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Abstract: Wireless sensor networks are fundamental for technologies related to the Internet of
Things. This technology has been constantly evolving in recent times. In this paper, we consider the
problem of minimising the cost function of covering a sewer network. The cost function includes the
acquisition and installation of electronic components such as sensors, batteries, and the devices on
which these components are installed. The problem of sensor coverage in the sewer network or a part
of it is presented in the form of a mixed-integer programming model. This method guarantees that we
obtain an optimal solution to this problem. A model was proposed that can take into account either
only partial or complete coverage of the considered sewer network. The CPLEX solver was used
to solve this problem. The study was carried out for a practically relevant network under selected
scenarios determined by artificial and realistic datasets.

Keywords: sewer network; wireless sensor network; internet of things; combinatorial optimization;
mixed integer programming

1. Introduction

Wastewater networks are a critical infrastructure: an asset essential for the functioning
of society and the economy. Its proper functioning can be impaired by several threats,
such as sewage pipe leaks or ruptures, malfunctioning of the wastewater treatment plant
(WWTP), etc.

One of the most important threats for its correct functioning in an urban environment
relates to the illegal disposal of harsh chemicals in the sewer network. These chemicals
may spread beyond the sewer network, and since the capacity of the sewage network
and of the WWTP is limited, these chemicals may leak and contaminate groundwater
reservoirs, or damage the wastewater treatment plants and render it offline. Examples of
unlawful activities of industrial organizations in the sewage network are discharges of:
(a) sulfuric acid (H2SO4), resulting from the etching of semiconductors, accumulator acid, or
the production of organic chemical substances [1]; (b) sodium hydroxide (NaOH), resulting
from cleaning of surfaces in metal processing in industrial applications [2]; (c) sodium
sulfate (Na2SO4), resulting from regeneration of cation exchange resins, which are used for
softening of water in industrial water treatment [3]. Illegal discharges of such dangerous
harsh industrial waste into sewage networks could be harmful for the biological stage of
WWTP, its personnel, sewer pipes, and the general public.

Detecting illegal discharges of any of three substances mentioned above can be per-
formed by sampling the wastewater with commercial pH and Electrical Conductivity
(EC) sensors. Nevertheless, due to wastewater dilution and mixing effects in sewer pipes
throughout the sewage network, the concentration of such substances may be below the
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minimum detection threshold of such sensors several hundred meters downstream in
a populated sub-catchment area. Therefore, it is important to monitor the wastewater
composition at multiple points in the sub-catchment area.

As a result, several portable Internet of Things (IoT) systems for monitoring wastewa-
ter composition have been proposed in recent years [4–18]. These IoT systems are adapted
for working at manholes or main sewer lines, and usually comprise a set of sensors (electro-
chemical sensors, optical sensors, mass spectrometry, ion spectrometry, etc.) for detecting
the presence or concentration of specific marker pollutants.

One of such IoT systems is the Micromole system [4,5]. The Micromole system consists
of one or more battery-operated devices mounted at sewer main lines. Each device is
equipped with pH and Electrical Conductivity (EC) sensors, specially designed for its
operation in flowing wastewater [19]. The micromole device is composed of several
detachable replaceable modules. In Figure 1 a micromole device comprising five of such
modules can be observed. Some of these modules contain batteries, while others contain
sensor electronics.

Figure 1. Micromole ring with five modules attached for measuring sewage wastewater physical
parameters. From left to right, the attached modules are: battery module, wireless communication
module, pH sensor module, Electrical Conductivity sensor module, and a Water Level sensor module.

This articles focuses on the planning of an cost-effective positioning of a network of
IoT devices monitoring a sewage network. Below we provide an overview of the most
recent methods proposed in the literature for the planning of monitoring devices in the
sewage network.

This paper is organized as follows. Section 2 presents a description of the most relevant
works on the subject. In Section 3, the problem is described and the model is presented
with a brief explanation of the dispersion phenomena in wastewater networks. In Section 4
we describe a set of numerical experiments realized within a sewage network in the sub-
catchment area of an European city. Section 5 provides the conclusions of our findings.

2. Related Work

The SIMONA project [20] has as one of its main goals proposing methods and algo-
rithms for the planning of water quality monitoring stations in sewer systems. Banik et al.
propose a set of solutions [21–24], all of which share the following approach. First, the
authors consider as input to the problem a set of time-series of measurements, where one
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time-series consists of the measurements that would be observed at a given point in the
sewage network if one potential source in the network makes a discharge. The measure-
ments provide an indication of the quality of the wastewater, e.g., Electrical Conductivity,
following certain given hydraulic conditions. Each measurement of the time-series is then
quantized in discrete steps: rounding each measurement to its nearest value in the new
scale. As a result, the number of potential different input values is constrained. Next, Banik
et al. calculate the information entropy, or information content, of each time-series. After
the previously described procedure for pre-processing is executed, Banik et al. consider a
dual-objective optimization problem for the placement of the sensor devices. The objec-
tive function and meta-heuristic used for finding these solutions vary among Banik et al.
contributions, which we summarise below.

In Ref. [21], the two objectives are: (1) maximum information content attained by a
group of monitoring stations and (2) minimum the dependency among the monitoring
stations. The first objective is achieved by maximizing the joint entropy of the selected
monitoring stations, while the second one is attained by minimizing the total correlation of
the chosen solution subset of monitoring stations. The set of Pareto optimal solutions is
found by using an NSGA-II heuristic. According to Ref. [22], the final decision of selecting
the set of monitoring stations from this Pareto front is made by maximizing the amount of
information gained by a set of monitors, maintaining the consistency of the selected set of
monitors for both variables (concentration and detection time) and having minimum total
correlation within a set. The information theory approach taken by Banik et al. has been
previously used in related areas [25,26].

In Refs. [22,23] Banik et al. extend their study by considering two additional objectives:
detection time of an anomaly and reliability of the solution. The objective related to the
detection time aims at minimizing the elapsed time from the discharge event until its
detection, when using a fixed number of sensors. The objective related to reliability
is related to the number of contamination scenarios that could be potentially correctly
detected. Solution to this multi-objective optimization problem were found using the greedy
algorithm proposed by Alfonso et al. in Ref. [27], originally designed for other applications.

Our previous work [28] presented the problem of optimising the number of IoT devices
in a sewer network, while considering a fixed battery capacity for our sensors in a way
that any potential illegal discharge in the sewage network could be detected. In this article
we, instead, consider a partial network coverage and include the limitations imposed by
sewage physical dimensions on the allocated battery capacities and sensor sampling rates.
To the best of our knowledge, this article is the first one in the literature tackling such
a problem.

Even though there are design methods in the literature—e.g., Genetic Algorithms [29,30],
or Particle Swarm Optimization Algorithms [31]—for solving network coverage prob-
lems using Wireless sensor networks (WSN), none of them exploit the flow propagation
properties and hydraulic dilution phenomena, as discussed in this article, in their solutions.

3. Related Background Knowledge and Proposed Methods

In this manuscript, we consider the problem of optimising the positioning of a wireless
sensor network for monitoring the sewer network. In addition, the tackled problem also
considers the appropriate allocation of the battery capacity of each sensor device, while
considering energy requirements.

Two important requirements for the design of such sensor devices are: (1) to allow its
placement in sewer mainline pipes of at least 250 mm of diameter without blocking the flow
of sewage, and (2) ease of sensor and battery replacement. Micromole devices fulfil the first
requirement by adopting a ring mechanical structure, as shown in Figure 1. Micromole
devices fulfil the second requirement by housing electronics into a set of interchangeable
modules, each of which share the same dimensions and electronic interconnections. These
modules are mechanically and electronically interconnected through the ring mechanical
structure, as shown in Figure 1. Since all modules have the same volume, the energy
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capacity that can be stored using batteries is the same for each module. Nevertheless, even
though the energy capacity provided by any module is the same, the number of modules
that can be attached to a Micromole device varies and largely depends on the circumference
of the ring and, hence, is limited by the pipe diameter where it will be installed: wider
pipes allow for a placement of more battery modules for a single device.

The energy consumption of the Micromole device is mostly dependent on the sampling
frequency used by its sensors. The sampling frequency shall be set as to avoid situations
where the device fails to notice a short discharge, due to its proximity to the source, fast flow
speed, or short discharge time. Mitigating such situations can be achieved by assuming
that the sampling frequency is dependent on the sewage flow velocity: fast flowing sewage
requires high sampling frequency.

In this article we consider that the overall cost of a sensor device comprises the cost
of the sensor electrodes themselves—which we consider as a fix cost per sensor device
unit—and the cost of the chosen number of allocated battery units.

3.1. Pollution Detection and Sensor Localisation

In this article we assume that there is only a single polluting source at a time in
the monitored sewer network. This is motivated by the fact that illegal discharges or
wastewater pollution is a rare event. Nevertheless, the location of the polluting source, if
present, is unknown.

The concentration of an injected pollutant fluctuates from pipe to pipe and, over
time, due to the dispersion and dilution effects caused by the mixing of inflows in the
sub-catchment area. This effect can be observed in Figure 2, where the EC of wastewater
is shown for 82 measuring points downwards a polluting source, from which 50 L of
sulphuric acid were disposed.

Figure 2. EC broadening and flattening caused by dispersion as seen at different measuring points,
when 50 litres of sulphuric acid are discharged 81 manholes upstream from the sink point of the
network shown in Figure 3 in low wastewater flow conditions.
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A similar effect can be observed when measuring the amount of the diluted pollutant
at the same pipe at different points in time during the day: as social and industrial activities
demand more usage of water at certain hours, the amount of total flow in a pipe increases
and so does the dilution factor of the pollutant. We refer to flow conditions as the amount of
flow on every pipe at a given point of time.

Pumping station

02. March 2021 | Maßstab 1 : 17500 | Version 12.00.48

Figure 3. Sewage network used for numerical experiments.

Due to the dilution effects and limited sensitivity of the sensor devices, the pollutant
can only be detected in those pipes where the diluted amount of the substance exceeds the
minimum limit of detection of the sensor. We say that a sensor located at pipe e covers a
potential pollution source si when considering flow conditions f , if the sensor can detect
the injection of a pollutant with an anomaly detection method using its collected time-series
of sensor measurements. For the purpose of this study, we use a simple threshold criteria
as our anomaly detection method: if a measured value exceeds a predefined threshold Q,
then the sensor can detect the injection of the pollutant. The usage of a simple threshold as
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an anomaly detection method does not exclude the usage of more complex methods for
anomaly detection—such as those based on pattern matching or Artificial Intelligence [32],
for instance, or data fusion [33,34].

As a consequence, and given that the flows of wastewater is acyclic in a sewage
network, the set of pipes where the pollution from a particular source can be detected
form a directed acyclic sub-graph, G(si), of the sewage network. It shall be noted that for
two polluting sources si and sj, the corresponding sub-graphs, G(si) and G(sj), may have
edges in common. If a sensor device is installed in a common edge, it is not possible to
discern whether the detected pollutant originates from either si or sj, by only using our
threshold criteria.

3.2. Model Description

Made assumptions in terms of domain language. These are expressed mathematically
in the next sub-section.

Nodes:

• a set of nodes denoted as V is defined, each node of this set represents a sewer
manhole;

• a few nodes are distinguished as outlet nodes of the given sewer network;
• a set Vs ⊂ V is defined and represents nodes that can be sources of undesirable substances.

Edges:

• a set of directed edges is defined, each edge represents a pipe in the sewer network;
• any two nodes can have at most only one direct connection;
• edges can be marked as private or public. In Figure 4, dashed lines represent private

pipes and solid lines represent public ones;
• each of these edges is characterized by a parameter that determines the size/flow

capacity of water in each pipe;
• each pipe has a limited cross-area section, which limits the number of slots that can be

used for attaching sensors and batteries in a single device. Sensors and batteries can
only be installed on a ring device. Such a ring has a fixed cost.

Sensors:

• sensors detect undesired substances in the sewage, they are to be installed in the edges
of the graph;

• only public edges are eligible for sensor installation while the private ones are not;
• each sensor has a fixed cost of installation;
• it is not known a priori how many sensors are required;
• sensors can only detect the contamination if the concentration in the pipe is not too low,

since each sensor has a detection threshold. Each potential source of contamination is
associated with a subgraph where the contaminant will be effectively detected and
only there it makes sense to install sensors;

• discharge of undesired substances is a rare event and there can be only one at a time;
there is no need to install sensors in a way that several sources can be distinguished;

• each sensor can sample the sewage at a given frequency—the bigger the flow, the
more sensors will be needed to sample the flowing sewage—linearly more (one sensor
is enough to sample the sewage having velocity 1 m/s but flow having the velocity
2 m/s requires two sensors).

Battery:

• sensors require batteries to run;
• the number of batteries required by each sensor depends on where the sensor will

be installed;
• the number of batteries depends functionally on the sampling frequency, which

depends on the flow rate and size of the pipe where the sensor will be installed;
• each battery has a fixed cost;



Sensors 2022, 22, 6854 7 of 19

• size of the pipe limits the number of batteries that can be installed in the pipe as well
as the number of sensors; the number of sensors and batteries combined is limited by
the number of slots on the ring;

• the installed batteries deplete linearly, all at once.

Coverage of the sources:

• all potential pollution sources in the sewage network should be covered, i.e., any
contamination discharge should be detectable by at least one sensor;

• one sensor can cover several sources since discharge from only one of them can happen
at the time and there is no need to distinguish them;

• definition of coverage: for each source node s ∈ Vs there is defined a subgraph Gs
where it makes sense to install sensors. If there is at least one sensor in each such
subgraph, we satisfy the coverage condition;

• any solutions where any pollution source is not covered is not approvable;
• the coverage constraint is satisfied in Figure 4—the sensor covers both pollution

sources that are denoted as red triangles. There is no need to put a sensor in the second
leg of the network.

pipe 4

source 1 source 2 outlet

pipe 1 pipe 3

pipe 2

sensor

pipe 5

pipe 6 pipe 8

pipe 7

Figure 4. Network coverage. Assuming that V1 = 2, 4, 6, 7 and V2 = 4, 5, the sensor installed in pipe
4 is enough to cover both sources. Installing it in pipe 5 would cover only the second source.

Objective:

• Minimise the total cost of installing the sensors together with the cost of purchasing
batteries for each sensor;

• We are interested in covering all or parts of the network, so that there is no potential
source of contamination that is not detected by at least one sensor.

3.3. Mixed Integer Programming Model

The Mixed Integer Programming (MIP) method is proposed to solve the presented
problem [35]. The advantage of this method is that it guarantees an optimal solution, as
it searches the entire space of admissible solutions to the given problem. In general, the
disadvantage of this method is that it often takes a long time to calculate the optimum [36].
In this case, in the problem under consideration, the MIP method performs quite well, even
for networks with a large number of nodes.

The following will present the proposed model in mathematical terms. We will
describe the definitions of the indices, sets, constants, and variables that appear in this
model before the objective function and the necessary constraints are presented. We will
operate with the indices e and s. The former refers to the edges and the latter to the nodes,
which are the sources of pollution in the network under consideration. The sets, variables,
and constants, on the other hand, are presented in Tables 1, 2 and 3, respectively.
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Table 1. Sets description.

Set Description

V Each vertex s ∈ V of the graph G represents a manhole
E The set of directed edges of graph G, which represent the sewage pipes

over which the sewage flows
Vs The set of vertices that could be potential sources of pollution; Vs ⊂ V
Es The set of edges at which the concentration of pollutants allows

effective detection of harmful substances after they have been
emitted from the vertex s, also known as proximity; Es ⊂ E .

Table 2. Variables description.

Variable Description

αe αe ∈ N ; variable indicating
how many sensors have been installed at edge e ∈ E

βe βe ∈ N ; variable indicating
how many batteries have been installed at edge e ∈ E

γe Binary; equal 1 if the ring is installed on the edge e ∈ E ;
0 otherwise

δs Binary; equal 1 if the source s ∈ Vs is covered;
0 otherwise.

Table 3. Constants description.

Constant Description

Λe Number of slots in the ring installed on the edge e ∈ E
Γe The cost of installing a ring on the edge e ∈ E
A The cost of one sensor
B The cost of one battery
Ωe Total battery life at the edge e ∈ E ; expressed in sec;

We assume that the sensor samples continuously;
an example value is 106 s.

Φe Sampling frequency of the sensor at the edge e ∈ E ;
e.g., once per minute, then Φe = 1/60

Θ Capacity of one battery; expressed in the number of samples made,
e.g., Θ = 105, assuming that the batteries are the same
on each edge e ∈ E

Π Percentage of source coverage.

Objective:

min
{

∑
e∈E

(
A · αe + B · βe

)
+ Γe ∑

e∈E
γe

}
(1)

Constraints:

αe + βe ≤ Λe · γe ∀e∈E (2)

∑
e∈Es

αe ≥ δs ∀s∈Vs (3)

∑
e∈Es

γe ≥ δs ∀s∈Vs (4)

βe ·Θ ≥ Ωe ·Φe · αe ∀e∈E (5)

∑
s∈Vs

δs ≥ dΠ · |Vs|e (6)
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Formula (1) represents the cost function of the presented problem, which is subject to
minimisation. Constraint (2) guarantees us that the number of slots in the ring installed on
edge e does not exceed the available number of slots. Then, constraint (3) means that each
potential source is covered by at least one sensor. Constraint (4) tells us that at least one
ring must be installed on each edge where the concentration allows detection of harmful
substances, while constraint (5) ensures that the capacity of all batteries must be greater
than the lifetime and sampling frequency of the edge e. Finally, constraint (6) indicates the
percentage of sources to be covered.

4. Experimental Results and Discussion

The proposed mathematical model was tested with two different datasets, each of
which was derived from the same sewage network, which is depicted in Figure 3. The
sewage network consists of 3297 manholes, 3343 pipes, and 1315 sources of pollution.

The first dataset uses a sub-graph of the base network and consists of 1124 pipes and
402 pollution sources while the second one uses the whole network.

Sections 4.1 and 4.2 describe how Es sets were created—using discharge simulations
and a simplified dispersion model respectively. Section 4.3 describes how sampling fre-
quencies were pre-computed for both datasets. The following two subsections provide
results and discussion of the actual cost optimization process using the linear model.

4.1. Dataset 1: Simulated Discharges and Dispersion Modelling

All flow and discharge simulations were performed using the software package
++SYSTEM Isar [37], which capabilities were extended by a reaction and transport model
based on the concept of total alkalinity in the course of the Micromole project [4].

Due to computational constraints of the ++SYSTEM Isar system, it was not possible
to simulate a discharge from every single building in the sub-catchment area. Instead, a
subset of 402 buildings were chosen as potential sources of pollution. From every single
potential source of pollution, we simulated discharges of 50 L of sulphuric acid, with pH 1
and EC 1400 mS/cm, with low flow conditions and with high flow conditions. Low flow
conditions— fL—represent the amount of flow found in this sewage network at 03 h 00 m,
while high flow conditions— fH—represent the amount of flow found in this sewage
network at 08 h 00 m during a normal work day.

For establishing the sensor coverage for every particular pipe, we set a threshold
for the EC value. In our experiments, we evaluated three different threshold values for
EC: Q1 = 2 mS/cm, Q2 = 3 mS/cm, and Q3 = 4 mS/cm, where the normal EC value of
wastewater is nearly 1.3 mS/cm. As a result, the combination of the two flow conditions
and the three EC threshold values results in six different scenarios that we evaluate below.

4.2. Dataset 2: Simplified Dispersion Model

Since discharge simulation is a heavy computational task, an inherited method of
proximity generation was introduced to provide test data for a greater number of pollution
sources. The algorithm of generating Es sets is presented as Algorithm 1.

Algorithm 1 Simplified generation of proximities

1: function GENERATEPROXIMITIES(G, k)
2: Vs ← f indSourceNodes(G)
3: for s ∈ Vs do
4: d← f indNearestDrainNode(s,G)
5: p← f indShortestPathBetween(s, d,G)
6: Es ← takeEdgesFromPath(p, k)

return {Es∀s ∈ Vs}
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The above pseudocode requires some commentary:

1. All source nodes should be found or defined at the beginning; a source node has
exactly one outcoming edge and no incoming edges;

2. For each source node s the shortest path between s and the closest drain node d needs
to be found. It is the shortest in the terms of lowest number of edges;

3. Each shortest path is shortened and only the first k edges are taken. We assume that k
pipes is enough for a pollutant to become undetectable by a sensor. This simplification
is precise enough since pipes in the neighbourhood of each source have comparable
lengths. k is chosen based on simulated data. We decided to test cases for k = 10, 20,
30, 40 since the average and the median length of a path in simulations was about
20 edges.

This method does not require dispersion simulation, which is computationally chal-
lenging. Instead, it uses simple graph algorithms, such as shortest path finding. The paths
are limited to a length obtained from the simulations run using the smaller network.

4.3. Determining Sampling Frequencies for Both Datasets

Sampling frequencies in each pipe had to be calculated for both datasets. The sampling
frequency in pipe e is affected by two factors:

1. The volume of sewage flowing through the pipe denoted as ue. The greater the
quantity of sewage in the pipe, the greater sampling frequency needs to be;

2. The area of the pipe’s section, denoted as Ψe, calculated using a standard formula
for disk area. The greater the section’s area, the slower the flow in the pipe, so the
sampling frequency can be lower.

Assuming that each source s continuously adds 1 discrete flow unit of sewage to the
network, the flow values are generated as follows ( see Figure 5):

1. For each e: set flow value ue = 0;
2. For each source s: find the shortest path between s and the closest drain node d;
3. For each path p: for each edge e belonging the path p, increase flow value ue by 1 unit.

source 2 source 3 outlet

1 1

2 3

3

source 1

1

1

Figure 5. Flow units propagating through the network. The number over the edge is the number of
flow units in the pipe. The greater number of flow units next to the outlet node means that a bigger
volume of sewage flows in that part of the network when compared to pipes next to the sources.

Finally, sampling frequencies can be determined using the formula Φe = (Φb + Φcue) ·Ψ−1
e .

Φb is the base frequency and Φc is the scaling factor of how much sampling frequency
needs to be increased per each flow unit.

Values of sampling frequency determined by the described method are presented in
Figure 6 as a histogram.
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Figure 6. Histogram of sampling frequencies in the network.

4.4. Experiments

This section presents results of numerical experiments obtained with MIP solver and
constant parameters presented in Table 4. Our experiments were divided into two cases:

• Case A—simplified dispersion model data—as explained in Section 4.2—with sam-
pling depending on flow and pipe size;

• Case B—dispersion model data based on simulated discharges—as explained in
Section 4.1—with sampling depending on flow and pipe size.

Table 4. Values of the used parameters.

Parameter Value

A 7
B 3
Γe 5
Ωe 106

Φb 1/60
Φc 1/60
Θ 106

Each case was tested with Π = 0.1, 0.2, . . . , 0.9, 1.0 to determine how the cost changes
when the constraint on how many pollution sources have to be covered is changed. The
obtained results are presented in Table 5 and in Figure 7 for dataset 1 and in Table 6 and
Figure 8 for dataset 2.



Sensors 2022, 22, 6854 12 of 19

Table 5. Cost function values for the test scenarios of dataset 1.

Coverage [%]
Cost [Cost Units]

EC 2000 EC 3000 EC 4000 EC 2000 EC 3000 EC 4000
3:00 3:00 3:00 8:00 8:00 8:00

10 15 15 15 15 15 15
20 15 15 15 15 15 30
30 15 30 30 15 30 45
40 30 30 30 30 45 60
50 30 45 45 30 60 90
60 30 60 60 45 75 120
70 45 75 90 60 120 165
80 60 90 135 90 183 255
90 75 135 213 120 303 393
100 168 303 471 250 600 750
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Table 6. Cost function values for the test scenarios of dataset 2.

Coverage [%] Cost [Cost Units]
k = 10 k = 20 k = 30 k = 40

10 36 24 21 21
20 87 48 36 33
30 144 69 54 48
40 210 102 69 69
50 285 132 93 87
60 369 171 126 111
70 480 222 168 144
80 645 285 213 186
90 915 378 285 261
100 1563 744 597 597
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Figure 8. Optimal cost of IoT equipment deployment for dataset 2. Sampling frequency in a given
pipe depends on the flow and the size of the pipe.

Both Figures 7 and 8 show an exponential increase of the cost for an increase in the
demanded percentage of the sub-catchment area coverage. For instance, for the scenario
when the threshold is set to Q3 = 4 mS/cm and there are low flow conditions ( fL), a
reduction of the cost of 47.6%—i.e., from 750 cost units to 393 cost units—can be achieved
when relaxing the covered area from 100% to 90%. Similar relative cost reductions can be
achieved at 90% coverage for all other five evaluated scenarios in each case.

Such results demonstrate that a wide area coverage is economically feasible for end-
users—Law Enforcement Agencies and Environmental Agencies (LEAEA)—interested in
monitoring an urban area, if the requirement of covering the whole sub-catchment area is
relaxed. From these results, we conjecture that end-users may attempt to select for omission
in the planning 10% of sources with a low probability of illegal discharges with the aim
of reducing the cost of deployment by almost one half. This conjecture shall be studied in
further work.

Figures 9 and 10 show the computational efficiency of the proposed method. Figure 9
shows the time as a function of the percentage coverage of the network for a representative
case of the experiment shown in Figure 8. It should be emphasised that the computa-
tional time is satisfactory, with the cases between 40% and 80% coverage taking the most
computational time.

On the other hand, Figure 10 shows convergence curve as a function of gap and the
number of iterations. The gap reflects the difference between the best known bound and
the objective value of the best solution produced by a particular algorithm.

Some statistical results concerning space utilization in the edges for both data-set
scenarios are also presented in Appendix A.
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5. Conclusions

This work has addressed the problem of coverage in the sewage network. A model
is proposed that provides a coverage problem in a sewer network and at the same time
optimises network infrastructure resources such as Micromole rings with modules includ-
ing sensors and batteries. We proposed the mixed integer programming method, which
guarantees to find an optimal solution. In the experiments we used an example of a wide-
ranging realistic sewage network from a big-sized city. The method we proposed proved to
be effective, giving optimal results in a reasonable computational time.
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The convergence curves show an exponential increase in cost for an increase in the
desired percentage of coverage of the sub-catchment area. These results show that a
wide range of coverage is economically feasible for end users. Based on these results,
we conjecture that end-users may try to select up to a dozen percent of sources with low
probability of illicit discharges for omission in planning in order to reduce the cost of
deployment by almost half. This idea will be the subject of our further research in this
area. We plan to develop a model and cost function to locate a potential source of pollutant
discharge in the sewer network. We also plan to use evolutionary and bee algorithms if the
computation time is long.
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Appendix A

In the appendix, aggregated statistics of cross-sectional area utilization of pipes by
sensors and batteries, or simply edge space utilization, per test scenario are included. Only
edges with γe = 1 were considered in the statistics. In all cases αe = 1, so statistics of αe
were omitted in the tables. Edge utilization is measured as the ratio between the number
of slots used by batteries and sensors and the total number of slots available in the given
edge. Edge utilization means the number of edges with γe = 1.

For dataset 1 it can be concluded that for cases with hour 8:00, edge utilization is
greater than for cases with hour 3:00. Space utilization is lower for 8:00, however. The
statistics are presented in Table A1. For dataset 2 it can be concluded that the greater the k
value is, the lower the edge utilization is. The same observation can be made for average
slot (space) utilization—the greater the k value, the lower the space utilization. In addition,
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the greater the coverage percentage, the greater the space utilization is. The statistics are
presented in Table A2. For both datasets it can be observed that the greater the coverage
percentage is, the greater the edge utilization is.

Table A1. Aggregated statistics of space utilization in the edges of dataset 1 test scenarios.

Scenario Percentage Coverage
[%]

Utilized
Edges

βe Space Utilization [%]
Min Max Mean Min Max Mean

EC2000 03:00

10 1 1 1 1.00 13.33 13.33 13.33
20 1 1 1 1.00 13.33 13.33 13.33
30 1 1 1 1.00 13.33 13.33 13.33
40 2 1 1 1.00 13.33 13.33 13.33
50 2 1 1 1.00 13.33 13.33 13.33
60 2 1 1 1.00 13.33 13.33 13.33
70 3 1 1 1.00 13.33 13.33 13.33
80 4 1 1 1.00 13.33 13.33 13.33
90 5 1 1 1.00 13.33 13.33 13.33

100 11 1 2 1.09 13.33 20.00 13.94

EC2000 08:00

10 1 1 1 1.00 13.33 13.33 13.33
20 1 1 1 1.00 13.33 13.33 13.33
30 1 1 1 1.00 13.33 13.33 13.33
40 2 1 1 1.00 13.33 13.33 13.33
50 2 1 1 1.00 13.33 13.33 13.33
60 3 1 1 1.00 13.33 13.33 13.33
70 4 1 1 1.00 13.33 13.33 13.33
80 6 1 1 1.00 13.33 13.33 13.33
90 8 1 1 1.00 13.33 13.33 13.33

100 9 1 1 1.00 13.33 13.33 13.33

EC3000 03:00

10 1 1 1 1.00 13.33 13.33 13.33
20 1 1 1 1.00 13.33 13.33 13.33
30 2 1 1 1.00 13.33 13.33 13.33
40 2 1 1 1.00 13.33 13.33 13.33
50 3 1 1 1.00 13.33 13.33 13.33
60 4 1 1 1.00 13.33 13.33 13.33
70 5 1 1 1.00 13.33 13.33 13.33
80 6 1 1 1.00 13.33 13.33 13.33
90 9 1 1 1.00 13.33 13.33 13.33

100 20 1 2 1.05 13.33 40.00 15.00

EC3000 08:00

10 1 1 1 1.00 13.33 13.33 13.33
20 1 1 1 1.00 13.33 13.33 13.33
30 2 1 1 1.00 13.33 13.33 13.33
40 3 1 1 1.00 13.33 13.33 13.33
50 4 1 1 1.00 13.33 13.33 13.33
60 5 1 1 1.00 13.33 13.33 13.33
70 8 1 1 1.00 13.33 13.33 13.33
80 12 1 2 1.08 13.33 20.00 13.89
90 20 1 2 1.05 13.33 20.00 13.67

100 23 1 2 1.05 13.33 20.00 13.67

EC4000 03:00

10 1 1 1 1.00 13.33 13.33 13.33
20 1 1 1 1.00 13.33 13.33 13.33
30 2 1 1 1.00 13.33 13.33 13.33
40 2 1 1 1.00 13.33 13.33 13.33
50 3 1 1 1.00 13.33 13.33 13.33
60 4 1 1 1.00 13.33 13.33 13.33
70 6 1 1 1.00 13.33 13.33 13.33
80 9 1 1 1.00 13.33 13.33 13.33
90 14 1 2 1.07 13.33 20.00 13.81

100 31 1 2 1.06 13.33 40.00 15.48
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Table A1. Cont.

Scenario Percentage Coverage
[%]

Utilized
Edges

βe Space Utilization [%]
Min Max Mean Min Max Mean

EC4000 08:00

10 1 1 1 1.00 13.33 13.33 13.33
20 2 1 1 1.00 13.33 13.33 13.33
30 3 1 1 1.00 13.33 13.33 13.33
40 4 1 1 1.00 13.33 13.33 13.33
50 6 1 1 1.00 13.33 13.33 13.33
60 8 1 1 1.00 13.33 13.33 13.33
70 11 1 1 1.00 13.33 13.33 13.33
80 17 1 1 1.00 13.33 13.33 13.33
90 26 1 2 1.04 13.33 20.00 13.59

100 31 1 2 1.04 13.33 20.00 13.59

Table A2. Aggregated statistics of space utilization in the edges of dataset 2 test scenarios.

Scenario Percentage
Coverage [%]

Utilized
Edges

βe Space Utilization [%]
Min Max Mean Min Max Mean

k = 10

10 2 1 2 2.00 20.00 20.00 20.00
20 5 1 3 1.80 13.33 26.67 18.67
30 7 1 7 2.86 13.33 53.33 25.71
40 11 1 7 2.36 13.33 53.33 22.42
50 15 1 7 2.33 13.33 53.33 22.22
60 20 1 7 2.15 13.33 53.33 21.00
70 26 1 7 2.15 13.33 85.71 22.78
80 35 1 7 2.14 13.33 100.00 24.16
90 48 1 7 2.35 13.33 100.00 30.26

100 87 1 7 1.99 13.33 100.00 31.26

k = 20

10 1 4 4 4.00 33.33 33.33 33.33
20 2 1 7 4.00 13.33 53.33 33.33
30 3 1 7 3.67 13.33 53.33 31.11
40 5 1 4 2.80 13.33 33.33 25.33
50 6 1 7 3.33 13.33 53.33 28.89
60 8 1 7 3.12 13.33 53.33 27.50
70 11 1 7 2.73 13.33 53.33 24.85
80 14 1 7 2.79 13.33 53.33 25.24
90 20 1 7 2.30 13.33 53.33 22.00

100 39 1 7 2.36 13.33 85.71 29.80

k = 30

10 1 3 3 3.00 26.67 26.67 26.67
20 2 1 3 2.00 13.33 26.67 20.00
30 2 3 7 5.00 26.67 53.33 40.00
40 3 1 7 3.67 13.33 53.33 31.11
50 4 1 7 3.75 13.33 53.33 31.67
60 6 1 7 3.00 13.33 53.33 26.67
70 8 1 7 3.00 13.33 53.33 26.67
80 10 1 7 3.10 13.33 53.33 27.33
90 15 1 7 2.33 13.33 53.33 22.22

100 33 1 7 2.03 13.33 66.67 27.58

k = 40

10 1 3 3 3.00 26.67 26.67 26.67
20 1 7 7 7.00 53.33 53.33 53.33
30 2 1 7 4.00 13.33 53.33 33.33
40 3 1 7 3.67 13.33 53.33 31.11
50 4 1 7 3.25 13.33 53.33 28.33
60 5 1 7 3.40 13.33 53.33 29.33
70 7 1 7 2.86 13.33 53.33 25.71
80 9 1 7 2.89 13.33 53.33 25.93
90 14 1 7 2.21 13.33 53.33 21.43

100 33 1 7 2.03 13.33 66.67 27.58
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