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Abstract: In the edge intelligence environment, multiple sensing devices perceive and recognize
the current scene in real time to provide specific user services. However, the generalizability of
the fixed recognition model will gradually weaken due to the time-varying perception scene. To
ensure the stability of the perception and recognition service, each edge model/agent needs to
continuously learn from the new perception data unassisted to adapt to the perception environment
changes and jointly build the online evolutive learning (OEL) system. The generalization degradation
problem can be addressed by deploying the semi-supervised learning (SSL) method on multi-view
agents and continuously tuning each discriminative model by collaborative perception. This paper
proposes a multi-view agent’s collaborative perception (MACP) semi-supervised online evolutive
learning method. First, each view model will be initialized based on self-supervised learning
methods, and each initialized model can learn differentiated feature-extraction patterns with certain
discriminative independence. Then, through the discriminative information fusion of multi-view
model predictions on the unlabeled perceptual data, reliable pseudo-labels are obtained for the
consistency regularization process of SSL. Moreover, we introduce additional critical parameter
constraints to continuously improve the discriminative independence of each view model during
training. We compare our method with multiple representative multi-model and single-model SSL
methods on various benchmarks. Experimental results show the superiority of the MACP in terms of
convergence efficiency and performance. Meanwhile, we construct an ideal multi-view experiment
to demonstrate the application potential of MACP in practical perception scenarios.

Keywords: semi-supervised learning; online evolutive learning; collaborative perception; discrimina-
tive information fusion

1. Introduction

In the edge intelligence [1–3] environment, many sensing devices recognize the lo-
cal scene to provide corresponding smart services in real-time. However, most current
intelligent sensing applications still rely on a fixed recognition model or a unified cloud
model [4]. Since the perception scene changes over time, the feature distribution of the
perception data will continue changing, and the generalizability of the fixed recognition
model will be highly affected. The degradation of model generalizability will significantly
impact the service quality of edge agents/models. Relying on regular manual annotations
for model tuning will incur high ongoing costs and increase the deployment difficulty.

To reduce manual annotation and continuously improve the adaptability of each edge
model to perception data changing, it is required that each edge model/agent is effectively
able to use the newly added unlabeled perceptual data to conduct online training and
model tuning unassisted [5], forming an online evolutive learning [6,7] (OEL) system. The
semi-supervised learning [8,9] (SSL) method can utilize the knowledge learned from a small
amount of labeled data and dig the adequate discriminative information from massive
unlabeled amounts of data to achieve continuous model optimization, which effectively
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fits the online training strategy. At the same time, due to the characteristics of multi-view
edge sensing devices, multiple sensing models can obtain perception data from different
viewpoints with the same semantic target, and these perception data have pieces of strong
complementary information. Through the collaborative discrimination and information
fusion of multi-model perception data from different views, the discriminative reliability of
edge models for unlabeled data will be greatly improved, and the confirmation bias [10]
problem in the SSL process will be significantly reduced. Such an SSL-based OEL method
with multi-model collaborative perception and continuous self-training will enable each
edge sensing model to enhance its adaptability to data distribution changes, continuously
improve model generalization without relying on manual annotations, and reduce the
deployment complexity of the perception tasks.

SSL has developed rapidly [11,12] in recent years and has gradually become the
primary method for solving label-scarcity problems and adapting data distribution for
practical applications. However, multi-model and multi-view SSL methods [13] are still
relatively rare. The existing multi-view SSL methods [14] are generally only for fixed
small multi-view datasets, and the multi-view data are typically obtained through different
feature extractors. Such multi-view data present challenges to guaranteeing the view
independence between features, which makes these methods unable to be generalized
to practical recognition tasks. In terms of multi-model SSL, the method of constructing
multiple views from single-view data is relatively simple, and there are rare methods for
multi-view agents to perceive scenes and solve practical OEL tasks.

Maintaining the discriminative independence between multi-view models and im-
proving the model’s collaborative discrimination reliability is the key to semi-supervised
online evolutive learning systems. In this paper, we propose a multi-view agent’s coopera-
tive perception (MACP) semi-supervised online evolutive learning method that can solve
the OEL problem well in the multi-view perception environment. Specifically, we first use
different self-supervised [15] model-initialization (SMI) methods for different edge models,
so that they can learn differentiated feature-extraction patterns from various self-supervised
tasks. Combined with different data-normalization methods, SMI ensures the discrimi-
native independence of each model when facing view-specific data. We then propose a
discriminative information fusion (DIF) algorithm that votes and integrates the multi-view
model’s predicted distributions. DIF obtains a more reliable discriminant representation
from unlabeled data for model training based on the discriminant criteria differences be-
tween multi-view models. To maintain the differentiation of the discriminant standards
during the training process of each model, we further propose a parameter constraint (PC)
method between models. By orthogonalizing some critical parameters of different models,
the discriminant standards of each model are effectively prevented from converging during
the training process. The proposed MACP achieves better convergence efficiency and final
performance than other representative single-model SSL and multi-model SSL methods on
multiple datasets. At the same time, we find that the pseudo-labels obtained by multi-view
models based on DIF maintain a high accuracy rate during the training process, which
further proves the reliability of our method. Moreover, since our method mainly constructs
multi-view data from a single-view dataset, to explore the performance of MACP under an
ideal multi-view sensing environment, we configure a collaborative perception experiment
where the perception data streams are different data with the same categories. In an ideal
multi-view perception environment, MACP achieves a performance that surpasses fully
supervised learning methods under the same configuration, demonstrating our method’s
application potential in practical multi-agent collaborative sensing.

The main contributions of this paper can be summarized as:

• We analyze the existing problems of multi-agent collaboration and data-distribution
adaptation in the multi-view sensing environment. We propose the multi-view agent’s
collaborative perception (MACP) semi-supervised online evolutive learning method.
MACP can reduce the task complexity of multi-model SSL when processing multi-view
perception data and realize real-time tuning of the local perception system.
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• In MACP, we enable each model to learn a differentiated feature-extraction mode
through a self-supervised model-initialization method, which enhances the discrimina-
tive independence of each model. By applying the discriminative information-fusion
approach to the predictions of each view model, the reliability of the discriminant
results is improved, and continuous consistency regularization training is realized.
Through further regularization constraints on the parameters of each model in the
training process, the model can continue to maintain a relatively independent discrim-
inative ability, and the stability of the entire OEL system is improved.

• The proposed MACP achieves a better performance than the comparison methods on
multiple datasets. In an ideal multi-view agent collaborative perception experiment,
MACP exceeds the performance of the fully supervised learning method, which proves
the applicability of the proposed method in practical multi-view sensing scenarios.

2. Related Work

Consistency-based [16,17], semi-supervised learning methods have achieved great
success in recent years. The main theoretical basis is that the model should maintain
consistent predictions for different input variants with the same semantics. Based on such
a natural constraint, using data-augmentation methods to transform the input features
and train the model to mine the consistency information of different input variants can
effectively improve the generalization of the SSL model. MixMatch [18] first performs
multiple augmentation operations on the same unlabeled input, then uses sharpening [19]
on the average of all augmented data predictions, and finally guides the SSL model training
through the prediction targets generated by mixing up [20] data and labels. FixMatch [21]
simplifies the complex process of the previous work and directly inputs weakly augmented
and strongly augmented versions of the same unlabeled data into model training. Better
performance is achieved by converting the higher confidence part of the weakly augmented
predictions into pseudo-labels to guide the model training on the strongly augmented data.
AWLDA [22] proposes a strategy to count the class-wise learning progress in the training
process and improves the contribution of hard-to-learn classes to training, which reduces
the class imbalance problem in the SSL process. Meanwhile, this method makes better
use of the consistent relationship between low-confidence predictions and significantly
improves the convergence speed of SSL. Since this paper mainly studies the application of
multi-view and multi-model semi-supervised learning methods in OEL scenarios, we will
focus on analyzing research related to these goals.

For multi-view, semi-supervised learning methods, Co-training [23] first trains two
different classifiers with labeled data of different views, and then exchanges the high-
confidence predicted results for unlabeled data between each classifier for SSL training,
realizing the discriminative information-sharing of each view model. DCT [24] proposes
a differential constraint method based on adversarial samples for the co-training models,
which makes the discriminative criteria of each model’s approach to the adversarial samples
of each other while providing mutual annotations. This method can continuously improve
the discriminative difference of different view models but adds certain extra computation.
Tri-training [25] first proposes a multi-view training method that does not rely on view
differences. It uses bootstrap to sample three different subsets of data from the labeled
dataset to train three different initial classifiers and then performs a voting process on the
prediction results of the unlabeled data. The predictions agreed by the majority classifier
will be used as the training target of the minority classifier. Tri-net [26] introduces the
output-smearing [27] process for the three models with shared parameters to maximize
the prediction difference of each model and then uses the voting results of the two models’
predictions as the training target for the training of another model. This approach requires
the periodic fine-tuning of the discriminative variability of the models during training, thus
potentially reducing the coherence of implementation. Ref. [28] proposes a multi-view,
semi-supervised feature-representation learning method that utilizes orthogonalization
and adversarial constraints to improve the consistency between models and the ability to
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extract complementary information. Other graph-based multi-view SSL methods [29,30]
achieve better results on various specific multi-view databases by learning the relationship
between feature representations from different views.

For multi-model, semi-supervised learning, such methods mainly utilize knowledge
transfer between models in different learning states to achieve common performance im-
provements. The Π-model [31] achieves steady performance gains by using two models to
predict different variants of the same unlabeled data and attaching consistency constraints
to the predicted distributions. Meanteacher [32] adopts the mechanism of a teacher–student
model for comparative learning and uses the exponential moving average of the updated
parameters of the student model in the past training process as the teacher model. During
training, the similarity between the discriminative results of the teacher model and the
student model on unlabeled data is continuously strengthened. Dualstudent [33] believes
that the teacher model in the aforementioned work is the historical average of the param-
eters of the student model, so there may be a performance bottleneck when guiding the
training of the student model. It proposes a dual-student model structure, which further
improves the model performance by evaluating the uncertainty of the prediction results of
the two models and adding mutual stability constraints to the high-reliability predictions.
MPL [34] proposed a teacher–student model structure based on the idea of meta-learning.
The prediction of the teacher model on unlabeled data is used as the training target of
the student model, and the classification loss of the student model on the labeled data
is used as the training feedback for the teacher model. Such an information-interaction
method enables the teacher model to optimize the pseudo-label discrimination criteria
continuously.

The main work of existing multi-view or multi-model SSL algorithms [35] is to improve
the discriminative difference between models and then mine complementary information
between models to enhance the reliability of unlabeled data prediction. However, these
methods generally have problems, such as the complicated design of differential constraint
strategy and the insufficient universality of the method. For multi-model collaboration in
OEL scenarios, more comprehensive research is needed.

3. Proposed Methods

In this section, we first provide the problem definition and state the perception en-
vironment and main goals of a multi-view agent learning system. Then, the realization
method of each part-module of MACP is introduced. We represent view-specific agents
with multiple different SSL models and utilize a continuous unlabeled data stream to
simulate a multi-agent sensing environment.

3.1. Problem Definition

As shown in Figure 1, in a multi-agent perception environment, we can letM1,M2, . . . ,Mv
be a set of multi-view edge models, where v represents different views. The models from
different viewpoints will perceive the same scene in real-time.

For a semi-supervised multi-view classification task, let X v = (xv
i , yi), i ∈ (1, . . . , B)

represent a batch of B-labeled training data xv
i of the SSL model with view v, where yi

is the unified label of all view data. Let U v = uv
i , i ∈ (1, . . . , µB) represent a batch of µB

unlabeled perception data uv
i of the SSL model with view v, where µ is a hyperparameter

that controls the proportion of labeled and unlabeled data. Note that, due to the fixed
view of the training dataset, the X v and U v of models with different views are generated
by random image-augmentation methods Aw(X ) and Aw(U ), respectively, where Aw(·)
represents applying a random weak augmentation transformation to the input. The total
amount of labeled data X v for each view model will be much less than the unlabeled
data U v. In each training iteration, the modelsMv from different views will use real-time
generated data streams X v and U v for SSL training, and the high-confidence pseudo-label
of U v will be determined by the collaborative discrimination of each view model.
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Let PMv(y|x) represent the prediction result of the modelMv for the input data x.
The main goal of the multi-view agent’s collaborative perception (MACP) method is to fuse
the discriminative results of each view modelMv on the unlabeled perception data U v to
obtain more reliable pseudo-labels for model training on their respective view data. As a
result, the generalizability of each view model and its adaptability to the data distribution
changes will continue to improve. Maintaining the discriminative independence of each
view model during the training process will be the key to improving the reliability of the
collaborative discriminant results.

Figure 1. Diagram of multi-view agents collaborative perception and discrimination process.

3.2. Overall Framework

The main task of MACP is to design an effective collaborative discriminant process,
which uses the multi-view model to predict perceptual data and achieve high-reliability
pseudo-label extraction from the view-specific predictions. Each view model uses the
collaborative discrimination results for continuous perception and training, so that the
overall learning system can continuously adapt to changes in data distribution.

The overall framework of the proposed method is shown in Figure 2. Note that, in
addition to a small amount of labeled data, a large amount of unlabeled perceptual data
will continue to feed into different view models, constituting a continuous online learning
process. MACP mainly includes three steps. First, the models from different views are
initialized based on different self-supervised learning methods to ensure that each model
has a differentiated feature-extraction pattern. Then, each model performs discriminative
information-fusion processing on the predictions of view-specific perceptual data to obtain
high-confidence pseudo-labels, which are used in the consistency-regularization training
process of SSL. Finally, additional parameter constraints are introduced into the model-
training process to maintain the discriminative independence of each model during the
training, thereby preserving the stable operation of the entire learning system.
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Figure 2. The overall framework of MACP.

3.3. Self-Supervised Model Initialization

Since models from different views will predict different perceptual data with the same
semantics, each model’s discriminative independence will significantly impact the final
discriminative information-fusion results. The more independent discriminant ability will
make each model make mistakes in different places, so the obtained fusion discriminant
results will have higher reliability. We use various initialization methods for models from
different views to obtain each model’s view-specific feature-extraction pattern in the model
initialization stage.

Specifically, taking the three-view perception models set as an example, for the first-
view model, we only perform default parameter initialization processing for it. For the
models from the other two views, we pre-train them on the self-supervised learning-
based jigsaw puzzle solving [36,37] task and the generative adversarial network [38] task,
respectively, to increase the differences in the feature-extraction patterns among the models.

For the self-supervised jigsaw-puzzle-solving task, let U v be the self-supervised train-
ing data. For each uv

i in U v, we slice it into N image patches of equal size and assign labels
yn to each patch in order. Then, we randomly shuffle the image patches and stitch them
into a new image ûv

i . Through an N-way classifier, the modelMv will predict the position
of each image patch in the spliced image, and the label yn will be used to guide the model
to generate the correct image patch order prediction for the scrambled image. The loss
function of the jigsaw puzzle solving task is as follows:

Ljigsaw = − 1
µBN

µB

∑
b=1

N

∑
n=1

ynlog(PMv(y|û
v
b)

n), (1)

where PMv(y|ûv
b)

n represents the category prediction of modelMv for the n-th image block
in ûv

b , and Ljigsaw is the loss function of N-way categorical cross-entropy for all images
in the current batch B. By solving the jigsaw puzzle task, the view-specific model Mv
can learn a good representation of the spatial positional relationship of the image, thereby
focusing on extracting differentiated features that are different from other view models.

For the self-supervised generative adversarial network (GAN) task, while maintaining
the basic GAN composed of the generator and the discriminator, we train the generator
to continuously learn the ability to generate images from the current database. At the
same time, we modify the discriminator so that it is not only responsible for predicting
the authenticity of the generated images, but also has image-classification capabilities.
Specifically, for the original classification modelMv, we keep its basic classifier unchanged
and perform additional activation processing on the output logits zc of the model:
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qbinary(zc) =
∑C

c=0 exp(zc)

∑C
c=0 exp(zc) + 1

, (2)

where C is the number of categories of the original image classifier, and, through exponential
normalization, the multi-dimensional output zc of the model for a certain input is converted
into a one-dimensional binary prediction qbinary(zc), which is used for the training of the
discriminator.

We know that in Equation (2), when the value of zc is relatively large, qbinary(zc) will
be close to 1, and when the value of zc is relatively small, qbinary(zc) will be close to 0. This
additional activation can train the discriminator to predict larger logits for real images
and smaller logits for generated fake images, enabling the co-training of the discriminator
for both multi-classification and generative adversarial tasks. The loss function of the
self-supervised GAN task is as follows:

Lgan = − 1
|X | ∑

x∈X
ylog(PMv(y|x)) +

1
|D| ∑

x∈D
BCE(yb, qbinary(PMv(y|x))). (3)

In Equation (3), the first term is the categorical cross-entropy loss for the labeled
dataset X , and the second term is the discriminator’s binary cross-entropy loss for the
real images and generated images in the entire dataset D. After the training of the self-
supervised GAN, the modelMv will focus on mining the essential feature representation
related to image generation, so as to gain a differentiated feature-extraction ability.

Through the designed self-supervised learning task, the view-specific initialization
of each model is realized, and models from different views will use different feature-
extraction patterns to predict the perceptual data. This paper takes the three-view model as
an example to illustrate the self-supervised model-initialization (SMI) process. The SMI of
more views can be implemented by using increasingly different self-supervised tasks such
as image colorization [39], image super-resolution [40], contrastive learning [41], etc.

3.4. Discriminative Information-Fusion

The discriminative results of relatively independent multi-view perceptual data con-
tain the consensus and complementary information of the predicted target. The effective
fusion of these predicted distributions can obtain a more accurate class representation for
the consistency regularization of SSL training.

The discriminative information-fusion process of the multi-view agent is shown in
Figure 3. First, for each view v, we perform high-confidence filtering on the predictions
of modelMv on the current batch of perceptual data U v = uv

i , i ∈ (1, . . . , µB) to obtain
predicted class labels and their corresponding indices for samples that satisfy the threshold
condition:

[Iv, Cv]v∈V =
µB

∑
i=1

1(max(PMv(y|u
v
i )) > τ) · (argmax(PMv(y|u

v
i ))), (4)

where 1(max(PMv(y|uv
i )) > τ) represents fetching the predicted class distributions greater

than the threshold τ from the predictions of U v, and argmax(PMv(y|uv
i )) means obtaining

the category label with the maximum probability in the corresponding prediction result.
The predicted class labels and indices of high confidence predictions in the current batch
are obtained through the above processing. Iv and Cv are two vectors that store the indices
and class labels of valid samples obtained from the perceptual data of the current view v,
and V is the total number of views.
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Figure 3. Multi-view agents discriminative information-fusion process.

Using Equation (4), we extract the indices of high-confidence samples and their corre-
sponding class labels [Iv, Cv]v∈V in the prediction results of each view model. These results
will be used for voting and aggregating to perform discriminative information fusion. The
voting and aggregating process can be expressed as:

[ Ĩv, C̃v]v∈V = [Iv, Cv] ∩ [I¬v, C¬v], v ∈ (1, . . . , V), (5)

[I, C] = [ Ĩv, C̃v] ∪ [ Ĩ¬v, C̃¬v], v ∈ V. (6)

In Equation (5), for the index- and class-label vectors [Iv, Cv] of each view model, we,
respectively, intersect them with the results of other view models to obtain the prediction
consensus. Where [I¬v, C¬v] represents the sample indices and class labels of other view
models, and [ Ĩv, C̃v]v∈V are each view model’s voted results. Then, according to Equa-
tion (6), we take the union of all the compatible parts of [ Ĩv, C̃v]v∈V to obtain the final
discriminative fusion result [I, C].

Then, the discriminative fusion results will be used by each view model for SSL
training. For the unlabeled data U v of each view, we first obtain the corresponding samples
according to the index I and perform strong data-augmentation processing on them:

Ũ v = As(uv
i∈I), (7)

where As(·) represents the random strong data-augmentation function, and uv
i∈I repre-

sents the samples extracted from U v according to the index I. At this time, the unlabeled
perception data of each view in the current batch that meet the conditions will be as-
signed a pseudo-label Ci from C, and the unlabeled data batch becomes Ũ v = (ũv

i , Ci), i ∈
(1, . . . , |C|).

Based on the discriminative information fusion (DIF) of the multi-view models, the
final SSL loss of each view model can be expressed as:

Lv
ssl =

1
B

B

∑
i=1

H(yi, PMv(y|x
v
i )) +

1
|C|

|C|

∑
i=1

H(Ci, PMv(y|ũ
v
i )), (8)

where H(y, x) represents the categorical cross-entropy loss, the first term of Equation (8)
is the supervised loss of the labeled data xv

i under the current batch, and the second term
is the unsupervised loss for the augmented unlabeled data ũv

i with the pseudo-label Ci
as the target. In each iteration of the different view models, reliable pseudo-labels are
obtained by collaborative DIF of perceptual data for their respective unsupervised loss
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calculations. Multi-view agents can fully use their different discriminant criteria to better
mine generalization information from multi-view perception data.

3.5. Parameter Constraint

Since models from different views will use the pseudo-labels provided by DIF to train
on their own perception data, as the model reaches higher iterations, the discrimination
independence provided by SMI will gradually weaken. Therefore, the discriminative
criteria of each view model may have the convergence risk in the later training stages. To
prevent the increase of confirmation bias during model training, we further introduce a
parameter-regularization constraint for different view models, making each model maintain
discriminative independence as much as possible during the training process.

Specifically, we sequentially perform orthogonalization constraints on the critical
parameters of each view model. During the training process, the parameters of the output
layer and the critical feature-extraction layer of each model are kept irrelevant, thereby
reducing the possibility of model-discriminating pattern convergence.

Let the critical parameters of the model Mv be Θv. The additional parameter-
constraint loss can be expressed as:

Lv
reg = |∑(Θv ·Θv−1)|v 6=1, (9)

where Θv−1 is the critical parameter of the previous view model, and the inner product
loss of the two sets of critical parameter vectors will ensure that the parameters of different
view models are orthogonalized. Through parameter constraints, the model of each view
will gradually increase the differentiated discriminative ability during the training process.

Combining the SSL loss and parameter constraint loss, the total loss function of each
view model in MACP is:

Lv = Lv
ssl + L

v
reg. (10)

4. Experiments

This section will first introduce the implementation details and hyperparameter con-
figuration of the proposed method and report the performance comparison and efficiency
analysis of MACP with other representative multi-model and single-model SSL algorithms.
Then, we configure an experiment in an ideal multi-view perception environment to illus-
trate the effectiveness of MACP in practical OEL applications. In the ablation study, the
effects of different modules of MACP on the training performance are analyzed, and the
variants in discriminative information-fusion methods are discussed.

4.1. Implementation Details

Since several representative SSL algorithms are configured in different experimental
environments, to ensure a fair comparison, we re-implement several methods used for
performance analysis in the same environmental configuration, while ensuring that the
training hyperparameters are as similar as possible. Our main programming environment
is the Keras deep learning library with Tensorflow as the backend.

Experiment Settings We configure two experiments to demonstrate the effectiveness
of the proposed method. When comparing with general multi-model or single-model SSL
methods, we train the model multiple times with different labeled-data splits and compare
the test-error rate with other methods. Since the existing multi-view datasets are generally
small and unrepresentative, in order to better reflect the performance of the proposed
method in a realistic perception environment, we then use the existing dataset to simulate
an ideal multi-view perception experiment. Specifically, we configure the perceptual
data stream composed of different data with the same category for each view model to
perform collaborative perceptual learning. The relatively independent perceptual data
environment we construct may bring more supervision information to each view model
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than SSL, so we compare the model’s performance with the fully-supervised learning
method in this experiment.

Datasets We configure multiple sets of experiments with different amounts of labeled
data on the CIFAR-10/100 [42] and SVHN [43] datasets, which are widely used for SSL
methods. Both CIFAR-10 and SVHN are 10-class datasets, where CIFAR-10 contains
50,000 training images and 10,000 test images with class balance, and SVHN contains
73,357 training images and 26,032 testing images with imbalanced classes. CIFAR-100
is a relatively complex 100-class dataset containing 50,000 training images and 10,000
testing images, with only 500 training images for each class. In each group of experimental
configurations, we extract a small amount of class-balanced data from the training set to
construct the labeled dataset and remove the labels of all training set data to form the
unlabeled dataset. Note that the unlabeled datasets of SVHN are imbalanced. The test set
of each dataset is used to evaluate the performance of different methods.

Data Normalization We employ different data-normalization techniques for models
from different views. The main methods include normalizing the pixels of each image to
conform to the standard normal distribution by calculating the channel-wise mean and
standard deviation of the training set images, normalizing the image pixel values to be
between 0 and 1, between −1 and 1, etc.

Data Augmentation We employ two different data-augmentation methods, weak
augmentation Aw(·) and strong augmentation As(·). Weak augmentation methods will
randomly flip and crop images to generate different views’ perceptual data. The strong
augmentation method adopts Randaugment [44], which will be used for consistency
regularization in SSL training on the collaborative discriminant results.

Base Model We use Wide-ResNet [45,46] as the base model, and, for simpler CIFAR-
10 and SVHN tasks, we use WRN-28-2. For the CIFAR-100 classification task with more
categories, we use the wider WRN-28-8. Models from different views will use different
parameter-initialization methods [47] to further increase the discriminant difference.

Optimizer Settings We adopt the unified SGD optimizer for all models, with mo-
mentum β = 0.9 and Nesterov, and use weight decay with the coefficient of 0.0005. We
uniformly set models to the initial learning rate η = 0.05 and use the cosine learning rate
decay [48] strategies.

We set a uniform number of iterations K = 218 for each experiment. For each exper-
imental configuration with different amounts of labeled data, we use different random
seeds to sample three sets of labeled data for model training to ensure the reliability of the
experimental results. The total number of different view models is V. All hyperparameters
used in the experiments are reported in Table 1.

Table 1. List of hyperparameters for all datasets.

Dataset CIFAR-10 SVHN CIFAR-100

τ 0.95
V [2, 3]
µ 4
B 64
K 218

η 0.05
β 0.9

Weight decay 0.0005

4.2. Main Results

We report the performance comparison of our method with the multi-model SSL meth-
ods Mean Teacher [32], Dual Student [33], Deep CT [24], Tri-net [25], and the representative
single-model SSL methods UPS [49], MixMatch [18], and FixMatch [21]. We configure
2-view and 3-view MACP experiments to compare the difference in the number of views;
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each experiment was run three times with a different labeled data split, and the mean and
standard deviation of the final test error rates are reported.

As Table 2 shows, as the past multi-model SSL methods only focus on the prediction
consistency between different models or have shortcomings in constructing differentiated
multi-view data, the final performance is weaker than other methods. The proposed
self-supervised model-initialization method can make models from different perspectives
have more independent feature-discrimination criteria, thus increasing the reliability of
the fused discriminant results. Some state-of-the-art single-model SSL methods strengthen
the consistency-regularization constraint, adopt more post-processing algorithms for the
predicted distribution of unlabeled data to obtain more reliable pseudo-labels, and achieve
better performance. However, these methods cannot directly realize multi-view model
interaction in the OEL environment. Under the same hyperparameter configuration, our
proposed MACP method outperforms other algorithms in both two-view and three-view
experiments. In the class-imbalanced SVHN experiment, MACP also achieved better
performance than other methods, indicating that the multi-view discriminative information
fusion performs a more reliable class judgment on unlabeled data. Moreover, in the
CIFAR-10-1000-label and CIFAR-100-4000-label experiments with relatively few labeled
data, MACP achieves 5.29% and 31.67% test error rates, respectively, which are significantly
better than other methods. These results show the superiority of MACP in the face of
perceptual environments where labeled data are lacking.

Table 2. Comparison of error rate (%) for CIFAR-10/100 and SVHN on three different labeled data
folds, the comparison methods are tested under the same codebase.

CIFAR-10 SVHN CIFAR-100

Method 1000 Labels 2000 Labels 4000 Labels 250 Labels 1000 Labels 4000 Labels 10,000 Labels

Mean Teacher 21.55 ± 1.48 15.73 ± 0.31 12.31 ± 0.28 4.35 ± 0.50 3.95 ± 0.19 - -
Dual Student 14.17 ± 0.38 10.72 ± 0.19 8.89 ± 0.09 4.24 ± 0.10 - - 33.08 ± 0.27
Deep CT - - 8.54 ± 0.12 - 3.38 ± 0.05 - 34.63 ± 0.14
Tri-net - - 8.30 ± 0.15 - 3.45 ± 0.10 - -

UPS 8.18 ± 0.15 - 6.39 ± 0.02 - - 40.77 ± 0.10 32.00 ± 0.49
MixMatch 7.72 ± 0.37 6.89 ± 0.39 5.21 ± 0.09 4.06 ± 0.18 3.49 ± 0.32 36.12 ± 0.62 29.12 ± 0.34
FixMatch 6.18 ± 0.56 5.92 ± 0.32 4.99 ± 0.11 3.83 ± 0.45 3.08 ± 0.63 33.78 ± 0.31 25.69 ± 0.61

MACP (2 views) 6.02 ± 0.39 5.69 ± 0.40 4.91 ± 0.08 3.57 ± 0.34 2.99 ± 0.26 33.52 ± 0.45 25.77 ± 0.83
MACP (3 views) 5.29 ± 0.37 5.12 ± 0.31 4.75 ± 0.20 3.32 ± 0.51 2.72 ± 0.15 31.67 ± 0.29 24.72 ± 0.11

We further analyze the training efficiency and stability of MACP, see Figure 4. As
Figure 4a shows, in the CIFAR-10-1000-labels experiment, the convergence efficiency and
test accuracy of MACP are significantly higher than MixMatch and FixMatch, thus achiev-
ing a better final performance. Since the methods used for comparison are single-model
SSL, to ensure the fairness of the comparison, we did not use the integrated prediction
results of multi-view MACP for the performance evaluation but reported the independent
evaluation results of each view model separately. The training curve of one view model in
MACP is displayed normally in Figure 4, and the training curves of the other view models
are represented by thin transparent curves. We also evaluate the performance of multi-view
discriminative information fusion during MACP training. We find that, in the later training
stage, MACP can obtain more than 90% unlabeled perception data in each batch for SSL
training, and the pseudo-label accuracy of these data is higher than 97.5%, which shows
that the DIF process of MACP generates more reliable pseudo-labels, thus achieving a
more stable learning performance. If we follow the ensemble learning strategy and fuse
the prediction results of different view models on the test set, the test accuracy will be
further improved. However, to ensure a fair comparison, we still use the results of the
single-view model to compare with existing methods. Furthermore, MACP’s performance
under different numbers of views is evaluated. As can be seen from Figure 4b, the 3-view
MACP can achieve higher convergence efficiency and test accuracy than the 2-view version
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during the whole training process. We find that, with the increase of views, due to the
addition of more independent discriminative information, the reliability of the DIF of the
models will be continuously improved, and the generalizability of models from different
views will be jointly enhanced.

(a) (b)

Figure 4. Performance comparison of MACP with different methods and different number of views
during training. (a) Performance comparison for MixMatch, FixMatch and MACP on CIFAR-10-1000-
label experiment; (b) Performance comparison for 2-view and 3-view MACP on CIFAR-10-4000-label
experiment.

4.3. Ideal Multi-View Perception Experiments

The MACP method assumes that each view model continuously obtains perception
data from different viewpoints. These view-specific perception data can be used for
model training through the DIF process. The multi-view perception data in real scenes
are naturally quite different. However, in the experiments above, we perform random
data-augmentation methods on the same data to generate simulated multi-perspective data,
which may still contain more related information, thus limiting the model’s performance.

More differentiated multi-view perception data will help each view model learn more
independent feature-extraction patterns. To strengthen the difference between perception
data from different views, we design a new sensing environment to test the online evolutive
learning of multi-view agents under ideal conditions. Specifically, for each iteration,
we assign a batch of different data with the same category to each view model. The
joint discrimination results of each view model on these perceptual data will be used for
SSL training.

In Table 3, we report the performance comparison of MACP and the fully-supervised
learning method with various configurations under the ideal perceptual environment. In a
more independent perception environment, since models from different views can provide
more differentiated discriminant information, the reliability of the final DIF result will be
significantly enhanced, providing more accurate classification supervision for each model.
At the same time, through the information exchange between multi-view models, each
model can obtain more generalized knowledge, which significantly reduces the model
variance and enables MACP to achieve a better performance than fully-supervised learning.
These results show that MACP has great application potential in practical multi-view
sensing environments, which can solve the labeled data scarcity problem for edge models
and enable each agent to adapt to the sensing-environment changes continuously.

In Figure 5a, we compare the training curves of MACP and the fully-supervised
method under the CIFAR-10 databset. It can be seen that MACP has a faster convergence
speed than fully-supervised learning, and the training fluctuation is smaller, which indicates
that the multi-view models’ collaborative perception makes the training process more stable.
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As shown in Figure 5b, the stability advantage of MACP is more pronounced in the more
complex CIFAR-100 experiments. In the early training stage of each view model, a small
number of discriminative fusion results can be extracted from the easy-to-judge perceptual
data. As the training progresses, the discriminative ability of each view model is gradually
enhanced, and more valuable information can be obtained from more perceptual data.
Such a step-by-step training process prevents the models from converging to local minima,
resulting in better performance.

Table 3. Comparison of test accuracy (%) between MACP and fully-supervised method in an ideal
multi-view perception environment.

CIFAR-10 SVHN CIFAR-100

Method 1000 Labels 4000 Labels 250 Labels 1000 Labels 10,000 Labels

Fully-supervised 95.98 97.72 82.82

MACP (2 views) 96.23 ± 0.12 96.45 ± 0.07 97.82 ± 0.31 98.16 ± 0.51 83.06 ± 0.18
MACP (3 views) 96.41 ± 0.21 96.75 ± 0.03 98.21 ± 0.17 98.38 ± 0.34 85.39 ± 0.11

(a) (b)

Figure 5. Performance comparison between MACP and fully-supervised method. (a) Performance
comparison of 3-view MACP and fully-supervised method on CIFAR-10 experiment; (b) Performance
comparison of 3-view MACP and fully-supervised method on CIFAR-100 experiment.

4.4. Ablation Study

Since the proposed MACP method consists of three modules, self-supervised model
initialization (SMI), discriminative information fusion (DIF), and parameter constraints
(PC), we will further analyze the impact of different module combinations on model
performance.

We report the performance of 3-view MACP in CIFAR-10-4000-labels, SVHN-1000-
labels, and CIFAR-100-10,000-label experiments under various module combinations. The
DIF method is the key to the multi-view collaborative perception system. SMI and PC
will provide differential regularization for each view model in the initial training stage
and the subsequent training process, respectively, to ensure each view model’s relatively
independent discriminative ability.

As shown in Table 4, when the three modules are not applied, it is equivalent to train-
ing each model separately without any information exchange, and the performance of each
view model is poor at this time. When only DIF is used, due to the lack of independence
constraints between models, the discriminative pattern of each model will gradually con-
verge during the training process, resulting in performance bottlenecks in the later training
stage. When using SMI combined with DIF, due to the lack of continuous independence
constraints of models in the later training stage, it faces the risk of falling into the plateau
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as the model iterations, although it has high convergence performance in the early training
stage. When DIF and PC are combined, although the initial independence constraint is
lacking, each view model can gradually improve the difference in feature-discrimination
patterns during the training process, thus achieving better performance. When the three
modules are applied together, each view model can continuously exchange information
in a relatively independent discriminative environment and achieve the optimal final
performance.

Table 4. Ablation study on MACP with different module combinations, test accuracy (%) of each
setting on CIFAR-10/100 and SVHN are reported.

Module Combination Dataset

SMI DIF PC CIFAR-10 SVHN CIFAR-100

92.10 ± 0.72 95.15 ± 0.34 72.17 ± 0.53
X 93.17 ± 0.19 95.98 ± 0.12 73.97 ± 0.43

X X 94.23 ± 0.09 96.53 ± 0.31 74.92 ± 0.19
X X 94.93 ± 0.36 97.03 ± 0.22 74.62 ± 0.25

X X X 95.25 ± 0.20 97.28 ± 0.15 75.28 ± 0.11

In Section 3.4, our discriminative information-fusion method is implemented in a
synchronous manner, and the DIF results of different view models on unlabeled perceptual
data will be directly used for their respective training. Here we further explore the impact
of the asynchronous DIF approach on model performance. In the asynchronous DIF setting,
the parameter updates of each view model will be performed sequentially, that is, after the
current model is updated according to the current DIF results, the model of the following
view will be trained using the updated DIF results.

Through extensive experiments, we found that the asynchronous DIF approach is not
conducive to optimizing MACP. Although asynchronous DIF enables a faster transfer of
discriminative information between models, there is an increased risk of mis-discrimination.
In the early training stage, when the discriminative ability of each perspective model is
insufficient, there may be more misjudgments in the collaborative discrimination results.
At this time, the alternate training of models will lead to the continuous accumulation of
training errors, weakening the stability of DIF results. In asynchronous processing, the
current model needs to wait for the update of other view models, which also affects the
training efficiency. Moreover, the asynchronous DIF method will increase the possibility
of the discriminative pattern convergence between models during the training process,
affecting the discriminative independence of the models from different views. Overall, the
asynchronous DIF approach will result in an up-to-5% performance degradation for each
view model.

5. Conclusions

We propose MACP, which realizes online evolutive learning for efficient adaptation to
the continuously changing sensing-data distribution through multi-view models’ indepen-
dence constraints and collaborative discrimination. MACP consists of three main modules.
Through the self-supervised model-initialization method, each view model learns differ-
ent feature-extraction patterns. Through the discriminative information-fusion process,
more reliable pseudo-labeled predictions are mined from multi-view unlabeled perceptual
data for SSL training. Combined with the multi-model parameter constraint during the
training, MACP achieves excellent performance over multiple representative multi-model
and single-model SSL methods. In experiments on simulated ideal multi-view perception
environment, MACP achieves performance that surpasses the fully-supervised learning
methods, proving the practical application value of the proposed method.

With the increase of various edge intelligent sensing devices, the online evolutive
learning method that improves the continuous adaptability of edge models to environ-
mental changes through multi-agent collaboration will have significant developmental
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prospects. In future work, we will investigate more multi-agent interactive learning meth-
ods and discriminant independence-constraint methods to improve the adaptability and
generalization of edge models to the perception environment. We will also explore the
application of MACP in the real-world perception environment.
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