. (b) Shape constraint is used.

Figure 7. Comparison of shape-based term is used and not used. (blue contour: the segmentation
result, green contour: the ground-truth of OD).

Lastly, the energy functional used in this paper is shown in Equation (11).

F = µ
∫

Ω
p(|∇φ|)dxdy

+ α
∫

Ω
δ(φ)|∇φ|dxdy + β

∫
Ω

H(φ)dxdy

+ λin

∫
Ω
|u0 − c1|2H(φ)dxdy

+ λout

∫
Ω
|u0 − c2|2(1− H(φ))dxdy

+ λshape

∫
Ω
(H(φ)− H(φinitial))

2dxdy

(11)

3.2. Multiple Preprocessing

Although the level set model is highly robust, it is also easier to obtain highly accurate
segmentation results from an image with less noise and higher contrast. Furthermore, the
proposed HLSM requires an initial value that can exclude PPA regions and bright noise.
Therefore, multiple preprocessing includes the detection of multiple feature-based regions
of interest (ROI), quantitative-analysis-based channel selection, morphological-based blood
vessel removal, frequency domain-based noise removal, and initial-value detection with
adaptive threshold-based ellipse fitting.

3.2.1. Region of Interest (ROI) Detection

OD only occupies a small part of fundus images; in order to speed up OD segmentation
and reduce the effect of noise, it is necessary to locate the OD and detect the ROI. The OD
is an oval-shaped area with high vascular density and high brightness in fundus images,
and these characteristics can be used to accurately locate OD [48]. The side length of the
extracted ROI is 3 times the average diameter of OD. Because there is no guarantee that
the center of OD would be detected, and there are differences in the size of the OD, it is
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necessary to leave free space around the OD. Therefore, the size of the ROI is 3 times the
average diameter of the OD. The flowchart of ROI detection is shown in Figure 8, the results
of each process in posterior fundus images are shown in Figure 9, and the results of each
process in wide-angle fundus images are presented in Figure 10. In wide-angle fundus
images, a circular mask image (Figure 10a) is used to avoid the influence of eyelashes and
the fundus camera wall. Each process of ROI detection is explained in detail as follows.

• Step 1: Extracting the green channel (Figures 9b and 10b) from the RGB color space
and inverting it (Figures 9c and 10c). In order to take advantage of the feature of
high vascular density, it is necessary to roughly segment the blood vessels. In fundus
images, blood vessels have a high contrast in the green channel, which is why the
green channel is extracted. However, blood vessels are darker than those in other
areas in the green channel. Thus, for using morphological top-hat transformation to
segment blood vessels, the green channel is inverted.

• Step 2: Using morphological top-hat transformation to segment blood vessels
(Figures 9d and 10d). Although the obtained blood-vessel map is not clear and accu-
rate, it is fast and adequate enough to find the areas with high vascular density.

• Step 3: Finding several circular areas with the highest vascular density (Figures 9e and 10e).
The radius of circular areas is the average OD radius. Because of the rough and impre-
cise blood-vessel map, selecting only a few areas may not include OD. Thus, 20 circular
areas were selected in this paper.

• Step 4: Selecting one area (Figures 9f and 10f) which has the largest number of 2%
brightest pixels in value channel. The purpose of this step is to utilize the characteristic
of high brightness.

• Step 5: Extracting the rough ROI (Figures 9g and 10g) by this circular area. The side
length of rough ROI is 4 times the average diameter of OD and the center of rough
ROI is the center of circular area . As shown in Figure 11, there was still an error (the
OD was not located at the center of ROI image) if locating OD only on the basis of
high vascular density and high brightness.

• Step 6: Correcting the ROI (Figures 9h and 10h) by Hough Circular Transform from
rough ROI. This step uses the characteristic of oval-shaped. The side length of cor-
rected ROI is 3 times the average diameter of OD.

Figure 8. Flowchart of ROI detection: (a–i) correspond to images in Figures 9 and 10.
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(a) Original image. (b) Green channel. (c) Inverted green channel.

(d) Top-hat transform. (e) Twenty circular areas. (f) Brightest area.

(g) Rough ROI. (h) Hough circular transform. (i) ROI.

Figure 9. Results of ROI detection in posterior fundus images.

(a) Original image. (b) Green channel. (c) Inverted green channel.

(d) Top-hat transform. (e) Twenty circular areas. (f) Brightest area.

Figure 10. Cont.
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(g) Rough ROI. (h) Hough circular transform. (i) ROI

Figure 10. Results of each process of ROI detection in wide-angle fundus images.

Figure 11. Rough ROI with poor result.

3.2.2. Channel Selection

Tissues appear with different intensities in different color space; thus, selecting an
appropriate color channel with a higher contrast is useful in obtaining more accurate
OD segmentation results. The authors in [49,50] proposed that the red channel in RGB
color space is the most suitable for OD segmentation but without justification. This paper
quantitatively analyzes the channels in RGB, HSV, and LAB color spaces through the
contrast-to-noise ratio (CNR, value in Equation (12)).

CNR =

∣∣meanforeground −meanbackground
∣∣

stdbackground
(12)

where meanforeground is the average pixel values of the foreground, and meanbackground and
stdbackground are the mean and standard deviation pixel values of background, respectively.
In this paper, the foreground is the OD area, while the background is the areas except OD.

A large CNR value means that the difference of the average pixel values between
the foreground and background is large, and the difference of the background pixel val-
ues is low. Therefore, if the CNR value of an image is large, it is a high-contrast and
low-noise case.

The images from the DRISHTI-GS dataset were used to calculate the CNR, and results
are shown in Table 1. The average CNR in the value channel was 5.0408, and red channel
was 4.9824, which were significantly higher than those of other channels, but the variance
CNR in the value channel was 5.4443, which was slightly lower than that in the red channel,
5.4550. Thus, the value channel was selected to segment OD in this paper.
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Table 1. Average and variance of CNR values of each channel.

Channel Average Variance

Red 4.9824 5.4550
Blue 4.4111 11.6290

Green 4.6481 5.9764
Hue 1.8755 10.1563

Saturation 2.1173 3.0322
Value 5.0408 5.4443

Lightness 4.6617 5.1113
A (green/magenta) 2.0801 2.5126

B (blue/yellow) 2.6658 4.4554

3.2.3. Blood-Vessel and Noise Removal

The flowchart of blood-vessel and noise removal is shown in Figure 12, while Figure 13
shows the result of each process. First, the Gaussian filter was used on the value channel
(Figure 13a) to remove some small amount of noise. The result after Gaussian filter is
Figure 13b. The size of the Gaussian kernel in this paper was 17× 17, and the deviations
in the horizontal and vertical directions were both 1. Then, blood vessels were removed
with morphological closing and opening (Figure 13c). The used structure element in the
morphological process is an ellipse with the size of 15× 15, and the iteration times were
3. Here, the product of size and iteration times should be larger than the thickness of
the blood vessels. As shown in Figure 14, some high-frequency noise is introduced after
morphological processing. Lastly, a low-pass filter was used to remove this high-frequency
noise (Figure 13d). The mask used in the low-pass filter was a 40× 40 square in the center.

Figure 12. Flowchart of blood-vessel and noise removal ((a–d) correspond to Figure 13).

(a) Value channel. (b) Gaussian filter. (c) Morphological. (d) Low pass filter.

Figure 13. The result of each process in blood-vessel and noise removal.
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(a) After Gaussian filter. (b) After morphological closing and
opening.

(c) After low-pass filter.

Figure 14. Frequency domain image after each process.

However, as shown in Figure 15, the process of blood-vessel and noise removal
generates some bright noise that connects with the OD area, resulting in a low contrast of
the OD boundary and undersegmentation. This problem is solved with a more suitable
initial value of the level set function. This bright noise is ignored under the constraint of
shape-based term in the HLSM.

(a) Before blood-vessel and noise removal. (b) After blood-vessel and noise removal.

Figure 15. After blood-vessel and noise removal, bright noise (parts indicated by blue arrows) is
generated, rendering the OD boundaries not obvious.

3.2.4. Initial-Value Detection

According to the shape-based energy functional (Equation (10)), the initial value
significantly influences the segmentation results in HLSM. Furthermore, a suitable initial
value can reduce the number of iterations and speed up the convergence of the contour.
In this paper, the adaptive threshold-based ellipse fitting is proposed to obtain the initial
value. Figure 16 shows the flowchart of initial value detection. Figure 17 shows the result
of each process.

Figure 16. The flowchart of initial-value detection ((a–f) correspond to the images in Figure 17).
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(a) Value channel. (b) After adaptive thresholding. (c) After morphological opening.

(d) Maximal 4-connected area. (e) Boundary. (f) Ellipse fitting.

Figure 17. The results of initial-value detection.

The value channel (Figure 17a) in the HSV color space is processed to obtain the initial
value. First, the binary image (Figure 17b) is received by using the adaptive threshold
(Equation (13)). I is the original image, and Ibinary is the obtained binary image. w, h are
the width and height of the batch, respectively. In this paper, wandh are the half width
and height of ROI, respectively. (x, y) is each point in the image, while (x

′
, y
′
) is each

point in the batch. C is the offset that was set as 0 in this paper. Then, the small links
between each connected area are disconnected with morphological opening (Figure 17c).
Next, the maximal 4-connected area is selected (Figure 17d), and its boundary is detected
(Figure 17e). Lastly, the initial value (Figure 17f) is generated with ellipse fitting from
this boundary. OD is oval-shaped in fundus images, and an ellipse-shaped initial value
can render the segmentation result roughly elliptical; therefore, the segmentation result
is not affected by bright noise. As shown in Figure 18, there are some PPA regions in
Figure 18a, the Figure 18b and Figure 18c are the binary image after adaptive thresholding
and the image of maximal 4-connected area, respectively. These PPA regions are removed
in initial-value detection, as the detected initial value excludes PPA regions. Under the
action of a shape-based term, segmentation results are not affected by PPA regions.

Ibinary(x, y) =

 1, if
∑

x+b w
2 c

x′=x−b w
2 c

∑
y+b h

2 c

y′=y−b h
2 c

I(x
′
,y
′
)

w×h − C ≤ I(x, y)
0, else

(13)
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(a) Fundus image. (b) Adaptive thresholding. (c) Maximum area.

Figure 18. Adaptive thresholding can ignore some PPAs (green contour: ground truth, blue curves
and arrows: PPA area. In (b,c), some PPA regions are ignored).

4. Experiment

The effectiveness of the proposed multiple preprocessing HLSM was verified in two
datasets: DRSHTI-GS and Tianjin Medical University Eye Hospital (TMUEH). Furthermore,
the segmentation results were evaluated with two different evaluation methods, namely,
intersection over union (IoU) and four-side evaluation (FSE), and were compared with
other approaches.

4.1. Data Sets

There are two types of widely used fundus images: posterior and wide-angle fundus
images. A posterior fundus image can clearly show the fundus because it is generated by
a white light source [51]. However, it can only display the fundus in a narrow FOV [52].
Wide-angle fundus images can demonstrate the fundus in a wide FOV, but their quality is
lower than that of posterior fundus images because wide-angle fundus images are only
generated by red and green light sources. Since posterior fundus images have a history of
more than 150 years [53], there are many public posterior-fundus-image datasets, such as
MESSIDOR [54], ORIGA-light [11], DRIONS-DB [55], and DRISHTI-GS [13]. Because of the
high resolution and reliable ground truth (GT), DRISHTI-GS was applied in this paper.

DRISHTI-GS [13]: a widely used public dataset in OD segmentation that contains
101 posterior fundus images (Figure 19). Each fundus image is centered on the OD, and the
FOV is 30◦. The resolution ranges from 2047× 1745 to 2468× 1762. The GT for OD and OC
boundaries was marked by four clinicians with 3, 5, 9, and 20 years of clinical experience.

Figure 19. An example of the DRSHTI-GS dataset. (left to right) Original fundus image, GT soft
map, and the GT used in this paper (In a soft map, the pixel value of each annotation is 0.25. The part
with a pixel value greater than or equal to 0.75 was used as the GT).

Tianjin Medical University Eye Hospital (TMUEH): currently, there is no public
wide-angle fundus image dataset, so some fundus images were required from TMUEH. It
is a non-public dataset. It contains 37 wide-angle fundus images (Figure 20). Each fundus
image is centered on the fovea, and the FOV is 200◦. The resolution is 3900× 3072. The OD
GT was marked by a clinician with 17 years of clinical experience.
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Figure 20. An example of the TMUEH dataset: (left to right) original fundus image and the GT of the
OD boundary.

4.2. Evaluation Criteria

This paper both subjectively and objectively evaluates the segmentation results. The
subjective evaluation was FSE and was conducted by clinicians to effectively evaluate
whether the segmentation results were clinically meaningful. The value of IoU was used
for the objective evaluation, which is expressed by Equation (14). arearesult and areaGT are
the area of segmentation result and the GT, respectively.

IoU =
arearesult ∩ areaGT
arearesult ∪ areaGT

(14)

IoU represents the overlapping ratio between the segmentation result and GT. A
higher IoU value means a better segmentation result. However, there is a problem in
objective evaluation methods such as IoU. When the surroundings of the OD are under- or
oversegmented, as shown in Figure 21, the Figure 21a is an example of overall oversegmen-
tation, the Figure 21b is an example of partial oversegmentation, the IoU value is higher in
Figure 21a, but the segmentation result is too large. This can be regarded as OD boundaries
not being found at all. Furthermore, this result greatly impacts subsequent diagnosis, such
as glaucoma misdiagnosis through the area ratio of OD to OC. Due to the above problem
in IoU, the following subjective evaluation method was designed.

(a) Overall oversegmentation (b) Partial oversegmentation.

Figure 21. Limitations of IoU evaluation methods, (green contour: GT, red contour: hypothetical
segmentation results).

First, subjective evaluation criteria were established; then, the clinicians scored each
OD segmentation result according to the criteria. As shown in Figure 22, the OD is divided
into four parts: superior, nasal, inferior, and temporal. Each part is 90◦. Depending on the
opinion of clinicians, one point is given if each part was segmented accurately enough. The
specific evaluation criteria are shown in Table 2. Since the evaluation method divided OD
into four parts for evaluation, it is called the FSE.
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Figure 22. The four parts of OD.

Table 2. The evaluation criteria of FSE.

Score Criteria

0 There are obvious errors in the boundaries of the four sides.
1 There are errors in the boundaries of four sides, but better than 0.
2 Only one side is accurate enough *

3 Two sides are accurate enough.
4 Three sides are accurate enough.
5 All sides are accurate enough.

* Accurate enough: according to the subjective evaluation of clinician, it would not affect the subsequent diagnosis.

The FSE proposed in this paper evaluates the OD segmentation results from another
perspective. For example, for the two segmentation results of the same image in Figure 21,
In Figure 21a, better scores could be obtained regardless of IoU, dice value [36], or mean
square error [56], while only 0 or 1 could be obtained in FSE. In Figure 21b, the score was
lower when using IoU, but higher scores could be obtained when using FSE. In other words,
objective evaluation methods such as IoU focus more on the whole OD, while the FSE
proposed in this paper focuses more on each part of the OD.

4.3. Parameters

The parameters of the proposed HLSM are shown in Table 3. The main parameters
are the weights of each energy functional term. The average radius of OD is used in ROI
detection, which is used to determine the size of an ROI image.

Table 3. Parameters used in multiple preprocessing HLSM.

Parameters Value

The average radius of OD

In posterior fundus images, it is set as the 1
3 of

the radius of the visible circular area. In
wide-angle fundus images, it is set as the 1

8 of
the radius of the visible circular area.

µ 0.1
α 3.0
β 0.2

λin 4.3
λout 2.0

λshape 1.1
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4.4. Experimental Results
4.4.1. Segmentation Results

The segmentation results of posterior and wide-angle fundus image are shown in
Figures 23 and 24, respectively. The evaluation results with IoU are shown in Table 4, and
the results evaluated by FSE are displayed in Table 5. The maximal, minimal, average,
variance, and distribution of IoU are illustrated in Table 4, and the average and distribution
of FSE are illustrated in Table 5.

(a) Good cases.

(b) Cases with bright noise.

(c) Cases with PPA regions.

Figure 23. Segmentation result examples in the DRISHTI-GS dataset (green contour: GT, blue contour:
segmentation results).
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(a) Good cases.

(b) Cases with bright noise.

(c) Cases with PPA regions.

Figure 24. Segmentation result examples in TMUEH dataset (green contour: GT, blue contour:
segmentation results)

Table 4. Evaluation results with IoU.

Dataset DRISHTI-GS TMUEH

Maximal IoU 0.9767 0.9300
Minimal IoU 0.5933 0.5205
Average IoU 0.9275 0.8179

Variance in IoU 0.0025 0.0104
0.9 ≤ IoU 88/101 cases 8/37 cases

0.8 ≤ IoU < 0.9 11/101 cases 20/37 cases
IoU < 0.8 2/101 cases 9/37 cases
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Table 5. Evaluation results with FSE.

Dataset DRISHTI-GS TMUEH

Average FSE 4.6436 3.5946
FSE = 5 83/101 cases 12/37 cases
FSE = 4 8/101 cases 10/37 cases
FSE = 3 5/101 cases 7 /37 cases
FSE = 2 2/101 cases 5/37 cases
FSE = 1 3/101 cases 2/37 cases
FSE = 0 0/101 cases 1 case/37 cases

As shown in Table 6, the results of IoU evaluation in the DRISHTI-GS dataset were
compared with those in other algorithms. In [57–59], the U-Net architecture was used to
segment OD. The authors in [60] used a boundary and entropy-driven adversarial learning-
based deeplabv3+ (BEAL-Deeplabv4+) architecture to segment the OD. In [61], entropy
information was also used; the architecture was an entropy sampling- and ensemble
learning-based CNN (EE-CNN). In [62], many common non-deep-learning methods were
reproduced to segment the OD. A method called level set adaptively regularized kernel-
based intuitive fuzzy C means (LARKIFCM) was also proposed to segment OD.

Table 6. Comparison of results in the DRISHTI-GS dataset with those in other papers with average IoU.

Approaches Average IoU

U-Net [57] 0.8900
BEAL-Deeplabv4+ [60] 0.8620

LARKIFCM [62] 0.9100
U-Net [58] 0.9187

EE-CNN [61] 0.9140
U-Net [59] 0.9062
Proposed 0.9275

In order to compare the OD segmentation results in the TMUEH dataset and the
results with FSE evaluation method, two algorithms from other papers were reproduced:
one using the active contour-based method [31], and the other using the threshold-based
method [18]. The proposed ROI detection method was used when reproducing these two
methods. The segmentation results evaluated with IoU are displayed in Tables 7 and 8, and
the results evaluated with FSE are shown in Tables 9 and 10.

Table 7. Comparison of results in the DRISHTI-GS dataset with reproduced algorithms with IoU.

Dataset Active
Contour-Based [31]

Threshold-
Based [18] Proposed

Maximal IoU 0.9695 0.9720 0.9767
Minimal IoU 0 0 0.5933
Average IoU 0.8757 0.8760 0.9275

Variance in IoU 0.0149 0.0255 0.0025
0.9 ≤ IoU 58/101 cases 74 /101 cases 88/101 cases

0.8 ≤ IoU< 0.9 29 /101 cases 17/101 cases 11/101 cases
IoU< 0.8 14/101 cases 10/101 cases 2/101 cases



Sensors 2022, 22, 6899 20 of 25

Table 8. Comparison of results in the TMUEH dataset with reproduced algorithms with IoU.

Dataset Active
Contour-Based [31]

Threshold-
Based [18] Proposed

Maximal IoU 0.9425 0.9419 0.9300
Minimal IoU 0.1711 0.4671 0.5205
Average IoU 0.7321 0.7614 0.8179

Variance in IoU 0.0330 0.0141 0.0104
0.9 ≤ IoU 3/37 cases 4 /37 cases 8/37 cases

0.8 ≤ IoU< 0.9 16/37 cases 15/37 cases 20/37 cases
IoU< 0.8 18/37 cases 18/37 cases 9/37 cases

Table 9. Comparison of the results in the DRISHTI-GS dataset with reproduced algorithms with FSE.

Method Active
Contour-Based [31]

Threshold-
Based [18] Proposed

Average FSE 4.3069 4.3762 4.6436
FSE = 5 60/101 cases 74/101 cases 83/101 cases
FSE = 4 19/101 cases 14 /101 cases 8/101 cases
FSE = 3 17/101 cases 3/101 cases 5/101 cases
FSE = 2 4/101 cases 3/101 cases 2/101 cases
FSE = 1 0/101 cases 1 case/101 cases 3/101 cases
FSE = 0 1 case/101 cases 6/101 cases 0/101 cases

Table 10. Comparison of the results in the TMUEH dataset with the reproduced algorithms by FSE.

Method Active
Contour-Based [31]

Threshold-
Based [18] Proposed

Average FSE 3.4595 3.5135 3.5946
FSE = 5 12/37 cases 14/37 cases 12/37 cases
FSE = 4 11/37 cases 6 /37 cases 10/37 cases
FSE = 3 3/37 cases 7/37 cases 7/37 cases
FSE = 2 7/37 cases 7/37 cases 5/37 cases
FSE = 1 1 case/37 cases 1 case/37 cases 2/37 cases
FSE = 0 3/37 cases 2/37 cases 1 case /37 cases

4.4.2. Discussion

In the DRISHTI-GS and TMUEH datasets, the average IoU achieved 0.9257 and 0.8179,
and the average FSE achieved 4.6436 and 3.5946, respectively. In the DRISHTI-GS dataset,
99 in 101 cases (98%) had an IoU value of more than 0.8, and 83 in 101 cases (82%) had
5 points with the FSE evaluation method. In the TMUEH dataset, 28 in 37 cases (76%) had
an IoU value of more than 0.8, and 29 in 37 cases (78%) had 3 or more points with the FSE
evaluation method.

As shown in Figures 23 and 24, there was no depression or there was only a lit-
tle depression in the blood-vessel area. This proves that the morphological-processing-
based blood-vessel removal and frequency-domain-based noise removal were effective.
In Figures 23b and 24b, there was bright noise surrounding the OD in these cases due to
the constraint of the shape-based term on the contour evolution. The HLSM avoided these
effects and achieved outstanding segmentation results. In Figures 23c and 24c, the PPA
regions were also ignored in these cases. This demonstrates that the adaptive-thresholding-
based ellipse fitting was able to detect a more suitable initial value. Furthermore, under the
constraint of the shape-based term, the effect of the PPA regions was avoided. These seg-
mentation results prove that the problems of occlusion by blood vessels, and the effects by
bright noise and PPA regions were solved with the proposed multiple preprocessing HLSM.

As shown in Table 6, the proposed multiple preprocessing HLSM achieved better
accuracy than that of other recent algorithms. As shown in Tables 7 and 8, the proposed
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model achieved a higher average IoU and better distribution than those of the two re-
produced algorithms in the TMUEH dataset. Among these proposed algorithms, the
segmentation results were affected by blood vessels in [58,59,61,62], while the proposed
approach avoided this effect with a morphological process. A postprocessing convex hull
was utilized in [61]; thus, it was also affected by dark noise. The effect of PPA also existed
in [59]. The segmentation results in [60] were mainly affected by bright noise. However,
the proposed approach was able to avoid the effect of PPA and bright noise with a suitable
initial value and the constraint of the shape model. Due to the low contrast and effect of
bright noise, both [31] and [18] suffered from segmentation failures, while the proposed
model was based on the area and achieved better performance in low-contrast cases. In
addition, the displayed segmentation results in [57] were not enough; the reason why the
segmentation results were affected is not clear. As shown in Table 9, in the DRISHTI-GS
dataset, the proposed algorithm also achieved the best average FSE, with 5 points being the
most and 0 points being the least. As shown in Table 10, in the TMUEH dataset with the
best average FSE, the most cases with 3 or more points and the least cases with 0 points
were obtained.

As shown in Table 4, the segmentation results in the DRISHTI-GS dataset were sig-
nificantly more accurate than those in the TMUEH dataset. There are two main reasons
for this:

1. Different light sources were used when posterior and wide-angle fundus images are
taken. Posterior fundus images use white light sources, while wide-angle fundus
images utilize red and green light sources. The proposed method utilizes the value
channel in the HSV color space to segment the OD. The value channel is the max-
imal value of the red, green, and blue of these three channels. However, there is
no blue channel information in wide-angle fundus images, which may reduce the
segmentation accuracy.

2. The resolution of the ROI on posterior fundus images is about 600× 600, while the
resolution of the ROI on wide-angle fundus images is about 200 × 200. The low
resolution of wide-angle fundus images may also be one of the reasons for the low
segmentation accuracy.

However, as shown in Figure 25, there are still some problems that cannot be solved
with multiple preprocessing HLSM:

1. As shown in Figure 25a, the existence of too-strong blood vessels causes oversegmen-
tation. Because the blood vessels are too thick or multiple blood vessels are entangling,
there are still dark shadows after noise removal. The pixel values covered by blood
vessels were lower than those in other areas, resulting in undersegmentation.

2. As shown in Figure 25b, if there is a large area of bright noise around the OD, the OD
is also undersegmented. This situation is predictable, since the proposed method is an
area-based level set model, and the initial value is based on thresholding.

3. As shown in Figure 25c, the brightness of the ring area (the area between the OD and
OC boundaries) was too low, which caused a large error in the initial-value detection,
resulting in oversegmentation.

As shown in Figure 26, some segmentation results of representative cases were com-
pared: from a threshold-based method [18], an active contour-based method [31], and
the proposed approach. The proposed multiple preprocessing HLSM was proposed to
mainly solve the problems of OD segmentation being affected by PPA and bright noise.
The other approaches could not achieve ideal results. In addition, problems such as the low
brightness of the ring area and large bright noise also cannot be solved by other methods.
Therefore, the segmentation results demonstrate that the proposed approach improved the
accuracy of the OD segmentation results.
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(a) Blood vessel. (b) Bright noise. (c) Low ring area.

Figure 25. Unsolved problems in OD segmentation (green contour: GT, blue contour: segmenta-
tion results).

Figure 26. Comparison of some representative cases (green contour: GT, blue contour: segmenta-
tion results).

5. Conclusions

In this paper, the effectiveness of the proposed multiple preprocessing HLSM was
verified in both posterior and wide-angle fundus images. Furthermore, the segmentation
results were evaluated objectively with IoU and subjectively with FSE. The proposed
approach achieved the following results: average IoU of 0.9275 and average FSE of 4.6426
in the DRISHTI-GS posterior fundus image dataset, and average IoU of 0.8179 and average
FSE of 3.5946 in the TMUEH wide-angle fundus image dataset. The proposed multiple
preprocessing HLSM solves the effect of PPA regions and bright noise in OD segmentation.
This is the first time to segment OD from wide-angle fundus images. The FSE is proposed
to partially evaluate OD segmentation results and prove that OD segmentation results are
clinically meaningful.

In HLSM, the optimization of parameters is time-consuming, and even though the
quality of each image is different, their parameters are same. Therefore, in the future,
an automatic parameter optimization method could be proposed, and each image could
automatically generate the most suitable parameters according to their quality.
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Abbreviations

The following abbreviations are used in this manuscript:
OD Optic disc
OC Optic cup
CNR Contrast-to-noise ratio
IoU Intersection over union
FSE Four-side evaluation
TMUEH Tianjin Medical University Eye Hospital
DR Diabetic retinopathy
FOV Field of view
PPA Parapapillary atrophy
ROI Region of interest
GT Ground truth
HLSM Hybrid level set model
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