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Abstract: Computer-vision-based target tracking is a technology applied to a wide range of research
areas, including structural vibration monitoring. However, current target tracking methods suffer
from noise in digital image processing. In this paper, a new target tracking method based on the sparse
optical flow technique is introduced for improving the accuracy in tracking the target, especially
when the target has a large displacement. The proposed method utilizes the Oriented FAST and
Rotated BRIEF (ORB) technique which is based on FAST (Features from Accelerated Segment Test), a
feature detector, and BRIEF (Binary Robust Independent Elementary Features), a binary descriptor.
ORB maintains a variety of keypoints and combines the multi-level strategy with an optical flow
algorithm to search the keypoints with a large motion vector for tracking. Then, an outlier removal
method based on Hamming distance and interquartile range (IQR) score is introduced to minimize
the error. The proposed target tracking method is verified through a lab experiment—a three-story
shear building structure subjected to various harmonic excitations. It is compared with existing
sparse-optical-flow-based target tracking methods and target tracking methods based on three other
types of techniques, i.e., feature matching, dense optical flow, and template matching. The results
show that the performance of target tracking is greatly improved through the use of a multi-level
strategy and the proposed outlier removal method. The proposed sparse-optical-flow-based target
tracking method achieves the best accuracy compared to other existing target tracking methods.

Keywords: computer vision; acceleration response; target tracking; sparse optical flow

1. Introduction

Computer vision techniques have led to great advancements in detecting and tracking
objects and are being increasingly researched for applications in vibration monitoring
of structural systems to replace conventional contact-based discrete sensors [1–6]. In
computer-vision-based vibration monitoring methods, the displacement time history of a
specific target on the structure is measured by the tracking changes in the video frames,
and then the displacement response is converted to acceleration response using numerical
differentiation methods. Compared with conventional measurement, visual-sensing-based
methods do not require the installation and maintenance of expensive sensor setups.
Region-based target tracking approaches often employ a predefined template such as a
physical template and region of interest (ROI) for vibration monitoring. However, these
techniques require installment of targets, which makes the process tedious [1,3]. Moreover,
predefined templates are easily occluded by adverse factors such as partial occlusion, shape
deformation, scale change, and rotation, which are challenges for visual tracking.

Keypoint is another kind of target for structural monitoring, in which a point on the
structure that stands out from the rest is used, such as the corner point or ending point of a
line segment. Many studies [7,8] utilize a feature-matching-based target tracking algorithm
to track the motion of a set of keypoints. Feature matching can be easily affected by changes
in illumination, noise, and motion blurring. These disadvantages are critical issues for
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field applications and thus have limited the adoption of vision-based monitoring methods.
The robustness of the keypoints tracking can be improved by using a sparse optical flow
algorithm because it considers constraints on the flow field smoothness and the brightness
constancy [9,10]. Due to the brightness constancy constraint, the values of image brightness
across all images are restricted. Therefore, optical-flow-based keypoint tracking is immune
to the changes in brightness compared to feature-matching-based keypoint tracking. Most
researchers combine the Lucas–Kanade (LK) algorithm [11] with different feature detectors
to track keypoints. A few of these studies employ an outlier removal method to improve
the tracking performance, but the technique based on sparse optical flow is not fully
explored. Specifically, existing sparse-optical-flow-based vibration monitoring methods do
not perform very well when calculating the vibration of structures with large displacements.
Therefore, it is useful and important to obtain multi-point movement records and analyze
them for a comprehensive assessment of structural response.

In this study, a novel sparse-optical-flow-based target tracking approach for structural
vibration monitoring is proposed, where the conventional sparse optical flow algorithm
(i.e., LK) is enhanced to track a set of sparse keypoints accurately. A multi-level strategy
is applied to the LK algorithm to enhance the large motion vector calculation. Moreover,
Oriented Fast and Rotated Brief (ORB), a corner extraction algorithm, is used to detect the
keypoints, and an outlier removal method based on Hamming distance and interquartile
range (IQR) score is introduced to minimize the error between the experimental response
versus the vision-based response. The accuracy of the proposed method is evaluated by
measuring the acceleration response from a three-story shear building in the laboratory
subjected to three different harmonic transient excitations. The results from the proposed
method are also compared with those from the recent existing target tracking methods
that are based on different techniques such as sparse optical flow, feature matching, dense
optical flow, and template matching.

The manuscript is divided into eight sections: Section 2 describes the existing stud-
ies related to target tracking methods. The proposed method is presented in Section 3.
Section 4 introduces the vision-based sensing system used for experimental vibration tests.
The description of structural laboratory experiment is presented in Section 5. Section 6
presents the qualitative and quantitative assessment of the proposed method and a com-
parison with various vision-based target tracking methods. The discussion of results is
presented in Section 7. Finally, the conclusions of this research are presented in Section 8.

2. Target Tracking Methods: Background Literature

This section reviews various target tracking methods for vision-based vibration mon-
itoring that are based on four techniques: sparse optical flow, feature matching, dense
optical flow, and template matching.

2.1. Sparse Optical Flow

In such target tracking methods, a set of keypoints are first extracted in the current
frame, and then the optical flow vectors are calculated to track the locations of keypoints
in the next frame. This technique mainly contains three parts, i.e., keypoints detection,
optical flow estimation, and outlier removal [12]. The LK algorithm [11] is the most popular
algorithm used for optical flow estimation, but it is limited to tracking targets that have large
motion between two consecutive frames. The most prevalent keypoints are extracted by
the Harris corner detector [9,13], Shi–Tomasi corner detector [10,14], scale-invariant feature
transform (SIFT) algorithm [13], and speeded up robust features (SURF) algorithm [15,16].
However, not all sparse-optical-flow-based target tracking methods used for structural
vibration monitoring implement outlier removal methods. Maximum Likelihood Estimator
SAmple Consensus (MLESAC) modeling fitting [16,17] and bidirectional error detection [18]
are two methods that are used to eliminate the outliers of tracked keypoints. However, the
MLESAC-based outlier removal method does not consider the direction of outliers, and the
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bidirectional error detection-based outlier removal method does not consider eliminating
the slight motion of background and other non-rigid objects.

2.2. Feature Matching

Such target tracking methods firstly detect a set of keypoints in each of the two
frames, and then employ feature matching to search for the best-matched keypoint pairs
from the two frames [12]. This mainly consists of four steps, i.e., keypoints detection,
feature description, keypoints matching, and outlier removal. Existing feature-matching-
based target tracking methods employ various algorithms for each step. The keypoint
detector includes circular Hough transform (CHT) [19], scale-invariant feature transform
(SIFT) [7,8,20], response matrix [21], and ORB [22]. The feature descriptor includes SIFT [7],
Fast Retina Keypoint (FREAK) [21], and Visual Geometry Group (VGG) [8,20]. The mini-
mum Euclidean distance [7] and Hamming distance [21] are often used for searching the
initial keypoints matching between different frames. After initial matching, coherent point
drift (CPD) algorithm [19], trimmed mean algorithm [7], least squares fit algorithm [21],
and RANdom SAmple Consensus (RANSAC) [20] are used for outlier removal.

2.3. Dense Optical Flow

Such target tracking methods calculate the motion vector of every pixel within the
predefined template [13,23]. Compared to sparse keypoints-based techniques, this kind
of technique does not need other steps to remove the outliers. Existing methods employ
different kinds of dense optical flow algorithms. For example, Khaloo et al. [13] estimated
the dense optical flow using four methods, i.e., LK [11], Horn–Schunck (HS) [24], Black and
Anandan (BA) [25], and classic+NL (CLNL) [26]. In the study of Celik et al. [23], existing
dense flow methods [27–29] were utilized to track larger crowds. Won et al. [30] used
Deepmatching [31] and Deepflow [32] to find dense correspondence between two image
frames. Dong et al. [1] compared the optical flow results generated by six methods, i.e., HS,
LK with pyramid and sparse to dense interpolation (LKPyrSD), BA, Farneback [29], CLNL,
and FlowNet2 [33].

2.4. Template Matching

Such target tracking methods detect a predefined template in a reference frame and
then search for the area in a new frame that is most correlated to the predefined template.
This technique is easy to implement without user intervention and has been validated to
work well for vibration monitoring. The predefined templates used for structural vibra-
tion monitoring mainly consist of two types: natural templates and artificial templates.
For example, an ROI [22] and segmented screws [34] are used as natural targets. Com-
pared to natural targets, many studies predefine artificial targets as the templates, such
as concentric rings with a gradual blend from black to white at the edges [35–37], ArUco
markers [3,9,38], coded and uncoded optical target arrays [39,40], circular border pattern
with line pattern including multiple intersected lines [41–44], artificial quasi-interferogram
fringe pattern (QIFP) [45], speckle pattern [46], illuminated light source [47], and retro
reflective materials [48].

3. Proposed Method

This section introduces the proposed sparse-optical-flow-based target tracking method
used for structural vibration monitoring. Compared to the existing studies [9,15], a new
combination is created by employing different methods for keypoints extraction and
removal of outliers and applying a multi-level strategy on the LK algorithm to enhance
the target tracking. As shown in Figure 1, this combination takes the ROIs cropped
from two consecutive frames (It, It+1) as input, and outputs the motion trajectory (green
lines) for each sparse keypoint (green dots) on the previous frame, It. Keypoints are first
extracted in It, and then optical flow vectors (I f ) are calculated to track the locations of
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keypoints in the next (i.e., current) frame, It+1. The key elements in the proposed method
are described below.

Outliers Removal

MLK

It

It+1

ORB 

detector
Hamming 

Distance

IQR 

Score

If

2D KeypointsROIs of Consecutive Frames

Figure 1. Flowchart of the proposed sparse-optical-flow-based target tracking method. ORB: Oriented
Fast and Rotated Brief, MLK: multi-level Lucas–Kanade algorithm, IQR: interquartile range.

ROI indicates the location that is being monitored on the vibrating structure (i.e., girder)
for keypoints tracking. As the girder is a rigid structure, the displacement of all keypoints
will be the same. Therefore, ROI is defined manually by drawing a box on the area with
rich features in the initial frame of the video, for example, all of the pixels that correspond
to the right part of the top floor (see Figure 1). Then the first image and the successive
images captured by the ROI are tracked continuously.

ORB is widely used in computer vision tasks such as object detection and stereo
matching [49,50]. It is basically a fusion of Features from Accelerated Segment Test
(FAST) keypoint detector [51] and Binary Robust Independent Elementary Features (BRIEF)
descriptor [52] with many modifications to enhance the performance. ORB performs as
well as SIFT in the task of feature detection and it is better than SURF [49]. In this paper,
ORB is employed to detect two-dimensional (2D) keypoints in the ROIs of It.

LK Algorithm is a widely used method for motion vector estimation, which is based
on the assumption of brightness constancy [11]. Consider a pixel I(x, y, t) in the reference
frame, and it moves by a distance of (∆x, ∆y) in the next frame, which is taken after a
period of time ∆t. Assuming that the pixels are the same and their intensity does not change
over time, one can write:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (1)

For two continuous frames It and It+1, a small w× w window is considered in the
neighborhood of a keypoint (x, y) in It, and a matched pixel (x + ∆x, y + ∆y) in It+1 is lo-
cated by using a Gauss–Newton algorithm, where the target function shown in Equation (2)
is minimized.

min
∆x, ∆y

‖ It (x, y)− It+1 (x + ∆x, y + ∆y) ‖2 (2)

Multi-level Optical Flow Strategy allows the flow field to be estimated at coarser
levels and then be fine-tuned by increasing the resolution of images. Adelson et al. [53]
investigated the use of the pyramid approach to develop a multi-level optical flow strategy.
As shown in Figure 2, the Gaussian pyramid is employed and the resolution of the image
is reduced at each level while climbing the pyramid. To develop a multi-level strategy,
the number of levels needs to be specified, which is one of the critical parameters used in
the image pyramid. A finer level leads to greater accuracy of the algorithm, but it would
also lead to a higher cost of computational resources. Another important parameter that
needs to be specified is the scaling factor, which determines the extent of downsampling
images in the pyramid. As shown in Figure 2, the optical flow is estimated based on a
multi-level optical flow strategy with its subsequent warping steps, where a four-level
image pyramid is first created for each frame by downsampling the image with the scaling
factor of n = 0.5. Then, the optical flow is computed at lower-resolution images, which
serves as the initialization for higher-resolution pyramid levels. Due to the brightness
constancy assumption, the LK algorithm can only estimate small displacements. Therefore,
in this study, the multi-level strategy is combined with the LK algorithm to manage large
displacements [23].
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Figure 2. Flowchart of multi-level optical flow strategy that is used in the proposed method.

In this study, the proposed Outlier removal method is based on Hamming distance
and IQR score. This is conducted after obtaining the initially matched keypoints from the
MLK algorithm to improve the accuracy of tracking and eliminate the outliers of tracked
keypoints in the next frame. The similarity between all the initially matched pairs of
keypoints is checked by calculating the Hamming distance, d(at, at+1), based on the ORB
descriptors (i.e., at and at+1) of the matched keypoints. The keypoints are eliminated as
outliers if the Hamming distance is greater than the maximum of either 2dmin or a threshold
value s.

d(at, at+1) ≥ max(2× dmin, s) (3)

where dmin is the minimum Hamming distance of all initially matched pairs. The threshold
value s is chosen based on expert judgment.

Subsequently, the keypoints are removed as outliers based on the IQR value. The
displacement decrements of each matched keypoint in Euclidean space, horizontal direction,
and vertical direction are calculated. The selected matched keypoints are sorted in the
order from least to greatest based on these three displacements, respectively. Then, the IQR
value of each of the three sorted displacements is calculated using Equation (4):

IQR = Q3 −Q1 (4)

where Q1 and Q3 are the first and third quartiles of each kind of sorted displacements. For
each pair of matched keypoints, if any one of its three kinds of relative displacements lies
outside a specified range [Q1 − r × IQR, Q2 + r × IQR], the keypoint is regarded as an
outlier and is removed. In this study, r = 0.8 is selected based on a qualitative study, which
is a trade-off between the accuracy of keypoint tracking and the number of final matched
keypoints; however, the results are not presented here for brevity.

Finally, the displacement decrement of the monitored vibrating structure between
each of the two consecutive frames is calculated by averaging the decrements for each
keypoint following the previous studies [18].

4. Vision-Based Sensing System

In this study, the visual sensing system used for structural vibration monitoring is
based on target tracking techniques. As shown in Figure 3, this system takes the video
frames that record the vibration of a structure as an input and outputs the acceleration time
histories of the structural vibration. It consists of two components: (i) camera calibration
and scale conversion; and (ii) frame tracking strategies and displacement calculation. To
save on computational resources, an ROI is defined in the first frame.
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Input Video Frames

Frame Tracking Strategy
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Figure 3. Flowchart of the visual sensing system.

4.1. Camera Calibration and Scale Conversion

In this study, image distortion removal and scale conversion to calibrate the camera
are implemented. An offline camera calibration method, Open Source Computer Vision
Library (OpenCV), is used to remove the video image distortion [54]. The radial distortion
and tangential distortion are two major kinds of distortions in pinhole cameras. The lens
distortion is corrected by accounting for the radial distortion and the tangential distortion
according to Equation (5).

xdistorted = x + x
(

1 + k1r2 + k2r4 + k3r6
)
+
(

2p1xy + p2(r2 + 2x2)
)

ydistorted = x + y
(

1 + k1r2 + k2r4 + k3r6
)
+
(

p1(r2 + 2y2) + 2p2xy
) (5)

where (x, y) is the undistorted pixels, and r2 = x2 + y2. The terms k1, k2, and k3 represent
the radial distortion coefficients, while p1 and p2 are the tangential distortion coefficients.
The camera-specific distortion coefficient values used in this study are presented in Section 5
of this manuscript.

After correcting for lens distortion, a scale ratio s is used to convert the image co-
ordinates (i.e., pixels) to actual spatial coordinates (e.g., millimeters), and it is given by
Equation (6).

s = d/D (6)

where, d is the distance between two points of an object (e.g., chessboard) in the actual
spatial coordinate, while D is its corresponding distance in the image coordinate.

4.2. Frame Tracking Strategies and Displacement Calculation

The displacement time history is often calculated by either employing a fixed-frame
strategy or an updated-frame strategy [1,55]. The main difference between these two
strategies is whether the reference frame is kept fixed or is updated when calculating the
displacement for each tracked target. Figure 4a shows the fixed-frame strategy, where the
first frame (i.e., Frame 0) is always used as the reference frame. The absolute displacement of
each target at every single time instant is calculated by subtracting the location coordinate
of the target in Frame 0 from the location coordinate in the current frame (e.g., Frame
m + 1, Frame m + 2, Frame m + 3). Figure 4b shows the updated-frame strategy. The
displacement decrement ∆i between two consecutive frames (e.g., Frame m+1 and Frame
m + 2, Frame m + 2 and Frame m + 3) is calculated, and the absolute displacement at every
instant of time is the accumulation of all previous ∆i. Then, the actual displacements
are obtained by multiplying the displacements in pixel coordinates with the calculated
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scale ratio, s. Finally, the proposed sparse-optical-flow-based target tracking approach is
combined with the updated-frame strategy to calculate the acceleration time history.

(b)

(a)

Frame 0 Frame 1 Frame m+1 Frame m+2 Frame m+3 Frame m+4

Frame 0 Frame 1 Frame m+1 Frame m+2 Frame m+3 Frame m+4

……

……

……

……

d(m+1)

d(m+3)

1 m+2 m+3

d(m+2)

d(m+4)

d1

m+4

1

Timeline
0


𝑖=1

𝑚+2

∆𝑖


𝑖=1

𝑚+3

∆𝑖


𝑖=1

𝑚+4

∆𝑖


𝑖=1

𝑚+1

∆𝑖

Figure 4. Two frame tracking strategies: (a) fixed-frame strategy, (b) updated-frame strategy;
d: absolute displacement, ∆: relative displacement.

5. Experimental Setup for Measurement

This section describes the experimental setup and the different systems used to eval-
uate the performance of the target tracking approach in structural vibration monitoring.
The overview of the experimental setup is shown in Figure 5. A three-story shear building
structure is fixed on the shake table and subjected to harmonic loads excitation using an
excitation system. A reference system measures the acceleration time series response for the
vibration of each floor under different excitation frequencies. A vision sensor system records
the structural vibration for acceleration calculation. The technical specifications of instru-
ments used in each system are tabulated and included in the Supplementary Document
(Tables S1 and S2).

21 3

5 6

9

11

12

12

7

8 10

4

1. Waveform generator 4. Shake table 7. Three groups of fiducial markers 10. Control software for oscilloscope

2. Digital power amplifier 5. Three-story structure 8. Oscilloscope 11. Camera

3. Electromagnetic actuator 6. Three accelerometers 9. Sensor signal conditioner 12. Focus flood lights

Figure 5. Overview of the experimental setup.
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5.1. Experimental Three-Story Shear Building Structure

It consists of two aluminum columns and one lumped mass steel girder on each floor
with its base fixed rigidly to a uniaxial shake table as shown in Figure 6a. The specifications
of the structure are as follows: height of each floor H = 172.0 mm, size of each floor is
w1 × h1 × l1 = 25.4 mm × 18.5 mm × 244.0 mm, mass of each floor m1 = 0.914 kg, size
of each column w2 × h2 × l2 = 1.5 mm × 25.2 mm × 194.0 mm, mass of each column
m2 = 0.020 kg, distance between each pair of columns W = 202.0 mm. The three natural
frequencies of the structure are 3.84 Hz, 10.96 Hz, and 15.61 Hz.

(a)

1
7
2
.0

m
m

1
7
2
.0

m
m

1
7
2
.0

m
m

202.0mm

3 ArUco marker boards

3 Accelerometers

Top Floor

Middle Floor

Bottom Floor

Base Floor

244.0mm

31.8mm

1
5
.4

m
m

1
8
.5

m
m

x

y (b)

(c)

(d)

Figure 6. Experimental three-story shear building structure. (a) Overview of the structure; (b) close-up
shot of the ArUco marker board fixed on the top floor; (c) left end of the lumped mass steel stick of the
middle floor; (d) detected ids of the fiducial markers.

5.2. Excitation System

It consists of the waveform generator, digital power amplifier, electromagnetic ac-
tuator, and shake table. In this study, harmonic base excitations are simulated in the
horizontal direction at three frequency levels: 2 Hz, 5 Hz, and 10 Hz. These frequen-
cies are chosen because most structures have fundamental frequencies in the range of
2–10 Hz. In addition, for safety against the in-house operational vibrations at industrial
facilities such as the pump-induced vibrations, the frequencies are typically on the order of
5–10 Hz [56]. For each excitation frequency level, the time of excitation is chosen as 20 s,
10 s, and 10 s, respectively.

In industrial facilities and nuclear power plants, the vibrations that occur during
in-plant operations, such as pump-induced vibrations, flow-assisted vibrations, or seismic
vibrations, are transient in nature with noise rather than steady state. Therefore, in the
experimental setup, the excitation frequency is kept fixed but the amplitude of vibration is
changed continuously during the structure’s excitation to capture the transient nature of
measurements in reality.

5.3. Reference System

In this study, three uniaxial high-sensitivity piezoelectric accelerometers (PCB 308B02)
with a sensitivity of 1000 mV/g and frequency range of 250–3000 Hz (±10%) are mounted
on each floor of the shear building (see Figure 6) to capture the structural acceleration
versus time responses in the horizontal direction. As shown in Figure 5, a sensor signal
conditioner is employed to convert the electrical signal captured from accelerometers into
the type of signal that is read by the oscilloscope. Then, an oscilloscope is utilized to display,
store, and transfer the waveform data as .csv files.
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5.4. Vision Sensor System

It consists of two parts: data acquisition and data processing.

5.4.1. Data Acquisition

In this study, a Nikon Z 7 Mirrorless Digital Camera equipped with a Nikon NIKKOR Z
24–70 mm f/4 S Lens is positioned at a distance of 900 mm away from the frame to record the
structural vibration in the video, as shown in Figure 5. The values of camera lens distortion
coefficients are k1 = 0.00224349, k2 = −0.15135992, k3 = 0.37956948, p1 = 0.00679483,
and p2 = −0.00144892. The calculated scale ratios of the videos corresponding to the
structural vibration under three excitation frequencies (2 Hz, 5 Hz, and 10 Hz) are 0.39596,
0.38319, and 0.38435, respectively. The details of the video image distortion removal for the
vision-based sensing system are shown in Section S2 of the Supplementary Document.

The angle of the lens is an important factor and impacts the results. For instance,
the accuracy of the algorithm diminishes with the increased camera angle [3,21], but the
monitoring angles of less than 15 degrees do not have a detrimental effect on system
performance [16]. This research focuses on evaluating the accuracy of target tracking
methods in measuring the acceleration of the structural vibration. Hence, the optical axis of
the lens is oriented perpendicular to the motion axis (i.e., facing straight on the side of the
frame) to eliminate the impact of the angle of the lens. However, this work can be extended
for out-of-plane vibrations. For instance, the combination of multiple cameras to estimate
the movement in three directions (i.e., x, y, and z) is similar to digital coordination but from
different views and using targets (i.e., QR codes/fiduciary markers). Lastly, checking the
normal configuration of the camera can be a simple visual check, making sure that the
video is not blurry. This is because the accuracy of the system is dictated by the accuracy of
target tracking. The accuracy of target tracking depends on the accuracy of target detection,
which depends on the image quality (mainly blurriness).

To eliminate the motion blur when recording the fast-moving structure, the frame rate
is set to 120 fps (frames per second) and the resolution is set to 1280 px × 960 px. Moreover,
a moving object in the video will be blurred if the shutter speed of the camera is not fast
enough. A 1/8000 s exposure can remove motion blur for almost any image, but fast
shutter speeds will lead to dark images. To solve this issue, two Lowel DP focus flood lights
(120–240 VAC) are placed in front of the vibrating structure as compensation to obtain a
bright image.

5.4.2. Data Processing

Data processing with help of a graphics processing unit (GPU) can make the algorithm
work fast. In this research, a widely used process is employed in which the data are received
on the CPU and then transmitted to GPU for further processing. It is important to note
that this has no impact on the buffer size. To compute the acceleration, a Dell Alienware
Aurora R7 desktop with 8th Gen Intel Core i7-8700 and NVIDIA GeForce GTX 2080 GPU
is employed.

6. Qualitative and Quantitative Assessment of Proposed Method

In this section, the proposed vision-based target tracking method for structural vibra-
tion monitoring is evaluated qualitatively and quantitatively through the laboratory-scale
experiment. The proposed method is also compared with various existing target tracking
methods in the literature.

6.1. Implementation of the Proposed Method

The proposed target tracking method is implemented in C++ programming lan-
guage by carrying out three key steps: (i) sparse optical flow calculation, (ii) Hamming
distance-based outlier removal method, and (iii) IQR score-based outlier removal method.
Figure 7 shows two instances of frame (It, It+1) to qualitatively compare the effects of three
steps. The colored circles in Figure 7 represent the keypoints 2D position: (xi, yi) detected
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by the ORB detector in frame It and the optical flow algorithm in frame It+1, and each of
them is a local extremum whose pixel intensity is greater or smaller than all its neighbors.
Images in Figure 7a show the pairs of matched keypoints in the ROIs of the previous frame,
It, and the current frame, It+1, after implementing all three steps. The colored lines connect
the matched keypoints in the ROI of It and their corresponding keypoints in It+1. Images
in Figure 7b show the motion trajectories (green lines) for the matched keypoints (greens
dots) in the ROI of It from time t to t + 1.

It It+1

(b) Motion Trajectory Sets

(b-i)

(b-ii)

(b-iii)

(a-i)

(a-ii)

(a-iii)

(a) Corresponding Pair Sets of Matched Keypoints

Figure 7. Qualitative example of the sparse-optical-flow-based target tracking. Pairs of matched
keypoints in the ROIs of the previous frame, It, and the current frame, It+1, after implementing
(a-i) sparse optical flow calculation, (a-ii) Hamming distance-based outlier removal method, and
(a-iii) IQR score-based outlier removal method. Motion trajectories for the matched keypoints in the
ROI of It from time t to t + 1, after implementing (b-i) sparse optical flow calculation, (b-ii) Hamming
distance-based outlier removal method, and (b-iii) IQR score-based outlier removal method.

The matched keypoints shown in Figure 7(a-iii) are much more distinct and have
greater clarity compared to the keypoints observed in Figure 7(a-i). This is because several
unmatched points are removed after implementing the two-step outlier removal process.
The Hamming distance-based outlier removal is implemented based on the similarity
between each pair of matched keypoints. By comparing the green lines in red circles in
Figure 7(b-i,b-ii), it shows that Hamming distance removes motion trajectories that are
not similar, whereas IQR score-based outlier removal method focuses on removing the
motion vectors based on the direction and length (Equation (4)), so several vertical green
lines in the red circle of Figure 7(b-i) are still shown in Figure 7(b-ii), but they are removed
from Figure 7(b-iii). As seen in Figure 8, the response obtained from the proposed method
matches closely with the measured response.
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Figure 8. Comparison of middle floor acceleration response from the accelerometer and the proposed
method at 2 Hz.
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Next, the accuracy performance of the proposed method is evaluated using root mean
square error (RMSE). RMSE is a widely accepted evaluation metric in the performance
assessment of computer-vision-based vibration monitoring methods. It measures how far
the numerical results are around the observed data and is given by Equation (7) [57].

r = ai − âi

RMSE =

[
1
N

N

∑
i=1

r2

]1/2 (7)

where âi is the observed or measured acceleration data captured by the accelerometers
mounted on each floor, ai is the acceleration data calculated using vision-based methods, r is
the residual between the measured data and calculated results, and N is the sampling size.

6.2. Comparison with Existing Sparse Optical Flow Tracking Methods

The accuracy performance of the proposed method is compared with five existing
sparse-optical-flow-based target tracking methods in vibration monitoring. The RMSE
and the corresponding error percentages are illustrated in Table 1. The existing methods
are combinations of different keypoint detectors (e.g., Shi–Tomasi corner, Harris corner,
SURF), LK, and different outlier removals (e.g., MLESAC, bidirectional error). The multi-
level optical flow strategy is implemented by combining the SURF detector with LK
algorithm [15] and the multi-level LK (MLK) algorithm. It is observed that when the
bottom floor is excited with a frequency of 5 Hz and the middle floor with a frequency of
10 Hz, the maximum amplitudes are only around 2 mm and 1 mm, respectively. Hence,
the achieved accuracies of all the methods are similar. However, for other cases with
larger maximum amplitudes, the proposed method has better accuracy compared to the
existing methods.

Table 1. RMSE (mm) and its error percentages (%) for sparse optical flow tracking methods.

Freq Methods Bottom (%) Middle (%) Top (%)

2 Hz

Shi–Tomasi corner + LK [10,14] 0.0184 (+5.747) 0.0170 (+11.842) 0.0216 (+4.854)
Harris corner + LK [9] 0.0181 (+4.023) 0.0170 (+11.842) 0.0212 (+2.913)
SURF + LK [15] 0.0253 (+45.402) 0.0165 (+8.553) 0.0226 (+9.709)
SURF + LK + MLESAC [16] 0.0178 (+2.299) 0.0166 (+9.211) 0.0226 (+9.709)
SURF + LK + Bidir. error [18] 0.0177 (+1.724) 0.0166 (+9.211) 0.0224 (+8.738)
SURF + MLK 0.0321 (+84.483) 0.0162(+6.579) 0.0213 (+3.398)
Proposed 0.0174 (+0) 0.0152 (+0) 0.0206 (+0)

5 Hz

Shi–Tomasi corner + LK [10,14] 0.0217 (+1.878) 0.1225 (+151.540) 0.2668 (+352.971)
Harris corner + LK [9] 0.0218 (+2.347) 0.1267 (+160.164) 0.2851 (+384.041)
SURF + LK [15] 0.0272 (+27.700) 0.1307 (+168.378) 0.2815 (+377.929)
SURF + LK + MLESAC [16] 0.0222 (+4.225) 0.1338 (+174.743) 0.2799 (+375.212)
SURF + LK + Bidir. error [18] 0.0223 (+4.695) 0.1320 (+171.047) 0.2740 (+365.195)
SURF + MLK 0.0264 (+23.944) 0.1246 (+155.852) 0.1492 (+153.311)
Proposed 0.0213 (+0) 0.0487 (+0) 0.0589 (+0)

10 Hz

Shi–Tomasi corner + LK [10,14] 0.5975 (+150.945) 0.0639 (+0.157) 0.3693 (+122.336)
Harris corner + LK [9] 0.6058 (+154.431) 0.0638 (+0) 0.3731 (+124.624)
SURF + LK [15] 0.5944 (+149.643) 0.0692 (+8.464) 0.4062 (+144.551)
SURF + LK + MLESAC [16] 0.6112 (+156.699) 0.0686 (+7.524) 0.4113 (+147.622)
SURF + LK + Bidir. error [18] 0.6070 (+154.935) 0.0687 (+7.680) 0.4097 (+146.659)
SURF + MLK 0.2830 (+18.858) 0.0661 (+3.605) 0.1886 (+13.546)
Proposed 0.2381 (+0) 0.0647 (+1.411) 0.1661 (+0)

Freq: frequencies of harmonic excitations; red value: lowest value, i.e., BEST accuracy.
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6.3. Comparison with Existing Feature-Matching-Based Tracking Methods

In this study, the existing feature-matching-based tracking methods are modified in
order to compare with the proposed method which is based on sparse optical flow tracking.
Both these target tracking techniques use a set of sparse keypoints. As shown in Figure 9,
the modified feature-matching-based method takes the ROIs cropped from the reference,
Im, and current frames, It+1, as an input. It outputs the matched keypoint pairs that are
connected by the colored lines. More specifically, the ORB detector and outlier removal in
this method are the same as those used in the proposed sparse-optical-flow-based target
tracking method. After applying ORB, each keypoint is described by a 256-bit long binary
data string. Then, a brute-force descriptor matcher [54] is employed to estimate the motion
vector for each keypoint detected in Im.

Brute-force 

Descriptor 

Matcher

Im

It+1

ORB 

detector

ORB 

detector

Matching Result

2D Keypoints

2D Keypoints

Feature 

Extraction

Feature

Extraction

ORB Descriptor

ORB Descriptor

Outliers Removal

Hamming 

Distance

IQR 

Score

Figure 9. Flowchart of the modified feature-matching-based target tracking method.

For feature-matching-based target tracking, a set of keypoints are detected in each
video frame independently, so feature-matching-based target tracking can be combined
with both fixed-frame and updated-frame strategies. In this comparative study, the modi-
fied feature-matching-based method is employed with both frame tracking strategies to
calculate the acceleration time histories for each floor of the three-story shear building
structure. The feature-matching-based target tracking is implemented in C++ programming
language and has three key steps: (i) brute-force matching, (ii) Hamming distance-based
outlier removal method, and (iii) IQR score-based outlier removal method.

Images in Figure 10a show the results calculated by fixed-frame strategy. In accordance
with Figure 4, the fixed-frame strategy uses the first frame, I1, as the reference frame at all
times to calculate the displacements. Images in Figure 10b show the results obtained
by using the updated-frame strategy. The updated-frame strategy does not use a fixed
frame of reference but rather updates it at each time step, which considers two consecutive
frames at any time instance such that the previous frame, It, is used as the reference frame.
Figure 10i shows pairs of initial matched keypoints in the ROIs of reference frame and
current frame, It+1, after implementing the brute-force matching. The colored lines connect
the matched keypoints in the ROI of I1 and their corresponding keypoints, 2D position:
(xi + ∆xi, yi + ∆yi) in It+1. Figure 10ii,iii show the pairs of matched keypoints in the ROIs
of reference frame and It+1 using colored lines, respectively.

The colored lines shown in Figure 10iii are much more distinct and have greater
clarity compared to the lines observed in Figure 10i. This is similar to what we observe in
the proposed method as both these target tracking methods employ the same techniques
for keypoint detection and outlier removal. However, the matched keypoints using the
proposed method shown in Figure 7a are much denser than those obtained using the
feature-matching-based method shown in Figure 10b, indicating that the MLK algorithm
can find many more matched keypoints than the brute-force method.
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I1 It+1

(a) Fixed-Frame Strategy (b) Updated-Frame Strategy

It It+1

(a-i)

(a-ii)

(a-iii)

(b-i)

(b-ii)

(b-iii)

Figure 10. Qualitative example of the feature-matching-based target tracking with (a) fixed-frame
strategy and (b) updated-frame strategy.

Next, the accuracy performance of the proposed method is compared with the modi-
fied feature-matching-based target tracking methods. As shown in Table 2, the RMSE and
the corresponding error percentages are the least for the proposed method.

Table 2. RMSE (mm) and its error percentages (%) for feature-matching-based tracking methods.

Freq. Method Bottom (%) Middle (%) Top (%)

2 Hz
FM-Fixed 0.0243 (+39.655) 0.0235 (+54.605) 0.0266 (+29.126)
FM-Updated 0.0407 (+133.908) 0.0349 (+129.605) 0.0366 (+77.670)
Proposed 0.0174 (+0) 0.0152 (+0) 0.0206 (+0)

5 Hz
FM-Fixed 0.0839 (+293.897) 0.0862 (+77.002) 0.0950 (+61.290)
FM-Updated 0.0725 (+240.376) 0.0798 (+63.860) 0.0813 (+38.031)
Proposed 0.0213 (+0) 0.0487 (+0) 0.0589 (+0)

10 Hz
FM-Fixed 0.2499 (+4.956) 0.1071 (+65.533) 0.1841 (+10.837)
FM-Updated 0.2441 (+2.520) 0.0977 (+51.005) 0.1759 (+5.900)
Proposed 0.2381 (+0) 0.0647 (0) 0.1661 (+0)

Freq: frequencies of harmonic excitations; red value: lowest value, i.e., BEST accuracy.

6.4. Comparison with Existing Dense-Optical-Flow-Based Target Tracking Methods

In this study, a deep-learning-based dense optical flow algorithm [58] is selected as
the target tracking method for structural vibration monitoring. This algorithm has the best
performance compared to other existing dense optical flow methods and has the ability
to handle large displacements with the help of a global motion aggregation module. In
contrast to sparse optical flow and feature-matching techniques which explore matched
keypoints, dense optical flow is based on a close examination of an ROI. It takes the ROIs
of the previous frame, It, and the current frame, It+1, as inputs, and outputs the optical
flow of each pixel within ROI. In addition, there is no additional step of outlier removal in
a dense optical flow technique. In the current study, the same procedure in Jinag et al. [58]
is implemented to train and validate the model. Finally, the pixel value of the center of
the generated optical flow map is selected as the relative displacement for the vibrating
structure between the current and reference frames. To monitor the structural vibration,
the dense-optical-flow-based target tracking method is combined with the updated-frame
strategy to calculate the acceleration time histories for each floor of the three-story shear
building structure. This tracking method is implemented in the Python programming
language, and GPU and PyTorch are employed to speed up the computation.

Figure 11 shows a qualitative result after implementing the dense optical flow algo-
rithm on two consecutive frames. Specifically, Figure 11a,b show the ROIs of It and It+1,
respectively. Figure 11c is the dense optical flow between It and It+1, which shows the flow
vectors of the entire ROI (all pixels) of It. The red color region represents that the object was
displaced towards the right, the green color region represents that the object was displaced
towards the left, and the white color region represents that the object was not displaced.
The pixels with more intensity represent that the object was displaced more. As shown in
Figure 11a,b, the top floor was displaced towards the right from It to It+1, which has the
same moving direction (red region) shown in Figure 11c. For these red areas, some of the
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areas that overlapped with the vibrating structure display the same pixel intensity, which
means that these areas of vibration on the building model have the same motion.

It It+1 Calculated Dense Optical Flow

(a) (b) (c)

Figure 11. Qualitative example of the target tracking results based on dense optical flow technique.

Next, the accuracy performance of the proposed method is compared with the dense-
optical-flow-based target tracking methods. As shown in Table 3, for harmonic excitations
of 2 Hz and 5 Hz, the accuracy of the proposed method is better than the dense-optical-
flow-based target tracking method. When the building structure is subjected to harmonic
excitation at 10 Hz, their accuracy is almost the same.

Table 3. RMSE (mm) and error percentages (%) for dense optical flow tracking methods.

Freq. Method Bottom (%) Middle (%) Top (%)

2 Hz
DOF-Updated 0.0178 (+2.299) 0.0173 (+13.816) 0.0221 (+7.282)
Proposed 0.0174 (+0) 0.0152 (+0) 0.0206 (+0)

5 Hz
DOF-Updated 0.0247 (+15.962) 0.0582 (+19.507) 0.0619 (+5.093)
Proposed 0.0213 (+0) 0.0487 (+0) 0.0589 (+0)

10 Hz
DOF-Updated 0.2382 (+0.042) 0.0637 (+0) 0.1670 (+0.542)
Proposed 0.2381 (+0) 0.0647 (+1.570) 0.1661 (+0)

Freq: frequencies of harmonic excitations; red value: lowest value, i.e., BEST accuracy.

6.5. Comparison with Existing Template-Matching-Based Target Tracking Methods

In this study, the existing methods [3,9] with ArUco marker as the predefined template
are implemented to track the motion of a vibrating structure. ArUco is a system that
contains a set of predesigned markers and an algorithm to perform its detection [59].
It is one of the most evolved tools for fiducial marker detection and has been widely
used in computer vision applications such as robot navigation and augmented reality.
OpenCV [54] is used for automated ArUco marker detection. As shown in Figure 6a, the
three ArUco boards were placed on each floor of the structure independently. Compared
to existing studies [3,9] which use only a single marker, an ArUco board is designed
consisting of four ArUco markers (see Figure 6b) to improve the stability. Specifically, a
marker board has a size of 31.8 mm × 31.8 mm and contains four ArUco markers that are
15.4 mm × 15.4 mm. Each marker is composed of a wide black border and an inner binary
matrix (high-contrast pattern) which determines their unique ids. As shown in Figure 6d,
after applying the ArUco marker detection algorithm for each frame, (x, y)-coordinate and
id of each detected ArUco marker are returned, which demonstrates that the structural
vibration for each floor is monitored independently even though each floor looks similar.
Compared to the first frame, I1, of the video, the relative displacement of each detected
marker of the current frame, It+1, is calculated using Equation (8).

dit+1 =
√
(dxit+1)

2 + (dyit+1)
2

dxit+1 = xit+1 − xi1

dyit+1 = yit+1 − yi1

(8)

where dit+1 is displacement of marker with id of i, dxit+1 and dyit+1 represent displacement
in the x-direction and y-direction (see Figure 6), respectively; (xi1 , yi1) is the coordinate of
the detected marker with id of i in I1, while (xit+1 , yit+1) is the coordinate of the detected
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marker in It+1. The tracking output for each floor is the average displacement of detected
markers, which is calculated as follows:

D =

(
N

∑
i=1

dmi

)
/N (9)

where D is the average displacement for each floor, mi is the id of detected markers, dmi is
the calculated displacement for each marker, and N is the number of detected markers.

To monitor the structural vibration, the template-matching-based target tracking
method is combined with two frame tracking strategies and is implemented in the C++
programming language. Both template-matching-based and feature-matching-based target
tracking techniques detect and recognize targets on each frame, and search matched
pairs of targets between the reference and current frames. The only difference is that
the template-matching-based target tracking employs ArUco markers as targets, which
are physical markers and have been predefined, whereas feature-matching-based target
tracking employs keypoints as targets, which are virtual markers and are related to the
type of keypoints detector. As shown in Figure 6d, all predefined ArUco markers in the
current frame are detected, and then labeled by outer square boxes (white boxes) with
unique identified marker numbers (e.g., id = 6, white text), which are used to match the
detected predefined ArUco markers in the reference frame.

As seen in Table 4, the proposed method performs better than the existing template-
matching-based target tracking methods. As mentioned before, predefined templates
are easily occluded by adverse factors such as shape deformation and rotation, which
can negatively impact the accuracy of template-matching-based target tracking in vibra-
tion monitoring.

Table 4. RMSE (mm) and error percentages (%) of existing template-matching-based target track-
ing methods.

Freq. Method Bottom (%) Middle (%) Top (%)

2 Hz
Marker-Fixed 0.0186 (+6.897) 0.0173 (+13.816) 0.0219 (+6.311)
Marker-Updated 0.0341 (+95.977) 0.0414 (+172.368) 0.0245 (+18.932)
Proposed 0.0174 (+0) 0.0152 (+0) 0.0206 (+0)

5 Hz
Marker-Fixed 0.0357 (+67.606) 0.0583 (+19.713) 0.0699 (+18.676)
Marker-Updated 0.0512 (+140.376) 0.1938 (+297.947) 0.1472 (+149.915)
Proposed 0.0213 (+0) 0.0487 (+0) 0.0589 (+0)

10 Hz
Marker-Fixed 0.2391 (+0.420) 0.0707 (+9.274) 0.1704 (+2.589)
Marker-Updated 0.6249 (+162.453) 0.1367 (+111.283) 0.1697 (+2.167)
Proposed 0.2381 (+0) 0.0647 (+1.570) 0.1661 (+0)

Freq: frequencies of harmonic excitations; red value: lowest value, i.e., BEST accuracy.

7. Discussion of Results

This section discusses the effect of various components such as ROI selection, the type
of outlier removal method, excitation frequency, frame rate, frame strategy, and keypoints
tracking techniques on the accuracy of the proposed method.

7.1. Effect of ROI Selection and Outlier Removal Methods

When images are processed using vision-based target tracking methods, only the
image data within ROI are processed [22]. ROI is defined on the assumption that all
keypoints are detected on a rigid structure and they have the same displacement. In
vision-based monitoring, the keypoints are regarded as unreliable and removed as outliers
if they are either unmatched pairs during target tracking or they are detected in the
unreliable regions, such as the regions that are not in motion (e.g., black background
in Figure 6), and the regions that experience slight motion relative to the rigid structure
(e.g., vertical columns of the three-story shear building structure) [13]. These types of
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unreliable keypoints can be removed by implementing outlier removal techniques based
on methods such as MLESAC [16,17] and bidirectional error detection [18]; however, their
performance highly depends on the selection of ROI.

For example, these methods can produce wrong estimates when the number of key-
points detected in the object of interest is not significantly greater than that in any other
objects in ROI, which means that the inliers are heavily influenced by the keypoints de-
tected in unreliable regions. The MLESAC algorithm requires an inlier ratio to generate the
prior probability, where the inlier ratio should be large enough to ensure the convergence
of the maximum likelihood [60], which can be adjusted based on the ROI box. In the
bidirectional error detection strategy, the error is defined as the difference between the
forward and backward trajectories of a pair of initially matched keypoints [18]. This error is
utilized to remove the unmatched pairs of keypoints in terms of similarity, rather than the
keypoints detected in unreliable regions or those that have atypical motion directions. In
this study, the proposed two-step outlier removal method based on Hamming distance and
IQR score outperforms the MLESAC and the bidirectional error detection methods because
it considers both the similarity of keypoints as well as their relative motion simultaneously.
Even if the ROI contains a large number of unreliable keypoints, the IQR score-based
outlier removal methodology performs well as long as the value of constant r is properly
investigated (Equation (4)). If r was set to a high value such as 0.9, a large number of
keypoints were removed as outliers which resulted in very few final matched keypoints.

To evaluate the performance of the proposed outlier removal, an additional compara-
tive study is conducted. Specifically, the proposed two-step outlier removal methods are
replaced with MLESAC-based and bidirectional error-based outlier removals. As shown
in Table 5, the proposed method has an error of less than 3% for all the cases. These
results are calculated based on ROIs that have a large number of keypoints detected on the
rigid girder and a few keypoints detected on the other components of the experimental
setup. During the experiments conducted as a part of this study, the ROIs are selected
again to significantly increase the ratio between the number of unreliable keypoints and
reliable keypoints.

Table 5. RMSE (mm) and its error percentages (%) for different outliers.

Methods Freq Bottom (%) Middle (%) Top (%) ROI Size (Pixels) Image Processing Speed (fps)

ORB + MLK + MLESAC
2 Hz 0.0177 (+2.299) 0.0152 (0) 0.0204 (0)

318× 1006 17.135 Hz 0.0211 (+1.442) 0.0721 (+48.049) 0.0608 (+3.932)
10 Hz 0.2477 (+4.032) 0.0740 (+16.352) 0.1685 (+1.445)

ORB + MLK + Bidir. error
2 Hz 0.0173 (0) 0.0152 (0) 0.0204 (0)

318× 1006 8.895 Hz 0.0208 (0) 0.0656 (+34.702) 0.0585 (0)
10 Hz 0.2476 (+3.990) 0.0636 (0) 0.1681 (+1.204)

Proposed
2 Hz 0.0174 (+0.578) 0.0152 (0) 0.0206 (+0.980)

318× 1006 13.775 Hz 0.0213 (+2.404) 0.0487 (0) 0.0589 (+0.684)
10 Hz 0.2381 (0) 0.0647 (+1.700) 0.1661 (0)

Green, cyan, and orange values represent the results of the vibration of each floor under excitation frequencies
with 2 Hz, 5 Hz, and 10 Hz, respectively. Bold text: the lowest value of each case, i.e., BEST performance.

7.2. Effect of Excitation Frequency on the Accuracy of Vision-Based Methods

The RMSE results shown in Tables 1–4 have smaller values at lower excitation fre-
quencies (e.g., 2 Hz) than those obtained at higher excitation frequencies (e.g., 10 Hz). This
occurs because a large number of samples are acquired for lower excitation frequencies
compared to higher excitation frequencies within each minima and maxima value of the
amplitude of vibration. When the excitation frequency of vibrations is low, the structure
undergoes slower oscillations and, hence, the sensors can capture response with a higher
resolution, as long as the sampling rate is kept fixed. For example, for a fixed-frame sam-
pling rate of 120 Hz, 30 samples can be acquired between the minima and maxima at 2 Hz
excitation frequency, whereas only 6 samples can be collected at 10 Hz excitation frequency.
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More sampling points between the minima and maxima will result in points that are closer
to the minima and maxima. Therefore, a lower RMSE is achieved with a larger number of
samples at low excitation frequencies.

7.3. Effect of Frame Rate and Frame Strategy

An inaccurate frame rate can cause the calculated acceleration response to deviate
from the measured data along the time axis [17]. The frame rate in consumer-grade cameras
can be inaccurate and unreliable. For example, the frame rate provided in the camera
specifications document is 120 fps, whereas the actual frame rate measured in the metadata
was 119.88 fps. The experiment conducted in this study shows that the actual frame rate
adopted by the proposed vision-based vibration monitoring can eliminate the drift caused
due to inaccurate frame rates and reduce the error in the prediction of acceleration time
history. More details can be found in the Supplementary Document.

Furthermore, the technique used to track the frame as a part of the vision-based
vibration monitoring methodology can impact the calculated displacement time histories.
As shown in Figure 4, for the fixed-frame strategy, every directly calculated absolute
displacement is independent of the previously calculated value. Thus, the error does not
accumulate at any particular instant of time. In contrast, for the updated-frame strategy, as
the displacement at any point of time is dependent on its previous neighbor, the error in the
absolute displacement at the current instant will be accumulated subsequently. This causes
a drift in the displacement time history and a gradual loss of accuracy in the calculated
displacement amplitude.

To demonstrate this phenomenon, fixed-frame and updated-frame strategies are uti-
lized and compared as part of the vision-based vibration monitoring methods. Figure 12
illustrates the calculated displacement time history of the middle floor when the three-
story shear building structure is subjected to an excitation frequency of 2 Hz. The
displacement time histories calculated by using the updated-frame strategy (marker-
updated, FM-updated, DOF-updated, and SOF-updated) show the error accumulation
when compared to the results calculated by using the fixed-frame strategy (marker-fixed
and FM-fixed). It can be seen that the proposed methodology (SOF-updated) has neg-
ligible drift when compared to the existing vibration monitoring methodologies [9,16]
that use the updated-frame strategy.

                 

              

   

   

   

   

  

 

 

  

  

  

  

 
  
 
  
 
 
 
 
 
  
  

 
 

                                       

            

              

           

           

        

          

                 

              

    

    

    

   

 

  

   

   

   

 
 
  
 
   
  
 
 
  
 

                                   

            

           

           

        

          

Figure 12. Comparison of vision-based displacement calculation using different frame strategies.

To correct the drift along the amplitude, Hoskere et al. [9] proposed to use the
size and shape of a fiducial marker to compensate for the perspective distortions, and
Lydon et al. [16] utilized a known stable concrete block location in the frame as an anchor
point to correct and compensate for the camera movement. In comparison, although the
methodology proposed in this study is not focused on addressing the issue of amplitude
drift, it is able to eliminate much of the drift in the calculated displacements without
implementing any specific algorithm or device as a correction technique.
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7.4. Effect of Sparse Optical Flow versus Feature-Matching Technique on Keypoints Tracking

Both feature-matching and sparse-optical-flow-based structural vibration monitoring
techniques are implemented by tracking the keypoints on the vibrating structure, but the
number of errors obtained by implementing the sparse-optical-flow-based method are
fewer than those obtained from the feature-matching-based method (see Table 2).

Feature-matching-based target tracking detects the keypoints of two frames indepen-
dently, and then searches for matched keypoints in different frames by matching similar
descriptors. Although numerous keypoint detectors have been developed, it is still difficult
for one keypoint detector to consider all factors such as viewpoint, illumination, scale, blur,
and compression, which affects the accuracy of keypoint detection [61]. For the displace-
ment time history obtained by feature-matching-based target tracking with updated-frame
strategy (see Figure 12), several peaks near the beginning and the end of the magenta curve
are flat. This means that no motion of vibration is detected between two continuous frames.

In contrast, the proposed sparse-optical-flow-based target tracking detects keypoints
in the reference frame, and then searches for matched keypoints in the current frame
by estimating the motion vector of each keypoint based on the LK algorithm. The LK
algorithm [11] searches for matched points based on pixel intensity, rather than the similar-
ity of descriptors. Moreover, ORB utilizes FAST as the feature detector due to its advantage
over issues such as noise, blur, and compression, because the scale space and denoising are
not considered [61]. Therefore, the proposed sparse-optical-flow-based technique outper-
forms the feature-matching-based technique for tracking various keypoints in structural
vibration monitoring.

8. Summary and Conclusions

This research proposes a new method for computer-vision-based structural vibration
monitoring. Traditionally, vibration monitoring of structural systems can be achieved
by installing discrete sensors, such as accelerometers, to acquire the motion response of
the structure and by utilizing data acquisition systems such as oscilloscopes to collect
the data from sensors. However, such traditional measurement techniques have several
disadvantages, such as the expensive installation and subsequent maintenance of sensors.
To overcome these limitations, computer-vision-based methods can be employed, where a
camera records the movement of the structure to detect certain target keypoints, and a target
tracking algorithm is designed to obtain the structural motions such as the acceleration time
history. The method proposed in this study is validated by comparing the vision-based
acceleration results with those obtained from accelerometers on a three-story shear building
structure in the laboratory. The accuracy of the proposed method is also compared with
existing computer-vision-based tracking techniques. It is observed that the proposed target
tracking method achieved the highest accuracy for vibration monitoring of the structure in
the experimental setup. The effect of various components used as a part of the proposed
methodology are investigated and described, such as the selection of ROI and outlier
removal methodologies on the accuracy of matched keypoints, determination of the frame
rate used by the acquisition camera on time drift, and implementation of fixed frame versus
updated frame on amplitude drift. The key conclusions of the study are summarized
as follows:

1. A sparse-optical-flow-based target tracking is enhanced by the use of various com-
ponents such as the ORB keypoint detector, multi-level optical flow algorithm, and
outlier removal techniques. Existing sparse-optical-flow-based computer vision meth-
ods are known to have disadvantages such as tracking large displacements. This
limitation is improved by the use of two outlier removal methods and multi-point
movement tracking to obtain a comprehensive assessment of the structural response.
The comparison results illustrated in Table 1 show that the proposed method exhibits
higher accuracy than existing methods for cases with larger displacement amplitudes
and similar accuracy for all other cases.
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2. Validation of the proposed vision-based target tracking method is performed with a
shear building experimental setup. The structure is subjected to transient vibrations
at three excitation frequencies with varying amplitudes. Figure 8 illustrates the
calculated versus measured acceleration time history. It is observed that the target
tracking method is able to detect the structural motion and calculate its acceleration
at numerous points of the structure with great accuracy.

3. Various other computer-vision-based methods, such as dense-optical-flow-based,
feature-matching-based, and template-matching-based target tracking, are compared
with the proposed methodology to check for its accuracy. The limitations of existing
methodologies and the proposed enhancements are summarized as follows:

• Template-matching-based target tracking approaches have an inherent disadvan-
tage due to adverse factors, such as partial occlusion, shape deformation and
rotation, which can affect the detection of predefined templates. Therefore, the
proposed sparse-optical-flow-based method attempts to track various keypoints
on the vibrating structure without the use of external templates. As shown in
Table 4, it is observed that the proposed method achieves higher accuracies than
the existing template-matching-based target tracking approaches.

• Another similar keypoint tracking approach, called the feature-matching-based
target tracking method, is also compared. However, the keypoint detectors im-
plemented as a part of this existing method have some disadvantages, such as the
illumination, scale, blur, and compression of images captured during structural
vibrations. In the proposed sparse-optical-flow-based method, these limitations
are corrected by the use of the ORB FAST keypoint detector in combination with
the LK algorithm to detect a higher number of matched keypoints (Table 2).

• Additionally, Table 3 shows that the proposed method is observed to perform
quite similarly to the existing dense-optical-flow-based technique which com-
pares predefined ROI templates without any outlier removal approach. However,
for lower excitation frequencies, the computer-vision-based technique proposed
in this study with outlier removal outperforms the existing dense-optical-flow-
based method.
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