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Abstract: Gait analysis is proven to be a reliable way to perform person identification without relying
on subject cooperation. Walking is a biometric that does not significantly change in short periods of
time and can be regarded as unique to each person. So far, the study of gait analysis focused mostly
on identification and demographics estimation, without considering many of the pedestrian attributes
that appearance-based methods rely on. In this work, alongside gait-based person identification, we
explore pedestrian attribute identification solely from movement patterns. We propose DenseGait,
the largest dataset for pretraining gait analysis systems containing 217 K anonymized tracklets,
annotated automatically with 42 appearance attributes. DenseGait is constructed by automatically
processing video streams and offers the full array of gait covariates present in the real world. We
make the dataset available to the research community. Additionally, we propose GaitFormer, a
transformer-based model that after pretraining in a multi-task fashion on DenseGait, achieves 92.5%
accuracy on CASIA-B and 85.33% on FVG, without utilizing any manually annotated data. This
corresponds to a +14.2% and +9.67% accuracy increase compared to similar methods. Moreover,
GaitFormer is able to accurately identify gender information and a multitude of appearance attributes
utilizing only movement patterns. The code to reproduce the experiments is made publicly.

Keywords: gait recognition; self-supervised learning; pose estimation; multi-task learning;
weakly-supervised learning

1. Introduction

Technologies relying on facial and pedestrian analysis play a crucial role in intelligent
video surveillance and security systems. Facial and pedestrian analysis systems have
become the norm in video intelligence, such systems being deployed ubiquitously. How-
ever, appearance-based pedestrian re-identification [1] and facial recognition models [2]
invariably suffer from extrinsic factors related to camera viewpoint and resolution, and to
the change in a person’s appearance such as different clothing, hairstyles and accessories.
Moreover, due to the proliferation of privacy laws such as GDPR, it is increasingly difficult
to deploy appearance-based solutions for video-intelligence. Human movement is highly
correlated with many internal and external aspects of a particular individual including age,
gender, body mass index, clothing, carrying conditions, emotions and personality [3]. The
manner of walking is unique to each person, it does not significantly change in short peri-
ods of time [4] and cannot be easily faked to impersonate another person [5]. Gait analysis
has gained significant attention in recent years [6,7], due to solving many of the problems
of appearance-based technologies without relying on the direct cooperation of subjects.
However, compared to appearance-based methods, gait analysis is intrinsically harder to
perform with reliable accuracy, due to the influence of many confounding factors that affect
the manner of walking. This problem is tackled in literature in two major ways, either by
building specialized neural architectures that are invariant to walking variations [8–10], or
by creating large-scale and diverse datasets for training [11–15].

One of the first attempts of building a large-scale gait recognition dataset is OU-ISIR [14],
which is comprised of 10,307 identities that walk in a straight line for a short duration
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of time. Such a dataset is severely limited by its lack of walking variability, having only
viewpoint change as a confounding factor. Building sufficiently large datasets that account
for all the walking variations imply an immense annotation effort. For example, the GREW
benchmark [12] for gait-based identification, reportedly took 3 months of continuous man-
ual annotation by 20 workers. In contrast, automatic, weakly annotated datasets are much
easier to gather by leveraging existing state-of-the-art models—UWG [11], a comparatively
large dataset of individual walking tracklets proved to be a promising new direction in the
field. Increasing the dataset size is indeed correlated with performance on downstream gait
recognition benchmarks [11], even though no manual annotations are provided. One limita-
tion of these datasets is that they are annotated with attributes per individual only sparsely,
and not addressing the problem of pedestrian attribute identification (PAI), currently per-
formed only through appearance-based methods [16–18]. Walking pedestrians are often
annotated only with their gender, age, and camera viewpoint [8,12,14,15]. Even though
gait-based demographic identification is a viable method for pedestrian analysis [19], it is
also severely limited by the lack of data. Also, many attributes from PAI networks such
as gender, age and body type have a definite impact on walking patterns [20–22], and we
posit that they can be identified with a reasonable degree of accuracy using only movement
patterns and not utilizing appearance information.

We propose DenseGait, the largest gait dataset for pretraining to date, containing
217 K anonymized tracklets in the form of skeleton sequences, automatically gathered
by processing real-world surveillance streams through state-of-the-art models for pose
estimation and pose tracking. An ensemble of PAI networks was used to densely annotate
each skeleton sequence with 42 appearance attributes such as their gender, age group, body
fat, camera viewpoint, clothing information and apparent action. The purpose of DenseGait
is to be used for pretraining networks for gait recognition and attribute identification, it
is not suitable for evaluation since it is annotated automatically and does not contain
manual, ground-truth labels. DenseGait contains walking individuals in real scenarios, it is
markerless, non-treadmill, and avoids unnatural and constrictive laboratory conditions,
which have been shown to affect gait [23]. It practically contains the full array of factors
that are present in real world gait patterns.

The dataset is fully anonymized, and any information pertaining to individual identi-
ties is removed, such as the time, location and source of the video stream, and the appear-
ance and height information of the person. DenseGait is a gait analysis dataset primarily
intended for pretraining neural models—using it to explicitly identify the individuals
within it is highly unfeasible, requiring extensive external information about the individ-
uals, such as personal identifying information (i.e., their name or ID) and a baseline gait
pattern. According to GDPR (https://eur-lex.europa.eu/eli/reg/2016/679/oj, accessed
on 1 July 2022) legislation, data used for research purposes can be used if anonymized.
Moreover, anonymized data does not conform to the rigors of personal data and can be
processed without explicit consent. Nevertheless, any attempt to use of DenseGait to explicitly
identify individuals present in it is highly discouraged.

We chose to utilize only skeleton sequences for gait analysis, as current appearance-
based methods that rely on silhouettes are not privacy preserving, potentially allowing
for identification based only on the person’s appearance, rather than their movement [24].
Skeleton sequences encode only the movement of the person, abstracting away any visual
queues regarding identity and attributes. Moreover, skeleton-based solutions have the
potential to generalize across tasks such as action recognition, allowing for a flexible and
extensible computation.

DenseGait, compared to other similar datasets [11], contains 10× more sequences
and is automatically annotated with 42 appearance attributes through a pretrained PAI
ensemble (Table 1). In total, 60 h of video streams were processed, having a cumulative
walking duration of pedestrians of 410 h. We release the dataset under open credentialized
access, for research purposes only, under CC-BY-NC-ND-4.0 (https://creativecommons.
org/licenses/by-nc-nd/4.0/legalcode, accessed on 1 July 2022) License.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Sensors 2022, 22, 6803 3 of 20

Table 1. List of attributes extracted by each network in the PAI ensemble. Each network is trained on
a different dataset, with a separate set of attributes. After coalescing similar attributes and eliminating
appearance-only attributes, we obtain 42 appearance attributes.

PA100k PETA RAP

Female, AgeOver60,
Age18–60, AgeLess18,
Front, Side, Back, Hat,
Glasses, HandBag,
ShoulderBag, Backpack,
HoldObjectsInFront,
ShortSleeve, LongSleeve,
UpperStride, UpperLogo,
UpperPlaid, UpperSplice,
LowerStripe, LowerPat-
tern, LongCoat, Trousers,
Shorts, Skirt & Dress,
Boots

Age16–30, Age31–45,
Age46–60, AgeAbove61,
Backpack, CarryingOther,
Casual lower, Casual upper,
Formal lower, Formal upper,
Hat, Jacket, Jeans, Leather-
Shoes, Logo, LongHair, Male,
Messenger Bag, Muffler, No
accessory, No carrying, Plaid,
PlasticBags, Sandals, Shoes,
Shorts, Short Sleeve, Skirt,
Sneaker, Stripes, Sunglasses,
Trousers, TShirt, UpperOther,
V-Neck

Female, AgeLess16, Age17–30,
Age31–45, BodyFat, BodyNormal,
BodyThin, Customer, Clerk, Bald-
Head, LongHair, BlackHair, Hat,
Glasses, Muffler, Shirt, Sweater,
Vest, TShirt, Cotton, Jacket, Suit-Up,
Tight, ShortSleeve, LongTrousers,
Skirt, ShortSkirt, Dress, Jeans,
TightTrousers, LeatherShoes,
SportShoes, Boots, ClothShoes, Ca-
sualShoes, Backpack, SSBag, Hand-
Bag, Box, PlasticBags, PaperBag,
HandTrunk, OtherAttchment, Call-
ing, Talking, Gathering, Holding,
Pusing, Pulling, CarryingbyArm,
CarryingbyHand

We also propose GaitFormer, a multi-task transformer-based architecture [25] that is
pretrained on DenseGait in a self-supervised manner, being able to perform exceptionally
well in zero-shot gait recognition scenarios on benchmark datasets, achieving 92.5% identi-
fication accuracy from direct transfer on the popular CASIA-B dataset, without using any
manually annotated data. Moreover, it obtains good results on demographic and pedestrian
attribute identification from walking patterns, with no manual annotations. GaitFormer
represents the first use of a plain transformer encoder architecture in gait skeleton sequence
processing, without relying on hand-crafted architectural modifications as in the case of
graph neural networks [26,27].

This paper makes the following contributions:

1. We release DenseGait, the largest dataset of skeleton walking sequences, densely
annotated with appearance information, for use in pretraining neural architectures
that can be further fine-tuned on specific gait analysis tasks. The dataset can be
found at https://bit.ly/3SLO8RW, under open credentialized access, for research
purposes only.

2. We propose GaitFormer, a multi-task transformer that is pretrained on the DenseGait
dataset and achieves exceptional results in zero-shot gait recognition scenarios on
benchmark datasets, achieving 92.52% accuracy on CASIA-B and 85.33% on FVG,
without training on any manually annotated data (+14.2% and +9.67% increase
compared to similar methods [11]). The code is made publicly available at: https:
//github.com/cosmaadrian/gaitformer

3. We explore the performance of GaitFormer on other gait analysis tasks, such as
gait-based gender estimation and attribute identification.

2. Related Work
2.1. Gait Analysis

Video gait analysis encompasses research efforts dedicated to automatically estimate
and predict various aspects of a walking person. Research has been mostly dedicated into
gait-based person recognition, with many benchmark datasets [8,11,12,14,28–31] available
for training and testing models. Moreover, there have been improvements in areas such as
estimating demographics information [19,32], emotion detection [33] and ethnicity estima-
tion [34] from only movement patterns. Sepas-Moghaddam and Etemad [35] proposed a
taxonomy to organize the existing works in the field of gait recognition. In this work, we fo-
cus mainly on body representation, as we made a deliberate choice of providing DenseGait

https://bit.ly/3SLO8RW
https://github.com/cosmaadrian/gaitformer
https://github.com/cosmaadrian/gaitformer
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with only movement information for anonymization. Broadly, works in gait analysis can
be divided into two major approaches in terms of body representation: silhouette-based
and skeleton-based.

2.1.1. Silhouette-Based Solutions

Silhouette-based approaches make use of silhouettes of walking individuals estimated
either through background subtraction methods or through instance segmentation and
tracking. Silhouettes are used in various forms, either in a condensed representation [36–38],
or as a sequences, as it is the norm in more modern methods [8,39–41]. Most notably,
GaitSet [39] processes the silhouettes as a set, as opposed to preserving the temporal infor-
mation present in a sequence. As such, the authors can include silhouettes from multiple
videos of the same walking subjects, achieving good invariance to walking variations.
GaitPart [40] processes the temporal variation of each individual body part separately in a
Micro-motion Capture Module (MCM), taking inspiration from model-based approaches.
Each body part exhibits different visual queues and temporal variation and the authors
propose to combine the each feature part to construct the final gait representation. Recently,
Lin et al. [41], advance the construction of neural architectures for processing silhouette se-
quences by proposing a Global-Local Feature Extractor (GLFE), which obtains good results
on benchmark datasets. Zhang et al. [8] propose GaitNet, a model which directly makes use
of the appearance of the individual and is able to output invariant feature representations
for gait recognition. Moreover, they also propose FVG, a dataset with 226 individuals, only
from the front-view angle, one of the more challenging angles in gait analysis, due to the
lack of perceived variation in limb movements.

2.1.2. Skeleton-Based Solutions

Skeleton-based approaches, on the other hand, avoid making use of appearance infor-
mation in the form of silhouettes, and instead focus on the moving anatomical skeleton
of the person, effectively processing only movement patterns. Approaches typically im-
ply processing walking sequences with a pose estimation [42] model, and processing the
resulting skeletons with a neural network, either by adapting conventional CNN mod-
ules [43], or with an LSTM [44,45]. More modern approaches make use of graph neural
networks to model the relationships between human joints [46,47]. Liao et al. [44] make
use of a combined CNN and LSTM architecture to model 2D skeleton sequences. A later
improvement makes use of 3D skeletons [45] to further improve results. Li et al. [46]
propose a graph-based convolutional architecture to process skeleton sequences, and a
Joints Relationship Pyramid Mapping to map spatio-temporal gait features into a discrim-
inative feature space. Li and Zhao [47] propose CycleGait, a graph-based approach that
incorporates multiple walking paces in the augmentation procedure and obtains robust
results in gait recognition on CASIA-B. In contrast to these approaches, we opted to take a
data-driven approach, instead of an algorithmic approach, and use a standard transformer
architecture and pretrain it on a large amount of weakly-labelled data. Recently, Cosma
and Radoi [11] proposed an approach called WildGait to skeleton-based gait recognition, in
which they automatically mine surveillance streams and pretrain a ST-GCN [26] model in a
self-supervised manner. Through fine-tuning, good results are obtained in recognition on
CASIA-B and FVG. Similarly to WildGait, we also process publicly available surveillance
streams, but increase the DenseGait dataset size by an order of magnitude. Moreover, we
densely annotate each skeleton sequence with 42 appearance attributes for use in zero-shot
attribute identification scenarios.

However, model-based approaches still lag behind methods utilizing appearance (i.e.,
silhouettes). This is most likely due to the imperfect extraction of skeletons by modern
pose estimators, which struggle to accurately detect fine-grained movements at a distance.
Moreover, using appearance-based methods is fundamentally easier, since a single silhou-
ette can contain identifying information about a subject. For instance Xu et al. [48] obtained
reasonable results for gait recognition using a single silhouette, which cannot be considered
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gait, as no temporal movement is being processed at all. This implies that recognition is
performed through “shortcuts” in the form of appearance features (i.e., body composition,
height, haircut, side-profile etc). For this reason, a more privacy-aware approach is to
process only movement patterns, which constitutes the motivation for releasing DenseGait
with only anonymized skeleton sequences, and disregarding silhouettes.

2.2. Transformers and Self-Supervised Learning

In recent years, there has been a insurgence of research in the area of self-supervised
learning, mostly due to the extremely high performance obtained in natural language
processing with models such as BERT [49] and GPT [50]. Self-supervised learning presumes
training models using aspects of the data itself as a supervisory signal. While initial efforts
in computer vision relied on creating artificial pretext tasks [51–53], the field is moving
towards contrastive-based approaches [29,54,55]. Methods such as SimCLR [29], Barlow
Twins [54] and Dino [55] obtaining almost similar performance to direct supervision.
Moreover, the transformer has proven to be a flexible architecture, capable of handling a
multitude of modalities such as text [49], images [56], video [57], speech [58], and highly
benefit from large-scale pretraining [59]. Taking inspiration from related efforts to process
non-textual data with transformers [56], we construct GaitFormer by processing flattened
skeletons as input “tokens”. In this manner, any human bias related to hand-crafted
graph relationships between the body joints is eliminated. Moreover, as opposed to graph
networks such as ST-GCN [27], training a similarly large transformer encoder make more
efficient use of computational resources, significantly reducing training time.

3. Method
3.1. Dataset Construction

For building the DenseGait dataset, we made use of public video streams (e.g., street
cams), and processed them with AlphaPose [42], a modern, state-of-the-art multi-person
pose estimation model. AlphaPose’s raw output is comprised of skeletons with (x, y, c)
coordinates for each of the 18 joints of the COCO skeleton format Lin et al. [60], correspond-
ing to 2D coordinates in the image plane and a prediction confidence score. We performed
intra-camera tracking for each skeleton with on SortOH [61]. SortOH is based on the
SORT [62] algorithm, which relies only on coordinate information and not on appearance
information. As opposed to DeepSORT [63] which makes use of person re-identification
models, SortOH is only using coordinates and bounding box size for faster computation
time while having comparably similar performance. SortOH ensures that tracking is not
significantly affected by occlusions.

To ensure that the skeleton sequences can be properly processed by a deep learning
model, we performed extensive data cleaning. We have filtered low confidence skeletons by
computing the average confidence of each of the 18 joints, and in each sequence, skeletons
with an average confidence of less than 0.5 were removed. Furthermore, skeletons with
feet confidence less than 0.4 were removed. This step guarantees that the feet are visible
and confidently detected—leg movement is one of the most important signals for gait
analysis. In our processing, we chose a period length T of 48 frames, which corresponds to
approximately 2 full gait cycles on average [64]. Surveillance streams do not have the same
frame rate between them, which makes the sequences have different paces and durations.
As such, we filtered short tracklets which have a duration of less than T∗ f ps

24 . We consider
24 FPS to be real-time video speed, and each video was processed according to its own
frame rate. Moreover, skeletons are linearly interpolated such that the pace and duration is
unified across video streams.

Similar to [11], we further normalized each skeleton by centering at the pelvis
coordinates (xpelvis, ypelvis) and scaling vertically by the distance between the head
and the hips (yneck − ypelvis) and horizontally by the distance between the shoulders
((xR.shoulder − xL.shoulder)). This procedure is detailed in Equations (1) and (2). The normal-
ization procedure aligns the skeleton sequences in a similar manner to the alignment step in



Sensors 2022, 22, 6803 6 of 20

face recognition pipelines [65]. This step eliminated the height and body type information
about the subject, ensuring that the person cannot be directly identified.

xjoint =
xjoint − xpelvis

|xR.shoulder − xL.shoulder|
(1)

yjoint =
yjoint − ypelvis

|yneck − ypelvis|
(2)

However, body type information should be preserved through the analysis of the
walking patterns. Moreover, normalization obscures the human position in the frame, to
prevent identification of the source video stream.

Finally, we filtered standing/non-walking skeletons in each sequence by computing
the average movement speed of the legs, which is indicative of the action the person is
performing. As such, if the average leg speed is less than 0.0015 and higher than 0.09, the
sequence was removed. The thresholds were determined through manual inspection of
the sequences. This eliminated both standing skeleton sequences as well as sequences
with erratic leg movement, which is most probably due to poor pose estimation output in
that case.

DenseGait is fully anonymized. Any information regarding the identity of particular
individuals in the dataset is eliminated, including appearance information (by keeping only
movement information in the form of skeleton sequences), height and body proportions
(through normalization), and the time, location, and source of the video stream. Identifying
individuals in DenseGait is highly unfeasible, as it requires external information (i.e., name,
email, ID, etc.) and specific collection of gait patterns.

The final dataset contains 217 K anonymized tracklets, with a combined length of 410
h. DenseGait is currently the largest dataset of skeleton sequences for use in pretraining gait
analysis models. Table 2 showcases a comparison between DenseGait and other popular
gait recognition datasets. Since the skeleton sequences are collected automatically through
pose tracking, it is impossible to quantify exactly the number of different identities in the
dataset, as, in some cases, tracking might be lost due to occlusions. However, DenseGait
contains a significantly larger number of tracklets compared to other available datasets
while also being automatically densely annotated with 42 appearance attributes. In the case
of UWG [11] and DenseGait, the datasets do not contain explicit covariates for each identity,
but rather covariates in terms of viewing angle, carrying conditions, clothing change, and
apparent action are present across the tracklet duration, similar to GREW [12].

Similarly to UWG [11], DenseGait does not contain multiple walks per person, rather
each tracklet is considered a unique identity. Compared to other large-scale datasets,
DenseGait tracks individuals for a longer duration, which makes it suitable for use in
self-supervised pretraining, as longer tracked walking usually contains more variability
for a single person. Figure 1 shows boxplots with a five-number summary descriptive
statistics for the distribution of track durations in each dataset. DenseGait has a mean
tracklet duration of 162 frames, which is significantly larger (z-test p < 0.0001) compared
to other datasets: CASIA-B [15]—83 frames, FVG [8]—97 frames, GREW [12]—98 frames,
UWG [11]—136 frames). Due to potential loss of tracking information, the dataset is noisy,
and can be used only for self-supervised pretraining.

3.2. Annotations with Appearance Attributes

Appearance attributes are essential for pretraining for tasks such as gender estimation [19],
age estimation [66] and pedestrian attribute identification [16–18]. To ensure that the
dataset is densely annotated with appearance attributes, we made use of an ensemble of
pretrained PAI networks, each trained on different popular PAI datasets. Specifically, we
employed three InceptionV3 [67] networks trained on RAP [68], PETA [69] and PA100k [16],
respectively. Figure 2 showcases the annotation procedure.
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Table 2. Comparison of popular datasets for gait recognition. DenseGait is an order of magnitude
larger, has more identities in terms of skeleton sequences (highlighted in bold), and each sequence is
annotated with 42 appearance attributes. * Approximate number given by pose tracker. † Implicit
covariates across tracking duration.

Dataset # IDs Sequences Covariates Views Env.

USF HumanID [31] 122 1870 Y 2 Outdoor
TUM-GAID [28] 305 3370 Y 1 Outdoor
FVG [8] 226 2857 Y 1 Outdoor
CASIA-B [15] 124 13,640 Y 11 Indoor
OU-ISIR [14] 10,307 144,298 N 14 Indoor
GREW [12] 26,000 128,000 Y - Outdoor
UWG [11] 38,502 * 38,502 Y † - Outdoor

DenseGait (ours) 217,954 * 217,954 Y † - Outdoor

Figure 1. Comparison between existing large-scale skeleton gait databases and DenseGait in terms
of distributions of tracklet duration. DenseGait is an order of magnitude larger than the next largest
skeleton database, while having a longer average duration (136 frames UWG vs 162 frames DenseGait).

Since each dataset has a different set of pedestrian attributes, we averaged similar
classes (e.g., AgeLess16 and AgeLess18 into AgeChild), coalesced similar classes (e.g., Formal
and Suit-Up into FormalWear) and removed attributes that cannot evidently be estimated
from movement patterns (e.g., BaldHead, Hat, V-Neck, Glasses, Plaid etc.).

For a particular sequence, we take the cropped image of the pedestrian at every T
frames (where T is the period length), and randomly augment it k = 4 times (e.g., random
horizontal flips, color jitter and small random rotation). For each crop, each augmented
version is then processed by a PAI network and the results are averaged such that the
output is robust to noise [70]. Finally, to have a unified prediction for the walking sequence,
results are averaged according to the size of the bounding box relative to the image, similar
to Catruna et al. [19]. Predictions on larger crops have a higher weight, with the assumption
that the pedestrian appearance is more clearly distinguishable when closer to the camera.

Figure 3 showcases the final list of attributes, and their distribution across the dataset.
We have a total of 42 attributes, split into 8 groups: Gender, Age Group, Body Type, Viewpoint,
Carry Conditions, Clothing, Footwear and Apparent Action. For the final annotations, we chose
to keep the soft-labels and not round them, as utilizing soft-labels for model training was
shown to be a more robust approach when dealing with noisy data [70].

Figure 4 showcases selected examples of attribute predictions from the PAI ensemble.
Since surveillance cameras usually have low resolution and the subject might be far away
from the camera, some pedestrian crops are blurry and might affect prediction by the
PAI ensemble. For gender, age group, body composition and viewpoint, the models
are confidently identifying these attributes. However, for specific pieces of clothing (i.e.,
footwear: Sandals/LeatherShoes), predictions are not always reliable, due to the low
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resolution of some of the crops, but the errors are negligible when taking into account the
scale of the dataset.

Figure 2. Overview of the automatic annotation procedure for the 42 appearance attributes. To
robustly annotate attributes, an ensemble of pretrained networks is used in conjunction with multiple
augmentations of the same crop. Predictions across the sequence are averaged according to their
bounding-box area.

Figure 3. Distribution of the 42 appearance attributes in DenseGait. The dataset is annotated in a
fine-grained manner with attributes ranging from internal aspects of the person (Gender, Age Group,
Body Type) to appearance only labels (Clothing, Footwear).

Figure 4. Qualitative examples for selected attributes from the PAI ensemble. The networks correctly
identify gender, age group and viewpoint. However, in some cases, clothing and, more specifically,
footwear are more difficult to estimate in low resolution scenarios.
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3.3. Description of Model Architecture

For pretraining on the DenseGait dataset for the tasks of gait-based recognition and
attribute identification, we chose to adapt the popular transformer encoder architecture [25]
to handle skeleton sequences. Initially, transformers were immensely successful in handling
sequential data in the form of text, effectively replacing LSTM [71] networks, the de facto
approach for these problems. However, lately, transformers have been used in a variety
of problems, being able to handle images [56], video [57] and multi-modal data [72].
Moreover, transformer architectures in particular highly benefit from large-scale, self-
supervised pretraining [49,50,55], allowing models to be effectively fine-tuned on more
specific datasets with small amounts of annotated data.

To handle skeleton sequences, we abstain from making any hand-crafted architectural
modifications, as in the case of Plizzari et al. [27], which uses a hybrid approach by combin-
ing graph computation on the skeleton and using multi-head attention on the extracted
features. Instead, we take inspiration from ViT [56], which processes images as a sequence
of flattened patches that are fed into a standard transformer encoder network. Figure 5
showcases the training procedure for GaitFormer in the multi-task training regime. Each
skeleton is flattened into a 54 dimensional vector and is linearly projected with a standard
learnable feed-forward layer into a 256 dimensional space. Each skeleton projection is then
fed into a transformer encoder network. We opted for learnable positional embedding
that is added to each projection instead of concatenated, to avoid increasing the dimen-
sionality. After the transformer encoder, representations for each skeleton are averaged,
and a final linear feed-forward layer of 256 elements is used as the final embedding. Fur-
ther, as described in SimCLR [29], we used an additional 128-dimension linear layer for
training with a supervised contrastive objective [73]. Additionally, a linear layer is used
as appearance head to estimate the pedestrian attributes that is trained using a standard
binary-crossentropy loss.

We used three different model sizes for the transformer encoder in our experiments,
with 4 encoder layers (SM), 8 encoder layers (MD) and 12 encoder layers (XL). In all types
of architectures, 8 attention heads were used, and the internal feed-forward dimensionality
was 256 [25].

Figure 5. Overview of GaitFormer (Multi-Task) training procedure. Flattened skeletons are linearly
projected using a standard feed-forward layer and fed into a transformer encoder. The vectorized
representations are average pooled and the resulting 256-dimensional vector is used for estimating
the identity and to estimate the 42 appearance attributes through the “Appearance Head”. The
contrastive objective (SupConLoss) is applied to a lower 128-dimensional linear projection, similar to
the approach in SimCLR [29].



Sensors 2022, 22, 6803 10 of 20

3.4. Training Details

For training on DenseGait, we chose to use contrastive learning [29] as a supervisory
signal. By design, contrastive methods work by attracting representations belonging to the
same class, while simultaneously repelling samples from different classes. This paradigm is
identical to the objective for recognition problems, which constitues one of the main tasks
in gait analysis. Specifically, we used SupConLoss [73], with a temperature of τ = 0.001,
alongside a two-view sampler for each skeleton in the batch. SupConLoss assumes a
multi-viewed batch, with multiple augmentations for the same sample. Each view of a
skeleton sequence is randomly augmented by the standard suite of augmentations for this
data modality: random sequence crops of fixed length of T = 48, random flips with 50%
probability, random paces [53], and random gaussian noise added to joints coordinates.
Let i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary augmented sample. SupConLoss is
defined as:

Lsup = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · za/τ)
(3)

In Equation (3), zl = Enc(x̃l) denotes the embedding of a skeleton sequence xl, “·”
denotes the dot product operation and A(i) ≡ I \ {i}. Moreover, P(i) ≡ {p ∈ A(i) : ỹp = ỹi}
is the set of indices of all positives in the multi-viewed batch distinct from i. In our case,
the positive pairs are constructed by two different augmentations of the same skeleton
sequence. The variability of the two augmentations is higher if the skeleton is tracked for a
longer duration of time, as the walking individual might change direction.

As suggested in Chen et al. [29], the supervisory signal given by SupConLoss is applied
to a lower dimensional embedding (128 dimensions) to avoid the curse of dimensionality.

For predicting appearance attributes, which is a multi-label problem, we used a
standard binary-crossentropy loss between each appearance label (pi) and its corresponding
prediction (yi) (Equation (4)). As previously mentioned, we keep the soft labels as a
supervisory signal, to prevent the network from overfitting and be more robust to noisy
or incorrect labels [74]. Moreover, since learning appearance labels can regarded as a
knowledge distillation problem between the PAI ensemble and the transformer network,
soft labels help improve the distillation process [75].

Lappearance = −(yi log(pi) + (1− yi) log(1− pi))) (4)

In multi-task (MT) training scenarios, we used a combination of the two losses, with a
weight penalty of λ = 0.5 on the appearance loss Lappearance. We chose λ = 0.5 empirically,
such that the two losses have similar magnitudes. The final loss function is defined as:

L f inal = LSupCon + λLappearance (5)

In plain contrastive training scenarios, we employ only the SupConLoss, without
predicting attributes (i.e., L f inal = LSupCon).

The motivation for pre-training the network in a multi-task setting is that the network
not only learns to cluster walking sequences by their identity, but also to take appearance
attributes into account. For instance, predicting the gender and age, even if they are
not completely reliable, could prove useful for gait recognition, as demographics can be
considered soft-biometrics, allowing the network to automatically filter identities by these
attributes. On the other hand, in contrastive-only scenario, the network is under a classical
self-supervised regime.

We used a batch size of 1024 across our experiments, with a cyclical learning rate [76]
ranging from 0.0001 and 0.001 across 20 epochs. We trained all models for 400 epochs.

4. Experiments and Results

This section explores the performance of GaitFormer on gait-based recognition, gender
identification and pedestrian attribute identification. We are primarily interested in evalu-
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ating the model in scenarios with low amounts of annotated data and we opted to use the
two popular benchmark datasets originally constructed for gait recognition: CASIA-B [15]
and FVG [8]. For gender estimation, we manually annotated the gender information for
each identity in the two datasets and constructed CASIA-gender and FVG-gender. We
briefly describe each dataset below.

We chose CASIA-B to compare with other skeleton-based gait recognition models,
since it is one of the most popular gait recognition datasets in literature. It contains
124 subjects walking indoors in a straight line, captured with 11 synchronized cameras
with three walking variations—normal walking (NM), clothing change (CL) and carry
conditions (BG). According to Yu et al. [15], the first 62 subjects are used for training
and the rest for evaluation. CASIA-gender consists of manually annotated the subjects in
CASIA-B with gender information, having a split of 92 males and 32 females. We maintain
the training and validation splits from the recognition task, using the first 62 subjects for
training (44 males and 18 females) and the rest for validation (48 males and 14 females).
We use FVG to evaluate the robustness of GaitFormer, as it contains different covariates
than CASIA-B such as varying degrees of walking speed, the passage of time and cluttered
background. Moreover, FVG only contains walks from the front-view angle, which is
more difficult for gait processing due to lower perceived limb variation. According to
Zhang et al. [8], from the 226 identities present in FVG, the first 136 are used for training
and the rest for testing. Similarly, FVG-gender contains manual annotations with gender
information, obtaining 149 males and 77 females. We maintain the training and validation
splits from the recognition task, utilizing the first 136 individuals for training (83 males and
53 females) and the rest for validation (66 males and 24 females).

4.1. Recognition

We initially trained GaitFormer under two regimes: (i) contrastive only and (ii) multi-
task (MT), which implies training with SupConLoss [73] on the tracklet ID while simultane-
ously estimating the appearance attributes (Figure 5). We experiment with three models
sizes: SM—4 encoder layers (2.24M parameters), MD—8 encoder layers (4.35M parameters)
and XL—12 encoder layers (6.46M parameters).

We pretrain GaitFormer on the DenseGait dataset under the mentioned conditions
and directly evaluate recognition performance in terms of accuracy on CASIA-B and FVG,
without fine-tuning. In all experiments we perform a deterministic crop in the middle of the
skeleton sequences of T = 48 frames, and use no test-time augmentations. For each cropped
skeleton sequence, features are extracted using the 256-dimensional representation and
are normalized with the l2 norm. In Table 3 we present results on the walking variations
for each model size and training regime. For CASIA-B, we show mean accuracy where
the gallery set contains all viewpoints except the probe angle, in the three evaluation
scenarios: normal walking (NM), change in clothing (CL) and carry bag (CB). For FVG, we
show accuracy results based on the evaluation protocols mentioned by Zhang et al. [8],
corresponding to different walking scenarios (walk speed (WS), change in clothing (CL),
carrying bag (CB), cluttered background (CBG) and ALL). Results show that unsupervised
pretraining on DenseGait is a viable way to perform gait recognition, achieving an accuracy
of 92.52% on CASIA-B and 85.33% on FVG, without any manually annotated data available.
Notably, multi-task learning on appearance attributes provides a consistent positive gap in
the downstream performance.

Model size in terms of number of layers does not seem to considerably affect per-
formance on benchmark datasets. GaitFormerMD (8 layers) fairs consistently better than
GaitFormerXL (12 layers), while being similarly close to GaitFormerSM (4 layers).

Figure 6 compares GaitFormerMD pretrained on DenseGait in the two training regimes
(contrastive only—Cont. and Multi-Task—MT) and GaitFormerMD randomly initial-
ized. The networks were fine-tuned on progressively larger samples of the corresponding
datasets: for CASIA-B, we sampled multiple runs for the same identity (from 1 to 10 runs
per ID), and for FVG, we randomly sampled a percentage of runs per each identity. Mod-
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els were fine-tuned using Layer-wise Learning Rate Decay (LLRD) [77], which implies a
higher learning rate for top layers and a progressively lower learning rate for bottom layers.
The learning rate was decreased linearly from 0.0001 to 0, across 200 epochs. The results
show that unsupervised pretraining has a substantial effect on downstream performance
especially in low data scenarios (direct transfer and 10% of available data). Moreover,
pretraining the model in Multi-Task learning regime, in which the network was tasked
to estimate appearance attributes from movement alongside with the identity, provides a
consistent increase in performance.

Table 3. GaitFormer direct transfer performance on gait recognition on CASIA-B and FVG datasets.
We highlight in bold the best overall result for each dataset.

CASIA-B FVG

Size Training NM CL CB WS CB CL CBG ALL

SM Contrastive 89.00 22.36 61.88 77.33 81.82 54.27 86.75 77.33
MD Contrastive 90.18 23.46 60.78 78.33 72.73 49.15 83.33 78.33
XL Contrastive 91.79 21.11 63.12 76.33 69.70 48.29 87.61 76.33

SM MT 92.52 22.73 67.16 84.67 81.82 59.40 91.45 84.67
MD MT 92.52 23.31 65.10 85.33 87.88 53.42 88.89 85.33
XL MT 90.69 20.75 60.34 85.00 81.82 51.71 91.03 85.00

Figure 6. Fine-tuning results on gait recognition on CASIA-B and FVG, on progressively larger
number of runs per identity. Compared to the same network randomly initialized, pretraining
on DenseGait offers substantial improvements, even in the direct transfer regime. A consistent
performance increase is obtained when also estimating attributes.

Table 4 presents state-of-the-art results compared with other skeleton-based gait
recognition models. We showcase the results of GaitFormerSM trained in the Multi-Task
(MT) regime, without fine-tuning (direct) and tuned with all the available training data in
CASIA-B. For comparison, we include WildGait [11] with and without fine-tuning, as this
model is also pretrained on a large dataset of skeleton sequences. We also compare with our
implementation of GaitGraph Teepe et al. [78]—a multi-branch ST-GCN which processes
joint coordinates, velocities and bone angles, achieving great results on CASIA-B—and
with a ST-GCN pretrained on DenseGait.
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It is clear that the fine-tuned GaitFormerSM has very good results even without fine-
tuning, achieving comparable results with the state of the art. Fine-tuning marginally
increases the performance, achieving 96.2% accuracy on normal walking (NM) and 72.5%
performance in carry bag (CB).

Table 4. GaitFormer comparison to other skeleton-based gait recognition methods on CASIA-B dataset.
In all methods the gallery set contains all viewpoints except the proble angle. In bold and underline
we highlight the best and second best results for a particular viewpoint and walking condition.

Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Mean

NM

GaitGraph 79.8 89.5 91.1 92.7 87.9 89.5 94.35 95.1 92.7 93.5 80.6 89.7
ST-GCN (DenseGait) 89.5 89.5 95.1 87.9 81.4 68.5 64.5 89.5 88.7 84.6 82.2 83.8
WildGait—direct 72.6 84.6 90.3 83.8 63.7 62.9 66.1 83.0 86.3 84.6 83.0 78.3
PoseFrame 66.9 90.3 91.1 55.6 89.5 97.6 98.4 97.6 89.5 69.4 68.5 83.1
GaitFormerSM—MT—direct 94.3 97.5 99.2 98.4 79.8 80.6 89.5 100.0 94.3 95.1 88.7 92.5
WildGait—tuned 86.3 96.0 97.6 94.3 92.7 94.3 94.3 98.4 97.6 91.1 83.8 93.4
GaitFormerSM—MT—tuned 96.7 99.2 100.0 99.2 91.9 91.9 95.1 98.4 96.7 97.6 91.1 96.2

CL

GaitGraph 27.4 33.0 40.3 37.1 33.8 33.0 35.4 33.8 34.6 21.7 17.7 31.6
ST-GCN (DenseGait) 18.5 22.5 25.0 21.7 13.7 18.5 21.7 31.4 21.7 21.7 16.9 21.2
WildGait—direct 12.1 33.0 25.8 18.5 12.9 11.3 21.7 24.2 20.1 26.6 16.1 20.2
PoseFrame 13.7 29.0 20.2 19.4 28.2 53.2 57.3 52.4 25.8 26.6 21.0 31.5
GaitFormerSM/MT—direct 12.9 21.7 29.0 25.8 16.1 18.5 22.5 29.0 27.4 26.6 20.1 22.7
WildGait—tuned 29.0 32.2 35.5 40.3 26.6 25.0 38.7 38.7 31.4 34.6 31.4 33.0
GaitFormerSM/MT—tuned 35.5 35.5 33.8 33.8 20.9 30.6 31.4 31.4 28.2 42.7 29.8 32.2

BG

GaitGraph 64.5 69.3 70.1 62.9 61.2 58.8 59.6 58.0 57.2 55.6 45.9 60.3
ST-GCN (DenseGait) 78.2 68.5 71.7 60.4 59.6 45.9 46.7 58.0 58.0 58.0 51.6 59.7
WildGait—direct 67.7 60.5 63.7 51.6 47.6 39.5 41.1 50.0 52.4 51.6 42.7 51.7
PoseFrame 45.2 66.1 60.5 42.7 58.1 84.7 79.8 82.3 65.3 54.0 50.0 62.6
GaitFormerSM/MT—direct 78.2 71.7 84.7 74.2 56.4 50.0 57.2 66.1 69.3 70.9 59.6 67.1
WildGait—fine-tuned 66.1 70.1 72.6 65.3 56.4 64.5 65.3 67.7 57.2 66.1 52.4 64.0
GaitFormerSM/MT—tuned 82.2 80.6 83.8 72.6 62.9 69.3 68.5 70.1 69.3 77.4 60.4 72.5

4.2. Comparison with ST-GCN and Other Pretraining Datasets

In Table 5, we compare GaitFormer with ST-GCN [26] under different pretraining
datasets. Reported results are mean accuracy across all angles for CASIA-B, under normal
walking (NM) scenario, and accuracy under ALL scenario for FVG. The networks were not
fine-tuned on these datasets; we present direct transfer performance after pretraining. We
chose to pretrain on OU-ISIR [13], as this dataset is one of the most popular, large-scale
datasets for gait recognition. However, OU-ISIR lacks data diversity, as all individuals are
walking on a treadmill for a short duration, which is not the case for DenseGait. We also
chose to pretrain on GREW [12], as it is also a diverse dataset collected in the wild, but
contains fewer identities that walk for a comparably shorter duration of time.

Results show that, as a pretraining dataset, DenseGait is consistently outperforming
GREW and OU-ISIR across the two architectures. These results are consistent with the
insights in Figure 1, in which we posit that longer tracking duration for the individuals
imply larger data diversity when pretraining in a contrastive self-supervised fashion, which
directly improves performance.

4.3. Gait-Based Gender Detection

Table 6 presents results for direct transfer (zero-shot) performance for gender esti-
mation on CASIA-gender and FVG-gender. In this case, we compared different sizes of
GaitFormer trained on DenseGait in two manners: i) only estimating attributes, without
a constrastive objective (Attributes Only), and ii) estimating attributes and identity us-
ing a constrastive objective (MT). Similarly to the case of gait recognition, the Multi-Task
networks consistently outperforms the other training regime. Moreover, the networks
achieved reasonable performance in terms of F1 score (76.18% for CASIA-gender and
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86.81% for FVG-gender), considering that the networks were not exposed to any manually
annotated data.

Table 5. Comparison between GaitFormer and ST-GCN pretrained with Supervised Contrastive on
GREW [12], OU-ISIR [13] and our proposed DenseGait. Performance is directly correlated with mean
tracklet duration on each dataset as shown in Figure 1. We highlight in bold the best results for each
architecture and dataset.

Backbone Pretraining Data CASIA-B (NM) FVG (ALL)

ST-GCN
OU-ISIR 55.65 63.33
GREW 61.14 56.67
DenseGait (ours) 83.80 75.28

GaitFormer (ours)
OU-ISIR 25.73 51.34
GREW 65.40 64.04
DenseGait (ours) 89.0 77.33

Table 6. GaitFormer direct transfer performance on gait-based gender estimation on CASIA-gender
and FVG-gender. We highlight in bold the best overall results for each dataset.

CASIA-Gender FVG-Gender

Size Training Prec. Recall F1 Prec. Recall F1

SM Attributes 94.54 62.46 72.10 85.87 84.9 85.10
MD Attributes 94.48 63.66 73.07 82.03 79.87 80.27
XL Attributes 94.59 62.43 72.08 84.36 84.43 84.26

SM MT 94.84 63.61 73.00 86.47 86.34 86.33
MD MT 94.71 61.50 71.31 86.96 86.87 86.81
XL MT 94.72 67.67 76.18 87.06 86.21 86.38

Figure 7 presents the performance under fine-tuning of GaitFormerXL on CASIA-
gender and FVG-gender, in similar conditions to the recognition task. All networks are
trained with a binary-crossentropy objective on the gender estimation task, without taking
the person identity into account at training time. GaitFormerXL under Multi-Task training
regime is consistently superior to a network initialized from random weights, achieving an
F1 score of 93.09% on CASIA-gender and of 91.51% on FVG-gender. The pretrained models
significantly benefit from fine-tuning when small amounts of training data is available.
Performance slightly increases with the availability of more training data.

4.4. Gait-Based Pedestrian Attribute Identification

For pedestrian attribute identification, we process a 10-h surveillance stream, corre-
sponding to 10,733 tracklets, and use it for testing. For evaluation, we use the attribute
pseudo-labels annotated automatically by the PAI ensemble. Figure 8 showcases R2 score
results for GaitFormerMD trained with a multi-task objective. This score is computed
relative to the soft pseudo-labels estimated by the PAI ensemble. We emphasize that the
model only uses movement information to estimate these labels, and has no information
regarding appearance. Using a skeleton-based model for pedestrian attribute identifi-
cation is useful in situations where the appearance of the person is unavailable (i.e., in
privacy-critical scenarios). The model is effectively distilling external appearance into
movement representations.

The model obtains good results in categories such as Gender, AgeGroup, BodyType and
Viewpoint. The model is able to obtain better than average performance on categories such
as Footwear, and some types of clothing. However, some clothing categories have proven
to be very difficult to model, especially LongCoat and Trousers. We hypothesize that such
pieces of clothing negatively affect the accuracy of the pose estimation model, resulting in
low quality extracted skeletons.
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Figure 7. Fine-tuning results for GaitFormer on CASIA-gender and FVG-gender, trained on pro-
gressively larger samples of the datasets. Compared to a randomly initialized network, GaitFormer
benefits significantly from fine-tuning in extremely low data regimes (e.g., 10% of available anno-
tated data). Compared to only pretraining on predicting attributes (Attributes Only), the Multi-Task
network has consistently better performance across all fractions of the datasets.

These are promising results which show that external appearance and movement are
intrinsically linked together. This is evident in the more explicit relationship between, for
example, footwear and gait, in which, intuitively, gait is severely affected by the walker’s
choice of shoes. Clothing, accessories, and actions while walking can be regarded as
“distractor” attributes, which affect gait only temporarily. However, there are more subtle
information cues which are present in gait, related to the developmental aspects of the
person (e.g., gender, age, body composition, mental state etc). These attributes are more
stable in time, and can provide insights into the internal workings of the walker. We
posit that, in the future, works in gait analysis will tackle more rigorously the problem
of estimating the internal state of the walker (i.e., personality/mental issues) through
specialized datasets and methods.

Figure 8. GaitFormerMD performance in terms of R2 score. GaitFormerMD was trained with the
multi-task objective. The model uses only movement information to predict attributes, and no
information regarding the appearance of the individual.
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4.5. Inference Time

Using transformer architectures for processing gait has other advantages besides a
noticeable increase in downstream performance. Transformers have been shown to be
more efficient in terms of inference time when compared to convolutional networks [56].
This effect is not directly correlated with the number of parameters, but is rather more
influenced by the network structure [79].

In Figure 9, we show a comparison between multiple sizes of GaitFormer, a plain trans-
former module minimally adapted for processing skeleton sequences, with the ST-GCN net-
work, a popular architecture for skeleton action recognition [26] and gait analysis [46]. We
computed the inference time across multiple period lengths (from 12 frames to 96 frames)
to evaluate the scalability when processing shorter/longer sequences. For each period
length, we run 100 experiments with a batch size of 512 and show the mean inference time
in seconds, along with the standard deviation. All experiments were run on a NVIDIA
RTX 3060 GPU. Even with comparable and exceeding number of parameters (ST-GCN
from Cosma and Radoi [11] has 3.11M parameters), the transformer architecture clearly
outperforms graph-convolutional models for processing gait sequences across multiple
sequence lengths.

Figure 9. Inference times across processed walking duration length (period length) for ST-GCN and
the various sizes of GaitFormer. We report the mean and stardard deviation across 100 runs, for each
period length.

5. Conclusions

In this work, we presented DenseGait, currently the largest dataset for pretraining
gait analysis models, consisting of 217 K anonymized skeleton sequences. Each skele-
ton sequence is automatically annotated with 42 appearance attributes by making use of
an ensemble of pretrained PAI networks. We make DenseGait available to the research
community, under open credentialized access, to promote further advancement in the
skeleton-based gait analysis field. We proposed GaitFormer, a transformer that is pre-
trained on DenseGait in a self-supervised and multi-task fashion. The model obtains
92.5% accuracy on CASIA-B and 85.3% accuracy on FVG, without processing any man-
ually annotated data, achieving higher performance even compared to fully supervised
methods. GaitFormer represents the first application of plain transformer encoders for
skeleton-based gait analysis, without any hand-crafted architectural modifications. We
explored pedestrian attribute identification based solely on movement, without utilizing
appearance information. GaitFormer achieves good results in gender, age body type, and
clothing attributes.
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