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Abstract: Bioengineered in vitro models of the kidney offer unprecedented opportunities to better
mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features
which can replicate features of the tissue architecture, composition, and dynamic mechanical forces
experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness,
shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating
mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological
or pathological microenvironment. This review will explore approaches to applying mechanical
stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study
kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration
into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli.
We discuss the advantages, limitations, and challenges associated with incorporating mechanical
stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight
the importance of mechanical stimuli and sensor integration in the design and implementation of
kidney-on-a-chip devices.

Keywords: kidney-on-a-chip; mechanical stimuli; microfluidic; glomerulus; proximal tubule; shear
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1. Introduction

The kidney is a complex organ consisting of more than 20 cell types, including glomeru-
lar endothelial cells, podocytes, mesangial cells, and multiple segment-specific tubular
epithelial cells. Collectively, these cells filter the blood, excrete toxins and metabolic waste,
and reabsorb water and essential solutes from the glomerular filtrate, among other critical
physiological functions [1,2]. The kidney microenvironment provides nutrients, a support
scaffold, mechanical stimuli, and chemical signals that support normal physiological func-
tion [3,4]. Biochemical and biophysical cues can influence multiple cell functions including
proliferation, differentiation, gene expression, signal transduction, migration, polarization,
and cell survival [3,5,6]. Cells in the kidney are exposed to continuous mechanical stimuli
from fluid flow, the surrounding extracellular matrix (ECM), or neighboring cells. Tra-
ditional in vitro cell culture models fail to replicate physiologically relevant mechanical
stimuli that are important for regulating cell function [7].

Mechanical forces can affect kidney cell behavior that ultimately impacts organ func-
tion. Cells sense and translate mechanical inputs to activate cellular signaling through
mechanotransduction [8]. Disease-mediated changes in mechanical signals, including
altered glomerular and tubular fluid flow, pressure, and changes in the mechanical prop-
erties of the ECM, may all contribute to tissue damage and disease progression. Thus,
incorporating mechanical stimulation into in vitro kidney models is important for un-
derstanding normal renal function in health, for understanding mechanisms of disease
initiation and progression, and for developing therapeutic approaches to prevent or slow
disease progression.
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Kidney-on-a-chip technologies hold great potential to facilitate the design of kidney
models that incorporate physiologically important aspects of the tissue microenvironment
in vitro for studying basic mechanisms of kidney function and disease. In addition to
studying kidney physiology and pathophysiology, kidney-on-a-chip devices have been
widely utilized as platforms for nephrotoxicity screening. Kidney-on-a-chip has the po-
tential to serve as miniaturized, low-cost bridges between overly simplistic in vitro cell
culture models and expensive and complicated animal models. Additionally, fabrication
techniques are amenable to rapid prototyping and iterative device design.

Devices can include single or multiple cell types inside a microchamber or microchan-
nels with or without continuous flow and ECM to recapitulate the tissue microenvironment.
Various kidney-on-chip devices have been developed to model the glomerulus [9–12] and
the different segments of the tubule [13–19], two primary components of the nephron.
Lithographic and 3D printing techniques have been used to build kidney-on-a-chip sys-
tems for multiple applications [20–22]. Proximal tubule cells, podocytes, endothelial cells,
and mesangial cells from humans, mice, and other species have been grown in mono- or
co-culture microfluidic devices to model renal physiology, pathophysiology, nephrotox-
icity, and drug screening [9,16,23–29]. In addition, kidney-on-a-chip models incorporate
mechanical stimulation in a variety of approaches by passively mediating substrate stiff-
ness or geometry and actively applying forces. The integration of sensors in microfluidic
devices enables real-time monitoring of cell function, growth rate, and cell monolayer
integrity. Electrical, electrochemical, and optical sensors have been incorporated into
various organ-on-a-chip systems [30–33]. However, except for measuring transepithelial
electrical resistance (TEER), there are limited studies incorporating sensors into kidney-on-
a-chip. These technologies may have the potential to further increase the applications and
functionality of kidney-on-a-chip devices.

This review provides an overview of mechanical stimuli applied in kidney-on-a-
chip devices and 3D in vitro models of the kidney. We provide an overview of passive
biomechanical stimuli including incorporating synthetic, hybrid, and biological materials
for modulating stiffness, surface topography, and confined geometry. We then discuss
active stimuli, including fluid shear stress (FSS), compression, and cyclic stretch that are
incorporated into kidney-on-a-chip models (Figure 1). We also review the integration of
sensors in kidney-on-a-chip systems. Finally, challenges and future perspectives for kidney
chips are discussed.Sensors 2022, 22, x FOR PEER REVIEW  3  of  18 
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2. Importance of Mechanical Stimuli in Kidney

In vivo, kidney cells are subjected to complex and dynamic biomechanical stimuli that
regulate cell behavior and function [3,34]. Mechanical stimulation has been incorporated in
kidney-on-a-chip to recapitulate the biophysical microenvironment to study cell responses
to different types of mechanical forces. Kidney cells are subjected to passive and active
biomechanical stimuli in vivo [35]. Cells experience passive biomechanical forces through
biophysical interactions at the cell-matrix interface. These include increases or decreases in
ECM or basement membrane stiffness, geometrical confinement, changes in topography,
or application of static stress [35,36]. Bioengineered, synthetic, and biological materials
with or without topographic modifications have been integrated into kidney-on-a-chip to
regulate cell-specific phenotypes and mimic physiological conditions [19,37].

Active mechanical stimuli include FSS, tensile stretch, and compression. The frequency,
magnitude, and duration of active stimuli vary considerably between different cell types
within the kidney. Glomerular endothelial cells are subject to apical FSS from blood flow
that can be 30–50 dyn/cm2 [38–40], and shear stresses in the podocyte slit diaphragm
have been estimated to reach 80 dyn/cm2 [41]. Shear stress on renal tubular epithelial
cells is roughly an order of magnitude lower, with values of 2–4 dyn/cm2 in the proximal
tubule [42]. Each individual cell type is highly sensitive to deviations in shear stress
from the normal physiological set point [43–45]. A better understanding of how both
passive and active biomechanical factors regulate kidney cell behavior and how variations
in these forces induce pathological cell responses may provide new insight into normal
physiological function and point to new pathways that contribute to the loss of kidney
function in disease. Kidney-on-a-chip devices offer new opportunities to study these
biophysical factors under well-controlled in vitro conditions that mimic specific aspects of
the in vivo environment in health and disease.

3. Passive Mechanical Simulation

Kidney cells are supported by cell-specific ECM networks or basement membranes
that provide both structural support and signaling platforms that regulate cell function [46].
Glomerular endothelial cells and podocytes are supported by the glomerular basement
membrane (GBM) which consists primarily of α345 collagen IV, laminin, nidogen, and
heparin sulfate proteoglycans [47]. Tubular epithelial cell basement membranes are similar
but consist of different collagen IV and laminin isoforms. Mesangial and interstitial cells are
supported by their own compositionally unique ECM [48]. In disease, there are substantial
changes to the composition, architecture, and biomechanics of these different matrices
that may uniquely contribute to the loss of tissue function [49–51]. ECM mechanical
properties, size, shape, topography, curvature, and geometry affect cell behavior and
function. Approaches to control these parameters have been integrated into kidney chips
to mimic physiological or pathological conditions (Figure 2).

3.1. Substrate Stiffness

The mechanical properties of the ECM regulate a host of cellular processes including
proliferation, migration, survival, and differentiation [52,53]. Multiple biologically derived
and synthetic materials have been used to study the effects of stiffness on kidney cell
behavior. Biomaterials such as collagen, fibronectin, and gelatin hydrogels are used in both
2D and 3D cell culture models [54–56]. Polyacrylamide (PAA) gel, a synthetic material, is a
widely used cell culture system due to the ability to simply and precisely control substrate
mechanics over a wide range of stiffness [57]. The elasticity of a normal glomerulus is
approximately 2.5 kPa measured by atomic force microscopy [58]. A decrease in the
stiffness of the glomerulus has been observed in multiple kidney diseases [59,60]. As the
tissue becomes fibrotic in chronic kidney disease and many other fibrotic diseases, ECM
stiffness increases and drives further tissue damage [61]. Non-enzymatic glycation and
the formation of advanced glycation end products (AGE) crosslink the kidney ECM and
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increase matrix stiffness in decellularized kidney ECM ex vivo [62,63]. These modifications
may be relevant to diabetic kidney disease.
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Figure 2. Passive mechanical stimuli applied to cells. (A) Healthy and diseased ECM. Healthy ECM
with normal composition and elasticity. Disease-mediated changes modify the ECM composition and
stiffness. Changes in ECM stiffness are mediated by enzymatic crosslinking, glycation, chemical reac-
tions, or gene mutation. (B) In vitro models of passive mechanical stimulation include culture dishes
coated with synthetic or ECM hydrogels with tunable stiffness, modified Transwell culture inserts, mi-
crofluidic devices, and 3D printed structures that allow for both passive and active mechanical stimuli.
(C) ECM affects cell behavior when being cultured on soft, normal, or stiff substrate. (D) ECM active
mechanotransduction pathways which alters the gene and protein expression. These modifications
further affect cell function. Accumulation of these factors contributes to organ dysfunction.

Multiple studies have evaluated the effects of stiffness on various kidney cell types
including podocytes and tubular epithelial cells. Hydrolyzed PAA scaffolds with stiffness
ranging between 0.6–44 kPa have been used to study podocyte differentiation and mor-
phology [64]. The authors showed that substrate stiffness strongly influences podocyte
morphology, elasticity, and podocin expression. To investigate cellular responses to chemi-
cal and mechanical cues, Garcia et al. designed a microfluidic device with varied chemistry
and substrate stiffness [65]. In another study, a biomimetic gelatin-mTG cell culture plat-
form was developed to evaluate podocyte protein expression during differentiation [66].
Podocyte-specific markers, such as WT-1, neph1, nephrin, and podocin gene expression
were upregulated on substrates with intermediate stiffness (2–5 kPa) that is similar to renal
tissue but with lower expression levels on stiffer or softer substrates. PAA gels with a
stiffness gradient were fabricated by slide-mask photopolymerization [65]. MDCK cells
cultured in the device showed a relationship between cell scattering and stiffness when
stimulated with a gradient of hepatocyte growth factor (HGF). Kidney tubular epithelial
cells have been grown on both synthetic and natural ECM substrates with wide-ranging
stiffness to evaluate the effects of matrix mechanics on differentiation, proliferation, sur-
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vival, and spreading [67–70]. Multiple studies have shown that epithelial cell differentiation
or epithelial to mesenchymal transition (EMT) in response to pro-fibrotic growth factor is
influenced by substrate stiffness. Kidney epithelial cells on soft surfaces were resistant to
growth factor-induced de-differentiation [67,69] but were more prone to cell death [69].

3.2. Surface Topography and ECM Composition

Cells cultured in vitro face the limitation of loss of differentiated function and reduced
expression of cell-specific proteins [71,72]. Engineered biomimetic substrates could serve
as scaffolds to modulate cell morphology and gene expression, and preserve differentiated
function in cultured cells. Proximal tubule cells and podocytes adhere to a naturally
curved basement membrane. Substrate curvature has been found to affect renal epithelial
cell behavior [73]. A kidney chip with curved surfaces was fabricated using a replica of a
polydimethylsiloxane (PDMS) master, 3D printing, and PAA gels to mimic the physiological
tubule environment. Renal epithelial cells cultured on convex and concave surfaces exhibit
different morphology, alignment, and polarization as compared with flat surfaces. Korolj
et al. developed a cell culture model of the glomerulus by incorporating an engineered
porous PDMS membrane with a Transwell filter. The membrane was formed by replicating
a PDMS mold from glass beads (<100 µm) embedded in a SU8 (50 µm thick)-coated silicon
wafer. Curved surfaces with porous structures provided a biomimetic surface for podocyte
culture. This bioengineered platform showed that topographical modification promotes
podocyte differentiation and upregulated nephrin gene expression [74].

Recently, efforts have focused on incorporating the natural properties of the ECM or
basement membrane composition and architecture into organ-on-a-chip and 3D culture
models [75]. We developed a model of the glomerular filtration barrier using decellularized
GBM to evaluate the effects of basement membrane damage on molecular permeability [76].
We showed that both the GBM and podocytes contribute to the diffusive permeability
of the system, and hypochlorous acid-mediated damage to the GBM increases molecular
permeability. Homan et al. created proximal tubules on a chip by depositing a thin
layer of gelatin-fibrin hydrogel using 3D printing techniques [15]. This allowed for the
precisely controlled size and composition of the tubule chip with an elastic modulus of the
ECM (~3.5 kPa), similar to normal kidney tissue stiffness, thus recreating the biophysical
properties, architecture, and composition of the healthy kidney while also perfusing the
system. The same group further incorporated vascularization to evaluate tubule transport
function [77]. Such devices that incorporate multiple physiologically important factors may
be particularly useful tissue models.

3.3. Confined Geometry

Adherent cells attach and spread on the ECM, and controlling cell spreading using
micropatterned ECM has significant effects on cell behavior [78,79]. A loss of normal
epithelial morphology is associated with kidney disease. Bosch-Fortea et al. developed
a micropatterned array to evaluate epithelial cell morphogenesis and drug toxicity [80].
Several tubule epithelial cell types were grown on different ECM micropattern shapes to
control lumen formation with or without drug exposure. The model provides a method for
fine-tuning the microenvironment for modeling epithelial morphogenesis. Cells in confined
tubule-like geometries were more sensitive to nephrotoxicity agents such as gentamicin.
Confined geometry has also been shown to regulate the collective cell migration of kidney
tubule cells. MDCK cells that migrated into circular lumens of varying diameters showed
differences in migratory behavior and alteration in cytoskeletal architecture [81]. Cells in
smaller diameter tubes were more aligned and had slower migratory speeds than cells in
larger channels.

4. Active Mechanical Simulation

The importance of active mechanical stimuli in models of kidney-on-a-chip is high-
lighted by numerous studies. Generally, these devices employ photolithography, soft
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lithography, or 3D printing to mold microchannels. Cells cultured on the surface of single
or multiple microfluidic channels are perfused with a rotary or syringe pump to apply
FSS to the apical cell surface. Other devices have been fabricated from hollow fibers with
curved topography along with shear stress to simulate the physiological environment of
the proximal tubule [82,83]. These bioreactor devices provide the additional advantage
of supplying large surface areas with continuously applied shear stress. The appeal of
3D printing technology is highlighted by the capability of generating 3D microstructures
using synthetic biomaterials. Given the complexity of the kidney, devices that combine
mechanical stimulation with additional chemical and/or electrical stimuli may provide a
more biomimetic microenvironment.

4.1. Fluid Shear Stress

Blood flow in the kidney microvasculature or filtrate in the tubules creates a fluid
force at the cell surface parallel to the direction of flow commonly referred to as fluid
shear stress (FSS). FSS has been widely applied for physiological and pathological studies
of the glomerulus, primary tubule, distal tubule, and collecting duct [84–88]. Multiple
kidney cell types, including glomerular endothelial cells, podocytes, proximal tubules, and
distal tubule cells, are all highly sensitive to FSS. In a rectangular microfluidic channel
with laminar Newtonian fluids under steady conditions, FSS can be calculated by the
equation: τ = 6 µQ/bh2, where τ is FSS, µ is the medium viscosity, Q is the flow rate,
b is the width of the channel, and h is the height of the channel. Evaluating fluid forces
due to blood in the glomerulus requires more complex modeling. Different techniques
have been used to evaluate fluid forces in the glomerular capillary including FSS on the
glomerular endothelium [38–40]. Shear stress can be applied to single channels, multiple
channels consisting of an apical and basal chamber, and the 3D tube-like kidney-on-a-chip
(Figure 3). The figure shows an enlarged channel to demonstrate the main components of
the device. Most devices are fabricated with PDMS or acrylic by lithography techniques.
Shear stress was applied to the device by connecting the inlet with a syringe pump or
peristaltic pump. Cell culture media with reagents were perfused into the device. To model
the filtration barrier, podocytes and endothelial cells were co-cultured and separated by
a porous membrane in a kidney-on-a-chip with a flat or a 3D curved surface. The basic
materials for fabricating the device and cell types for cell monolayer or co-cultured models
are listed in Figure 3.

4.1.1. FSS in Modeling Normal Physiology

The glomerulus is the filtering unit of the nephron and consists of fenestrated en-
dothelial cells that line the capillary, the GBM, and podocytes on the filtrate side of the
filtration barrier [89]. Both glomerular endothelial cells and podocytes are sensitive to FSS
in vitro. Friedrich et al. cultured mouse podocytes in a commercial microfluidic device.
Shear stress above 0.25 dyn/cm2 resulted in podocyte loss, cytoskeletal reorganization, and
the activation of specific tyrosine kinases [43]. Huang et al. further showed that high shear
stress-induced apoptosis via a c-Src and mTOR-mediated pathway [90]. FSS has also been
shown to influence the differentiation of podocytes cultured in a microfluidic device [91].
Podocytes culture in 0.5–2 dyn/cm2 FSS, with or without retinoic acid, showed increased
expression of podocyte-specific markers including synaptopodin, podocin, and WT-1 at
the gene and/or protein level. This shows that mechanical stimulation with FSS effectively
influences podocyte differentiation. As compared to static culture, podocyte-specific mark-
ers were significantly increased under FSS. Studies have further shown that shear stress
regulates prostaglandin E2 and proteoglycan signaling in podocytes [92,93]. Glomerular
endothelial cells have also been studied in the presence of FSS [87]. Glomerular endothelial
cells cultured under long-term shear stress showed reduced NF-κB activation and PDGF-B
expression [94], as well as increased KLF2 expression [95].
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Significant effort has focused on modeling the proximal tubule due to its important
role in water and salt reabsorption and the susceptibility of the proximal tubule to drug and
toxin-induced injury [96,97]. The tubule consists of a single layer of polarized epithelial
cells that transport water, glucose, proteins, amino acids, and other solutes including both
anionic and cationic drugs. Solutes are reabsorbed by pumps, channels, and receptors
present in the basolateral (interstitial side) and apical (tubular lumen side) membrane [98].
The apical surface of the proximal tubule is exposed to continuous flow. Tubular FSS
depends on tubular fluid flow rate, viscosity, and tubule diameter. Shear stress is reduced
in the distal nephron as water is reabsorbed and flow decreases [42,45].

Several studies have shown that proximal tubule cells are highly responsive to FSS.
Duan et al. quantitatively evaluated changes in the actin cytoskeleton and cell–cell junctions
in response to shear stress. Proximal tubule cells were exposed to FSS at 1 dyn/cm2 for
5 h. Their results showed reinforcement of peripheral actin bands and a tighter spatial
distribution of ZO-1 and E-cadherin at cell junctions [99]. The same group also showed
that FSS affects the localization and expression of apical and basolateral transporters in
mouse proximal tubule cells [44]. Cells cultured in a parallel-plate flow chamber were
exposed to 0.2 dyn/cm2 FSS for 3 h. FSS increased apical localization in NHE3, upregulated
Na/K-ATPase expression and translocation, and induced V-ATPase trafficking. Several
other studies have also observed changes in actin cytoskeletal architecture in response to
FSS [23,100]. Several studies have also shown that FSS increases apical protein endocytosis
in proximal tubule cells [26,101–103]. Proximal tubules are able to capture and process
plasma proteins that traverse the glomerular filtration barrier. Under normal conditions,
little protein filters into the tubule. In CKD, the filtration barrier is compromised and
significant protein leaks into the filtrate. Weisz et al. have performed mechanistic studies
to show that FSS regulates apical endocytic activity through cilia and mTOR-mediated
pathways [101,102].

There are relatively few distal tubule kidney-on-a-chip devices compared to proximal
tubule models. Baudoin et al. developed a microfluidic distal tubule in vitro model by
culturing MDCK cells in a PDMS microchip with a flow rate of 10 µL/min [14]. At a high
flow rate (50 µL/min), with 24 h of perfusion, the viability of the cells was reduced by
90%, indicating that high FSS induces cell death. Glucose consumption also increased at
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a higher flow rate. Another study reported a multi-layer microfluidic device fabricated
using PDMS molds to create a static and a flow chamber [17]. Then, a porous membrane
was embedded in the two chambers and bonded together. Primary rat inner medullary
collecting duct (IMCD) cells were isolated and cultured in the microfluidic device. The
cells were exposed to 1 dyn/cm2 of shear stress for 5 h after culturing on the membrane
for 3 days. The cells expressed specific markers: AQP2 localized at the apical side and the
Na-K-pump localized at the basolateral membrane, which was not observed in the cells
cultured on glass. In addition to 2D models, a 3D kidney cortical collecting duct model
was developed by Rein et al. using a pin-pullout technique [104]. The 3D channel was
perfused with an ECM hydrogel, then mmpk cortical collecting duct cells were cultured in
the device for 7 days under FSS (0.1 dyn/cm2). The model exhibited tight barrier function
after diffusing FITC-dextran for 1 h. The cells showed polarization and transmembrane
receptor expression.

Most microfluidic devices apply FSS using an external syringe pump or peristaltic
pump. Other pumpless techniques have been used to apply FSS to kidney cells. Kimura
et al. demonstrated a pumpless microfluidic device for culturing ureteric bud cells from
mouse embryonic kidneys [105]. The microfluidic device comprised a medium tank and
a microfluid chamber with cell culture and serpentine resistance channels. After the cells
were subjected to FSS in the range of 0.4–0.6 dyn/cm2 for 48 h, the expression of tip cell
marker genes was upregulated, but stalk cell marker genes were downregulated. The
method provides a solution for culturing several plates under shear stress. Orbital shear
stress has also been used to apply shear forces to kidney epithelial cells [101,106]. This
was performed using an orbital shaker to apply fluid shear. While the shear stress is less
uniform when applied with an orbital shaker, this approach is amenable to multiple culture
plates and is less prone to issues such as bubbles that can be problematic in microfluidic
systems.

4.1.2. FSS in Modeling Disease

Microfluidic devices precisely control the cell microenvironment and provide more
reliable drug toxicity screening and modeling of pathological conditions such as renal
fibrosis and proteinuria. One of the primary applications of kidney-on-a-chip devices has
been for screening drug nephrotoxicity. Proximal tubule toxicity is a primary off-target
effect of many drugs such as chemotherapeutics and antibiotics. Kidney-on-a-chip devices
for drug screening and nephrotoxicity have been reviewed elsewhere [24,107,108]. This
discussion will only focus on the role of mechanical forces in regulating the uptake of
nephrotoxic drugs. Several kidney-on-a-chip models of drug toxicity have shown the
upregulation of drug transporters and/or increased drug uptake in tubular epithelial cells
exposed to shear stress [109,110]. Yin et al. developed a co-culture microfluidic kidney chip
with a temperature sensor and drug concentration gradient generator for drug screening
and nephrotoxicity assessment [111]. Renal proximal tubule epithelial cells (RPTECs)
and peritubular capillary endothelial cells (PCECs) were co-cultured in the device with
a flow rate range of 10–100 µL/min. The concentration gradient chip was designed to
obtain five different concentrations of drugs. Cisplatin, gentamycin (GM), and cyclosporin
A (CsA) were injected into the chamber, and differences in cell viability were observed
under static versus flow conditions. The mechanisms that regulate this process are not
completely understood but may be cilia-mediated or cilia-independent [112]. Importantly,
these devices may better recapitulate drug pharmacokinetics as compared to traditional cell
culture systems or even animal models and therefore provide the potential for improving
drug screening or developing strategies to minimize drug nephrotoxicity.

High blood pressure is one of the most common causes of chronic kidney disease.
Hypertension may cause glomerular dysfunction by increasing filtration pressure. Zhou
et al. developed a functional microfluidic chip to mimic hypertensive nephropathy [28]. The
device consists of three layers: upper and lower PDMS chambers and a commercial porous
polycarbonate membrane separating the two chambers. Glomerular endothelial cells and
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mouse podocytes were co-cultured in the device. To simulate hypertension, shear stresses
of 0.001–0.003 dyn/cm2 were applied to the endothelial chamber. The results showed
that with the FSS at 0.001 dyn/cm2, the barrier was restrictive to BSA and IgG transport,
but permeability increased at high flow rates. The loss of selectivity was accompanied by
a redistribution of F-actin, reduced CD-31 expression, and increased vWF expression in
endothelial cells. Podocytes also showed cytoskeletal changes and reduced synaptopodin,
nephrin, and podocin expression. These data suggest that high FSS and increased stretch
increase glomerular permeability by damaging both endothelial cells and podocytes.

FSS was applied within the microfluidic device to model fibrosis in the renal tubule [13].
The device was fabricated using a rapid prototyping technique that consisted of two layers
with 12 microchannels. Immortalized human renal proximal tubular cells (HK-2) were
grown inside the culture chamber. The flow rate was set to 0.6 µL/mL to mimic physio-
logical shear stress. Media containing TGF-β1, HHS, or C3a with different concentrations
were used to simulate pathological conditions. The results show that the TGF-β1 caused
morphology changes in HK-2 cells depending on the concentrations and culturing time.

4.1.3. FSS in Modeling Barrier Function

The glomerular filter provides a size, charge, and shape-selective barrier that filters
the blood by allowing small molecules and water to cross the barrier while retaining large
proteins, such as albumin (3.5 nm hydrodynamic radius), in the plasma [113]. Podocytes
wrap around the glomerular capillary, creating interdigitating foot processes that form
slit diagrams. Podocytes are highly specialized terminally differentiated cells with min-
imal regenerative capacity after injury. Damage to any layer of the filtration barrier can
result in the loss of glomerular selectivity and proteinuria that can progress to kidney
failure [114,115]. In vitro models of the glomerulus have been developed using Transwell
membranes to evaluate cell permeability [116,117]. Static models have the advantages of
simple design and operation but cannot recapitulate the in vivo microenvironment with
continuous flow and close contact between podocytes and glomerular endothelial cells.
A study reported a glomerulus on a chip with co-cultured human podocytes and human
glomerular endothelial cells with an artificial membrane [10]. This work demonstrated
the device can maintain cell phenotype and function for at least one month. The cells
were exposed to shear stress of 0.0117 Pa (0.117 dyn/cm2). The permselectivity of the
filtration barrier was evaluated based on FITC-albumin transport across the filtration bar-
rier. They used different combinations of cells and showed that the highest selectivity
was achieved when podocytes and glomerular endothelial cells were co-cultured. They
also demonstrated increased permeability when cells were treated with the puromycin
aminonucleoside (PAN) or with serum from patients with membranous nephropathy. Xie
et al. developed a glomerulus-mimicking knot with microscale hollow fibers with com-
plex concave and convex topography to mimic the glomerulus in vitro [118]. Podocytes
were cultured on the surface of the 3D knot while endothelial cells were cultured inside
the hollow fiber to construct a filtration barrier. The FSS on the lumen side ranged from
0.3–0.9 Pa. The molecular permeability across the filtration barrier with or without cells
was evaluated using Ficoll, bovine serum albumin (BSA), and inulin. The results showed a
significant reduction in molecular transport across the filtration barrier with cultured cells
as compared to cell-free.

4.2. Compressive Pressure and Cyclic Stretch

The pressure drop across the glomerular filter creates both compression and stretch in
the capillary wall. Studies have shown that hypertension increases the pressure gradient
to enhance mechanical stress on podocytes, resulting in podocyte loss [119]. As increased
transmembrane pressure across the filtration barrier may cause kidney damage, Chen et al.
designed a microfluidic device to study podocyte permeability in vitro [120]. Two acrylic
chambers were separated by a collagen-coated anodic aluminum oxide membrane with
nanoscale pores. The podocytes were cultured on the membrane until confluency. The
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pressure drop between the chambers was used to simulate the pressure drop between
the glomerular capillary and Bowman’s space. The results showed that permeability
increased with increasing pressure in the absence of any stretch. Increased net pressure
downregulated the expression of synaptopodin and reorganized the actin cytoskeleton.
This suggests that pressure is an important mechanical stimulus in the physiological or
pathological glomerulus.

Most kidney-on-a-chip devices are designed as a single channel with applied shear
stress that lacks the systematic analysis of cell functions. As the glomerulus is exposed
to pulsatile blood flow, cyclic stress and shear stress need to be considered in recapitulat-
ing the human physiological response. Musah et al. developed a glomerulus-on-a-chip
using stem-cell-derived podocytes to model the glomerular capillary wall. This system
incorporated both FSS and cyclic stretch and showed synergistic effects of flow and strain
on device function [11]. A porous PDMS membrane was sandwiched between two par-
allel microchannels in the multifunctional microfluidic device. Two hollow chambers
were designed to apply a dynamic mechanical stretch. Podocytes were differentiated in
0.0007 and 0.017 dyn/cm2 FSS in the top and bottom chambers, respectively. A 10% cyclic
strain (1 Hz) with shear stress exhibited a significant increase in podocyte-specific marker
expression and increased VEGF-A secretion with flow and an additional increase when both
flow and stretch were applied. This suggests that FSS and cyclic stretch have compounding
beneficial effects on cell differentiation. They further showed that the permeability of the
barrier increased with exposure to the cancer drug adriamycin.

5. Sensor Integration in Kidney-on-a-Chip

Integrating sensors into organ-on-a-chip devices is advantageous for real-time moni-
toring of cellular activity on a chip. Studies have incorporated physical, electrical, electro-
chemical, and optical sensors into microfluidic devices [31,32]. For kidney-on-a-chip, sensor
integration has primarily focused on electrical measurements (e.g., TEER) due to the ability
to monitor resistance as a surrogate for epithelial barrier function. Electrical measurements
of resistance or impedance are widely used to evaluate the barrier function of epithelial cell
monolayers [121]. The working principle of TEER measurements and sensors integration
in microfluidic devices with different designs is shown in Figure 4. The TEER sensor is
either designed with electrodes perpendicular or parallel to the microchannel. EVOM2
and potentiostat are commonly used to measure the resistance across the cell monolayer.
Devices with pH and oxygen sensors can provide additional information. We developed
a microfluidic device with integrated TEER measurement [23]. The device comprised
parallel channels with a polycarbonate membrane to separate the top and bottom chambers.
TEER electrodes were used to monitor tight junction integrity and cell growth. A calcium
switch was used to show that the removal of calcium resulted in a significant reduction in
TEER. Ag/AgCl electrodes were embedded into a two-layered microfluidic device with
co-cultured epithelial and endothelial cells for evaluating barrier function [122]. Recently,
Nicolas et al. developed a microfluidic titer plate, the OrganoPlate, consisting of a mi-
crotiter plate with 40 microfluidic chips [123]. An Organo TEER device with stainless-steel
electrodes was designed to measure the impedance between the apical and basal sides of
the tube to facilitate four-terminal sensing. Caco-2 and RPTEC cells were plated in the
microchip. FITC and TRITC dextran were added to the apical channel to evaluate barrier
permeability. The results showed an increase in TEER over time and a decrease in TEER
when the cells were exposed to toxic compounds.
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Additional functionalities are beginning to be integrated into kidney-on-a-chip devices.
Asif et al. designed a platform for the real-time monitoring of TEER and pH values of
media in a proximal tubule microfluidic model [124]. The transparent electrodes were
created by an indium tin oxide (ITO) screening–printing technique. A portable microscope
was developed for real-time monitoring of cell growth. Kidney epithelial cells (HK-2) and
fibroblasts were mixed and plated in the microchannel with 5 dyn/cm2 FSS. An optical pH
sensor was connected to the outflow of the device. After 5 days, high glucose media were
used to create a pro-inflammatory environment. Then, metformin-containing media were
circulated to mitigate the pro-inflammatory response. The device detected the TEER and pH
value changes when the cells were cultured with high glucose media or metformin. Cohen
et al. developed a kidney-on-a-chip by combining vascularized proximal tubule spheroid
with tissue-embedded sensors for investigating drug-induced nephrotoxicity [125]. The
device was fabricated by laser-cutting nine microwell bioreactors and embedded with
oxygen sensors. Rat microvascular endothelial cells with human primary proximal tubule
cells (hPTCs) were plated in microwells. The cells were exposed to 0.75 dyn/cm2 FSS. The
bioreactor outflow was connected to a biosensor array containing electrochemical sensors,
and an on-chip potentiostat (PSTAT). The electrochemical sensor arrays detected glutamine,
glutamate, glucose, and lactate. The sensor-integrated microfluidic device captured the loss
of polarization leading to glucose accumulation and subsequent lipid buildup and toxicity.
Such multifunctional devices have the potential to elucidate disease mechanisms that may
guide therapeutic responses.

6. Conclusions, Challenges, and Future Perspectives

Kidney-on-a-chip models have wide-ranging applications for studying fundamental
renal physiology, drug screening, disease modeling, and tissue engineering. It has become
increasingly clear that incorporating mechanical signals into organs-on-a-chip is important
in many organs and tissues, including the kidney [35]. These stimuli can be passive and
include modulating substrate stiffness, composition, topography, or geometry. Additionally,
the application of externally applied forces such as FSS has wide-ranging effects on cell
differentiation and function. Pathological mechanical signals can also be incorporated
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into in vitro devices to model acute or chronic kidney diseases. Kidney injury can alter
transient fluid flows and shear stresses in the glomerulus or the tubule, and chronic injury
can alter ECM mechanics or composition. Modeling these effects in microfluidic and 3D cell
culture models may provide insight into normal kidney physiology and guide therapeutic
approaches to mitigate kidney damage in response to acute or chronic damage.

One of the challenges of recapitulating kidney function on a chip is the complexity
of renal tissue and the large number of interconnected cell processes that regulate overall
tissue function. Most kidney-on-a-chip devices focus on a single tissue compartment
such as the glomerulus or the proximal tubule. However, complex interactions between
tissue compartments ultimately control organ-level function. For example, interactions
between the tubule and the glomerulus are important for regulating filtration rate based on
tubular salt concentrations through reciprocal signaling between the glomerulus and the
tubule [126]. As another example, complex interactions between the tubular epithelium
and the interstitial compartment are critical in the response to acute and chronic kidney
injury. Crosstalk between different cell populations in the kidney is important in regulating
normal kidney physiology and in the pathogenesis and progression of disease [127]. These
processes are difficult to model in vitro, and to date, relatively little effort has focused on
integrating multiple tissue compartments in kidney-on-a-chip. As fabrication techniques
such as 3D printing or other prototyping technologies continue to be improved, additional
complexity is likely to be integrated into kidney chips to better model overall tissue
function.

With regard to modeling the biophysical factors that regulate kidney function, bet-
ter characterization of the in vivo microenvironment is likely to improve our ability to
replicate these parameters in vitro. Kidney tubular fluid shear stresses are relatively well
defined based on previous micropuncture studies of kidney flow rates and the more recent
application of intravital imaging for the real-time monitoring of kidney function in live
animals [128,129]. The mechanical microenvironment in the glomerulus is quite complex,
with glomerular endothelial cells and podocytes being subject to complex flow regimes due
to fluid dynamics across the capillary wall. Modeling and simulation efforts are beginning
to elucidate these mechanical parameters. Experimental measurements to validate the
analytical or simulation approaches are needed to better define fluid dynamics and tissue
stresses in the glomerulus and the tubule. Additional efforts to define tissue and matrix
mechanics in health and disease will also likely aid in developing more physiologically
relevant kidney-on-a-chip models. Most current systems rely on synthetic materials such as
PDMS or other polymers to construct devices. The mechanical properties of these materials
do not reflect the in vivo tissue mechanics. As tissue and ECM mechanics become better
defined, particularly in disease, efforts to mimic ECM or substrate stiffness in kidney chips
may improve their overall function with regard to maintaining the differentiated phenotype
of a particular cell type or for capturing important physiological parameters such as the
contribution of the GBM to glomerular filtration.

Finally, there is a paucity of active instrumentation and sensing mechanisms incorpo-
rated into kidney chips for real-time readouts of functional parameters. One exception is
the integration of TEER as a surrogate for epithelial permeability. The ability to integrate
sensors onto kidney chips to evaluate tubular epithelial drug toxicity in real time, monitor
the loss of glomerular permselectivity through fluorescence analysis or albumin biosensing,
or measure specific analytes in the filtrate such as creatinine or urea could add significant
additional functionality to kidney-on-a-chip. This sensing technology could also provide
a real-time measure of how mechanical factors applied within devices alter important
cell behavior such as barrier function or monitoring cell viability. Other organ-on-a-chip
systems have begun to incorporate such sensing mechanisms, and these approaches are
likely to carry over to kidney-on-a-chip.
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