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Abstract: Low-light image enhancement can effectively assist high-level vision tasks that often fail in
poor illumination conditions. Most previous data-driven methods, however, implemented enhance-
ment directly from severely degraded low-light images that may provide undesirable enhancement
results, including blurred detail, intensive noise, and distorted color. In this paper, inspired by a
coarse-to-fine strategy, we propose an end-to-end image-level alignment with pixel-wise perceptual
information enhancement pipeline for low-light image enhancement. A coarse adaptive global photo-
metric alignment sub-network is constructed to reduce style differences, which facilitates improving
illumination and revealing under-exposure area information. After the learned aligned image, a hier-
archy pyramid enhancement sub-network is used to optimize image quality, which helps to remove
amplified noise and enhance the local detail of low-light images. We also propose a multi-residual
cascade attention block (MRCAB) that involves channel split and concatenation strategy, polarized
self-attention mechanism, which leads to high-resolution reconstruction images in perceptual quality.
Extensive experiments have demonstrated the effectiveness of our method on various datasets and
significantly outperformed other state-of-the-art methods in detail and color reproduction.

Keywords: low-light image enhancement; coarse-to-fine; photometric alignment

1. Introduction

The presence of low-light images in high-level vision tasks is inevitable, and image
enhancement has a significant effect on performance improvement. However, low-light
images captured in dim environments and back-lit conditions often suffer from severe
degradation, including poor visibility, intensive noise, and biased color. Although long ex-
posure shooting allows the photosensitive sensor to receive more light, which can improve
the illumination of the images to a certain extent, it is impractical for real-time demanding
tasks such as autonomous driving and target tracking. Due to the limitations of the camera
device sensor hardware, the use of algorithms to mitigate low-light image degradation has
become a research hotspot. Low-light image enhancement is mainly aimed at improving
the visibility of images, removing noise, and enhancing contrast to achieve pleasant human
perception effects. In the past decades, a large number of low-light image enhancement
algorithms have been proposed, which can be broadly classified into the following three
types: global adjustment methods, Retinex-based methods, and learning-based methods.

The main global adjustment methods include histogram equalization (HE) and gamma
correction (GC). Early HE methods [1,2] enhanced the contrast by stretching the dynamic
range of the images according to the histogram, and some variants of this method have been
developed [3–5]. Still, the strict requirement of histogram uniform distribution severely
limits the enhancement performance of such methods. The GC methods [6] adjust the
values of the pixel points through an exponential function, which works on individual
pixel points and ignores the relationship between adjacent pixel points, leading inevitably
to over-exposure and noise amplification in the enhanced image.

Based on the traditional Retinex theory [7], the initial Retinex-based methods [8–10]
estimated the illuminance and reflectance maps of low-light images and enhanced these two
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components separately before fusing the output results. In recent years, several improved
Retinex methods [11–14] also have been proposed to better decompose the illuminance and
reflectance components by imposing prior knowledge. In [15,16], an estimated noise map was
integrated into robust Retinex model to remove noise and achieve low-light enhancement.

Due to the powerful inference capabilities of machine learning techniques, learning-
based methods started to develop rapidly in the field of low-light image enhancement.
Benefiting from the availability of real-world paired low-/normal-light image datasets,
massive methods [17–23] combine Retinex theory with deep networks, learning to esti-
mate potential components, adjust the illumination map, and alleviate the degradations
of reflectance layer for achieving natural low-light image enhancement. Yang et al. [24]
proposed a band representation-based semi-supervised method to restore signal fidelity
and perceptual quality. In [25–27], deep networks are constructed to generate and dis-
criminate the high-visual-quality images,; these methods release the limitations of paired
datasets, effectively avoid model overfitting, and improve the generalization performance
on real datasets.

Although existing learning-based methods can achieve good performance in some
cases, there are still some general issues. Most of the models generate underexposed and
overexposed images, lose texture and detail information during enhancement, and unpaired
data training often fails to cope with distorted color and amplified noise. Simultaneously
improving illumination, denoising, and restoring natural color is a non-trivial problem [28].
To address these challenges, this paper proposes an end-to-end image-level alignment with
pixel-wise perceptual information enhancement pipeline for low-light image enhancement.
The key insight is to minimize the style differences [29] between input low-light images
and target images using an image-level alignment strategy in the coarse stage, to recover
visually pleasing results at the refinement stage. Specifically, different from existing global
photometric alignment methods [29] that require complicated histogram matching and
gamma correction of the source domain image set, we elaborately devise a style-consistency
loss to facilitate supervised learning of a global photometric alignment sub-network, which
is beneficial for the adaptive style transfer of low-light images. As shown in Figure 1b,
we minimize the style differences [29] (e.g., exposure, contrast, lighting, object shape, and
surface textures). In the refinement stage, we develop a hierarchical pyramid enhancement
sub-network to remove the amplified noise, optimize the local detail, and restore the vivid
color of images; an example is given in Figure 1c. Additionally, to avoid generating artifacts
and other degradations, we also design a multi-residual cascaded attention block (MRCAB),
which facilitates multi-scale feature extraction and high-resolution reconstruction. The main
contributions are summarized as follows:

• We propose a novel coarse-to-fine adaptive low-light image enhancement network
(CFANet) that seamlessly combines coarse global photometric alignment with finer
perceptual information promotion. The coarse-to-fine pipeline is trained in a data-
driven manner within a unified framework to avoid error accumulation.

• The built MRCAB is embedded into a hierarchy pyramid network, which can change
the perceptual fields and highlight notable features for each network layer. Further-
more, the polarized self-attention mechanism of the block can preserve high-resolution
information to achieve better enhancement performance.

• Experiments show that our method can generalize well across different real low-light
datasets. Specially, we restore less noise normal-light images with rich detail and vivid
colors compared to other low-light enhancement methods.
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Figure 1. Examples of low-light image enhancement using our method. (a) Input low-light images.
(b) The aligned images resulting from adaptive global photometric alignment improve the contrast
and reveal underexposed regions. (c) The final results display rich detail and vibrant color.

2. Related Work
2.1. Traditional Methods

Traditional methods mainly review global adjustment methods and Retinex-based
methods. The classical global HE method [1,2] implements nonlinear stretching to en-
hance image contrast and reveal the content of underexposed areas, but it may cause
overexposure and drowning of detail by over-transforming the saturated regions. To cope
with this problem, in the local HE method [3], the global histogram is sliced into multiple
sub-histograms and the enhancement operations are performed separately in different
regions, which helps to improve the performance of low-light image enhancement flexibly.
However, these methods increase the computational complexity to some extent. Therefore,
the parametric-oriented HE methods [4,5] attempt to reduce the enhancement complexity
by optimizing the transformation process to a uniform function that maps the low-light
images to the output results. Huang et al. [6] improved the contrast of images by gamma
correction of luminance pixels. However, the above methods are not designed for low-light
image enhancement especially, and the enhancement results often show hard noise and
unnatural results.

Single-scale Retinex [8] is the first practical application of Retinex theory to image
processing, and it is found that the surround formation produces the best enhancement
results. Single-scale Retinex was extended to Multi-scale Retinex [9] to achieve both
color and luminance recovery. Some studies [11–13] decomposed the illumination and
reflectance components by using artificially designed priors, ignoring the degradations
of the reflectance layer, which may lead to strong noise in the output. On the other
hand, a noise prior was added to constructing a robust Retinex model for enhancing low-
illumination images in [15,16]. The prior design of the above methods is too complex and
cannot satisfy the adaptive enhancement of the real low-light images.
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2.2. Learning-Based Methods

Learning-based methods have achieved extraordinary results in several vision do-
mains. Loreet al. [30] was the first to explore the application of deep learning in the
field of low-light image enhancement and proposed the deep autoencoder-based method
(LLNet), which obtained impressive enhancement results. In [17,31], LOL and SID real
low-/normal-light pairs were proposed to accelerate the development of learning-based
low-light enhancement methods. MBLLEN [32] uses multi-branch sub-networks to enhance
the different layer inputs separately, then outputs the fusion results. Zhang et al. [18] con-
structed three sub-networks for decomposition, adjustment of illumination, and recovery
of reflectance components, respectively. In [22], KinD++ was proposed to mitigate visual
defects (non-uniform spots and over-smoothing) left in KinD [18]. Lu et al. [33] proposed
slight and heavy adaptive attention mechanisms for low-light image enhancement with
different degrees of degradations. Li et al. [34] used a luminance-aware pyramidal structure
to enhance the local and global features of the low-light images. These works focus on
enhancing severely degraded low-light images directly via improving the network struc-
ture. However, simultaneously boosting illumination, removing noise, and restoring detail
can lead to undesirable results. Some later methods adopted more special deep networks
than the previous works. Li et al. [35,36] used the deep curve estimation to achieve impres-
sive results. Jiang et al. [25] first introduced an unpaired learning strategy to build a new
pipeline EnlightenGAN, which greatly improved the generalization performance of the model.
Pan et al. [26] proposed a multi-module cascade generative network and adaptive multi-scale
discriminative network. However, unsupervised methods lack the guidance of paired data
and need to be further improved in terms of image fidelity and color recovery ability.

Comparatively, this paper enhances low-light images in a coarse-to-fine manner. In-
spired by the image-level domain shift strategy [29], an adaptive global photometric align-
ment sub-network is used to shift the style of severe degraded low-light images, including
exposure, contrast, and texture, with the ability to explore the content in underexposed
regions. In the optimization stage, local detail, and color of the aligned image are further
enhanced to remove the amplified noise and generate visually pleasurable images.

3. Coarse-to-Fine Enhancement Pipeline
3.1. Motivation

Deep methods can effectively enhance the quality of low-light images. In general,
performing enhancement tasks directly from severely degraded low-light images usually
yield undesirable results. In other words, simultaneously enhancing illumination, removing
noise terms, and restoring vivid color would also be a very difficult task.

Is it possible to perform low-light image enhancement progressively? The methods
in [33,37] support this view. However, the former requires stepwise training of two inde-
pendent networks, which is prone to the accumulation of model errors. Additionally, the
latter lacks the guidance of paired data, and there are amplified noise and distorted colors in
the recovered results. Based on the above observations, it is feasible to effectively enhance
low-light images in a coarse-to-fine manner, and the enhancement work is facilitated by
obtaining an intermediate image from the input image that is close to the target image in
terms of brightness, contrast, and content. This is essentially different from the coarse-to-
fine network framework used in [34,38] for extracting multi-scale features. Furthermore,
a recently proposed domain shifts problem [29] inspired us. In their work, the image-level
alignment is used to decrease the domain shifts. Based on the success of the semantic
segmentation task, the idea of estimating photometric aligned images motivated us to
extend it to style transformation in low-light image enhancement. However, performing
classic histogram matching on color channels and lightness gamma correction on the light
channel ignores the association between the channels and cannot accommodate diverse
low-light image enhancement.

Based on the above insights, our CFANet attempts to enhance low-light images at the
image-level and pixel-wise in a coarse-to-fine fashion, adaptive style transfer of low-light
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images is implemented using a deep model, which better simulates the enhancement of
low-light images and works effectively within a unified network framework. Particularly,
the intermediate style consistency loss can better boost brightness and explore content
in underexposed areas. This unique design allows CFANet to overcome the problem of
independent channel adjustment. Hence, it trades off well between style difference and
content preservation.

3.2. CFANet

Figure 2 shows the overall architecture of CFANet, which can be divided into two
sub-networks. The coarse adaptive global photometric alignment sub-network learns the
style transformation of low-light images, and the finer hierarchy pyramid enhancement
sub-network uses multi-residual cascade attention blocks (MRCABs) to further optimize
the aligned images. We described the two sub-networks and MRCAB in detail below.

Figure 2. An illustration of the proposed CFANet. It contains an adaptive global photometric align-
ment sub-network for style transformation, and a hierarchy pyramid enhancement sub-network for
optimization of the image quality. We build the GPAM with the basic U-net structure. The proposed
MRCABs are inserted in hierarchy pyramid architecture to extract multi-scale features in a wider
range, suppressing artifacts and color distortion more efficiently. The low-light images are mapped
to the output in a coarse-to-fine manner.

3.2.1. Network Architecture

In the coarse stage, the input low-light images are fed into an adaptive global pho-
tometric alignment sub-network that is designed to decrease style differences with the
supervision of style consistency loss Lst (see Section 3.3). Therefore, given a collection of M

image pairs
{

Im
in, Im

gt

}M

m=1
, we aim to solve the following problem:

γ∗ = arg min
γ

1
M

M

∑
m=1
Lst

(
EAGPAγ(Im

in), Im
gt

)
, (1)

where Im
in and Im

gt denote the input image and ground truth, respectively. γ is the parame-
ter set and EAGPA(·) represents the adaptive global photometric alignment sub-network.
Here, Lst(·) is adopted to minimize the style difference between the aligned image and
ground truth. The coarse network consists of two 3 × 3 convolutional layers and a global
photometric alignment module (GPAM), as shown in Figure 2. Two convolutional layers
in the front-end of the network are first used to explore shallow features of low-light
images. After that, we build the GPAM with the basic U-net [39] structure, [25,36] also
demonstrated the effectiveness of the U-net in low-light image enhancement. Thanks to the
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skip connections between the downsampling and upsampling layers of the GPAM, the sub-
network can preserve the structure information of the original images while enhancing
the brightness, contrast, and exploring the content of underexposed regions during the
style transformation. To facilitate intermediate supervision, we output an aligned image
by the last convolution layer. Our design gears adaptive global photometric alignment
sub-network to embed the input low-light images into the feature space of aligned im-
ages, allowing the subsequent hierarchy pyramid enhancement sub-network to pay more
attention to optimization tasks.

Although the aligned images from the adaptive global photometric alignment sub-
network are close to the target images in terms of luminance, contrast, and surface texture.
However, as can be observed in Figure 1b, there are still color distortions, artifacts, and am-
plified noise. In the refinement stage, the hierarchy pyramid enhancement sub-network
focuses on optimizing the above problems. Essentially, this sub-network also enhances
the features in a coarse-to-fine strategy. The aligned images are used as input images of
different resolutions after downsampling. Although different branches consist of MRCAB
with the same structure, the multi-scale network can enhance global and local features
from the bottom up, respectively. Furthermore, to avoid the effect of detail information
loss caused by over-convolution, after all global features are pooled to the top branch by
the deconvolution operation, a skip connection is established to share shallow features to
improve the refinement features and generate the final results.

In particular, it is important to note that our CFANet is implemented in a data-driven
manner within a unified framework, which is beneficial for decreasing error accumulation
and restoring desirable normal-light images.

3.2.2. Multi-Residual Cascade Attention Block (MRCAB)

Both photometric alignment and perceptual quality improvement in our task are spa-
tially varying problems. Though the hierarchy pyramid architecture can explore features
at different scales, it is not enough for image quality optimization tasks. Typical low-light
image enhancement networks are prone to artifacts and unnatural color, and we find
that these problems can be significantly remedied by changing the perceptual field of the
network, highlighting and suppressing features. To achieve this goal, we elaborately devise
the MRCAB, which consists of four cascaded Res2Net [40] and a polarized self-attention
(PSA) block [41] (see Section 5 for a detailed description of the cascade number settings
of Res2Net), as shown in Figure 3. The Res2Net adopts channel split and concatenation
strategy to form different receptive fields to effectively extract multi-scale features. Rather
than using the SE block [42], we choose a PSA block that is more adapted to pixel-wise
regression, the attention mechanism simultaneously maintains high resolution in both
channel and space, and achieves nonlinear enhancement of high-resolution information.
Specifically, skip connections within MRCAB allow for more efficient utilization and propa-
gation of hierarchical feature information. We would like to highlight that MRCAB is the
essential component in our network, it suppresses artifacts and color distortion that may
be caused by the co-existence of other degradations of oversaturation and noise.

Figure 3. An illustration of our proposed multi-residual cascade attention block(MRCAB), which
is the crucial component of the CFANet. It consists of four cascaded Res2Net and a polarized
self-attention (PSA) block.
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3.3. Loss Function

To enable supervised learning in the coarse-to-fine pipeline, our proposed loss function
consists of the following four parts.

Style consistency loss. To reduce the style difference between the aligned image and
the ground truth, boost the brightness and preserve the detail of the original image. Specifi-
cally, we provide intermediate supervision at the end of the adaptive global photometric
alignment sub-network. The style constancy loss Lst can be expressed as:

Lst = ∑
c∈ξ

∣∣∣Jc
a − Jc

g

∣∣∣, ξ = {R, G, B}, (2)

where Jc
a , Jc

g denote the intensity value of the aligned image and the ground truth in channel
c, respectively.

Structure similarity loss. Since MAE and MSE losses ignore the correlation between
the long-distance of pixel points, this makes it difficult to overcome structural distortions
such as artifacts and blurring. Therefore, we introduce the structure similarity loss to
enhance the recovery quality of low-light images. The structure similarity loss Lssim is
defined as:

Lssim = 1−
2µxµy + c1

µ2
x + µ2

y + c1
·

2σxy + c2

σ2
x + σ2

y + c2
, (3)

where µx, µy represent the pixel average value of x, y images, respectively. σ2
x and σ2

y are
variances, the covariance is represented as σxy. To avoid the denominator being zero, c1 , c2
are set to 0.0001 and 0.0009 in our work, following the same setting in Wang et al. [43].

Perceptual loss. To facilitate the enhancement of image perceptual information, we
fed the enhanced image and the ground truth into the pre-trained VGG-19 network to
measure the difference between the corresponding feature maps. The perceptual loss Lper
can be expressed as:

Lper =
1

Cn HnWn

∥∥φn(E(Iin))− φn
(

Igt
)∥∥2

2, (4)

where E(·) represents our CFANet. φn(·) is the feature map of the n-th convolutional
layer in VGG-19 model. Cn, Hn, Wn denote the dimensions of the corresponding feature
maps, respectively.

Total variation loss. To remove noise and improve the visual effect of the images,
total variation loss is introduced to limit the gradient of the images. The total variation loss
Ltv is written as:

Ltv =
H

∑
i=1

W

∑
j=1

√(
pi,j − pi+1,j

)(
pi,j − pi,j+1

)
, (5)

where p represents the intensity value at pixel point index (i, j).
Total loss. The total loss function is:

Ltotal = λstLst + Lssim + λperLper + λtvLtv. (6)

We set the loss weights of λst, λper, and λtv to 0.1, 0.2, and 0.01, respectively, in
our experiments.

4. Experiments
4.1. Datasets and Evaluate Metrics

We train our CFANet and other state-of-the-art methods using LOL [17] and SID [31]
datasets. The LOL dataset consists of 500 real scenes image pairs and 1000 synthetic
image pairs, the SID dataset in RAW format is converted to sRGB format for training.
Additionally, we also evaluated on LIME [12], MEF [44], NPE [10], DICM [5], VV [45]
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datasets to demonstrate the effectiveness and generality of our approach. We adopt the
commonly used PSNR, SSIM [46], and NIQE [47] metrics for evaluation.

4.2. Experimental Settings

The proposed CFANet is designed based on the Pytorch framework. We randomly
crop 256 × 256 patches for training on NVIDIA RTX 3090 GPU, all these patches are
transformed by randomly flipping and rotations of 90◦ , 180◦ , 270◦. The network is trained
on the LOL and SID datasets for 400,300 epochs, respectively. The former has an initial
learning rate of 10−4, which is halved at 200 epochs; and the latter has an initial learning
rate of 10−3, which is halved at 150 epochs. The mini-batch is set to 8. We train our network
using Adam optimizer with β1 = 0.9; β2 = 0.99.

4.3. Enhancement Results

To comprehensively evaluate the low-light image enhancement performance of
CFANet, we performed quantitative evaluations on LOL, SID, LIME, MEF, NPE, DICM,
VV datasets, and qualitative comparisons on datasets besides SID.

4.3.1. Quantitative Evaluation

We choose recent light enhancement networks to evaluate the performance of LOL
synthetic and real datasets, which is consistent with the evaluation approach in [21,24],
including BIMEF [48], CRM [49], DHECE [50], Dong [51], EFF [52], LIME [12], MF [11],
MBLLEN [32], JED [16], SRIE [13], RRM [15], DRD [17], DeepUPE [53], SCIE [54], KinD [18],
EnlightenGAN [25], RetinexNet [21], KinD++ [22], and DRBN [24]. As shown in Table 1,
we found both on synthetic and real LOL datasets that our method achieves the best
results in both PSNR and SSIM metrics compared to the state-of-the-art methods. The re-
sults suggest that CFANet is effective and particularly well-suited for low-light image
enhancement tasks.

Table 1. Quantitative evaluation on LOL synthetic and real dataset, in terms of PSNR and SSIM.
The best results are in bold.

Method
LOL-Syn LOL-Real

PSNR↑ SSIM↑ PSNR↑ SSIM↑
BIMEF 17.20 0.7172 17.85 0.6526
CRM 18.91 0.7864 19.65 0.6623
DHECE 17.75 0.7800 14.64 0.4450
Dong 16.90 0.7487 17.26 0.5270
EFF 17.20 0.7127 17.85 0.6526
LIME 16.88 0.7762 15.24 0.4702
MF 17.50 0.7514 18.73 0.5590
MBLLEN 17.07 0.7301 17.86 0.7247
JED 17.48 0.7444 17.33 0.6654
SRIE 14.50 0.6163 17.34 0.6859
RRM 17.15 0.7277 17.33 0.5144
DRD 17.13 0.7978 15.47 0.5672
DeepUPE 15.08 0.6225 13.27 0.4521
SCIE 18.50 0.7631 19.40 0.6906
KinD 17.84 0.7971 20.73 0.8103
EnlightenGAN 16.57 0.7338 18.23 0.6165
RetinexNet 22.05 0.9054 20.06 0.8158
KinD++ 17.69 0.8334 21.30 0.8226
DRBN 23.22 0.9275 20.29 0.8310
Our 24.62 0.9314 21.64 0.8481
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Since linear RAW data is significantly different from nonlinear sRGB data, the model
trained in RAW format cannot be adapted to enhance sRGB images, and the image format
acquired by photographic devices is usually sRGB [55]. Therefore, this paper only compares
with networks trained on the SID dataset in sRGB format, including DSLR [56], LIME [12],
SCIE [54], DeepUPE [53], and LRD [55]. For the test results of the SID dataset in Table 2, we
found that our network achieved the best results in the PSNR metric and comparable results
in the SSIM metric, which shows the superiority of our coarse-to-fine strategy and losses.

Table 2. Quantitative evaluation on SID dataset, in terms of PSNR and SSIM. The best results are
in bold.

Method PSNR↑ SSIM↑
DSLR 17.25 0.4229
LIME 17.76 0.3506
SCIE 21.16 0.6398
DeepUPE 21.55 0.6531
LRD 22.13 0.7172
Our 22.60 0.6728

We evaluated the proposed CFANet and nine representative methods on several real
datasets LIME, MEF, NPE, DICM, and VV. Table 3 shows the NIQE metric test results, no
single method can achieve the best score on all datasets, but our method performs the best
on NPE and DICM datasets, and otherwise still maintains a good score on other datasets.
The comparisons in real datasets strongly suggest the effectiveness and generality of our
proposed network.

Table 3. Quantitative evaluation with NIQE metric on LIME, MEF, NPE, DICM, and VV datasets.
The best results are in bold.

Method
NIQE↓

LIME MEF NPE DICM VV

SRIE 3.3481 3.1601 3.6930 3.4161 3.0015
LIME 3.3176 2.9363 3.9679 3.5289 2.4221
RRM 4.1056 4.3742 4.3785 3.9799 4.3785
MBLLEN 4.1445 4.1969 4.2200 4.0426 4.0631
KinD 4.5086 3.3126 3.7476 3.8037 2.9148
DeepUPE 3.6233 3.4051 4.0390 3.9296 3.1807
RetinexNet 4.0272 3.9265 4.1013 4.1775 2.5792
EnlightenGAN 3.1880 2.9440 3.6775 3.3632 2.5875
KinD++ 4.3394 3.3082 3.8462 3.5727 2.5974
Our 3.6706 2.9956 3.6124 3.3186 3.1158

4.3.2. Qualitative Evaluation

In this part, the results of three traditional methods and five deep learning methods
in Figures 4–9 are described in detail in comparison with our network in terms of visual
effects. We found that SRIE produced underexposed enhancement results in most cases
(e.g., Figures 4, 6, 8 and 9) and less improvement for image contrast. LIME generated
several overexposed regions in Figures 6–8, and the work adopted the denoising mecha-
nism as post-processing still caused strong noise and artifacts. To effectively reduce the
effect of noise, RRM improves the robustness by estimating the noise map in the model,
but over smoothing the image causes blurring of the main structures and loss of image
detail information in Figures 4, 5, 7 and 9. Figures 4, 5, 6 and 9 show that the low-light
enhancement performance of DeepUPE is weak, producing a large number of unexposed
areas. Early RetinexNet performed poorly in terms of enhancement performance, with sig-
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nificant noise and artifacts in all enhanced images. The unsupervised methods Zero-DCE
and EnlightenGAN are trained on unpaired data, they restore relatively impressive results
on different datasets, but also suffer from color distortion (e.g., Figures 5 and 7) and fail
to cope with extremely dark regions (e.g., Figure 4). KinD++ overcame the visual defects
of excessive smoothing and uneven brightness to a certain extent by improving the KinD
method; however, we found that there are still problems of unclear image detail and low
contrast in Figures 4 and 7.

In comparison with the above results, we restored normal-light images of good visual
quality in all enhancement experiments. Thanks to the particular frame design of CFANet,
our method can explore the content of underexposed regions using the adaptive global
light alignment module while maintaining high resolution. In particular, as shown in
Figures 4, 5 and 7, beneficial from the coarse-to-fine strategy, the images processed through
our network exhibit stunning colors and excellent contrast, with clear detail and good
illumination for a pleasant visual effect. The visual comparison in various cases indicates
the superiority and generalization of our approach.

Figure 4. Visual comparison of low-light image enhancement on an image from the LOL dataset.

Figure 5. Visual comparison of low-light image enhancement on an image from the LIME dataset.

Figure 6. Visual comparison of low-light image enhancement on an image from the MEF dataset.
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Figure 7. Visual comparison of low-light image enhancement on an image from the NPE dataset.

Figure 8. Visual comparison of low-light image enhancement on an image from the DICM dataset.

Figure 9. Visual comparison of low-light image enhancement on an image from the VV dataset.

Though our method achieves promising results in most cases, but we also found that
the model may show fragile performance in extreme darkness, such as the artifacts in the
face region of Figure 9, which is degradation caused by over-smoothing to avoid noise.
To cope with this limitation, we plan to implicitly incorporate the denoising process into
our model to mitigate this problem in the future.

5. Ablation Study

In this section, we present an ablation study to demonstrate the effectiveness of the
main components in CFANet and losses, which was performed on the LOL dataset.

Effectiveness of network architecture. As shown in Table 4, in the absence of a global
photometric alignment module, the Res2Net module performs slightly better than the
ResNet module, and the performance is further improved by adding the PSA mecha-
nism, while our proposed CFANet, which includes the global light alignment module,
achieves the best scores on both PSNR and SSIM metrics. The above quantitative results
demonstrated the effectiveness of our network components.
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Table 4. Ablation results of network structure on LOL dataset. The best results are in bold.

Metric
Module

ResNet Res2Net Res2Net + PSA CFANet

PSNR 19.72 19.94 20.83 21.64
SSIM 0.8037 0.8078 0.8143 0.8481

To investigate the effect of the number of Res2Net blocks in MRCAB on low-light
image enhancement, we set different numbers of blocks to train the model. As we can
see in Figure 10, with the increase of Res2Net blocks, the network gradually improves the
PSNR. When the number of blocks exceeds four, the benefit of improving PSNR disappears,
and the network is prone to overfitting results. We found that the optimal setting for the
number of blocks is N = 4 .

Figure 10. Investigate the effect of Res2Net block number for enhancement performance on the
LOL dataset.

Effectiveness of losses. We verify the validity of each loss function by adding them
step by step. In Table 5, removing arbitrary losses degrades the network performance.
The combination of style consistency loss, structural similarity loss, perceptual loss, and to-
tal variance loss achieves the best performance, which also indicates that the intermediate
style consistency loss is effective for our network.

Table 5. Ablation results of loss function on LOL dataset. The best results are in bold.

Loss Configuration PSNR SSIM

1. with Lssim, w/o Ltv, w/o Lper, w/o Lst 20.19 0.8225
2. with Lssim, with Ltv, w/o Lper, w/o Lst 21.43 0.8341
3. with Lssim, with Ltv, with Lper, w/o Lst 21.40 0.8367
4. default configuration 21.64 0.8481

6. Conclusions

In this paper, we have presented a novel coarse-to-fine adaptive low-light image
enhancement pipeline that seamlessly combined coarse global photometric alignment with
finer perceptual information promotion. With the coarse adaptive global photometric align-
ment subnet, the difference in style between low-light and normal-light images is effectively
reduced, facilitating improved illumination and revealing information in underexposed
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areas. Moreover, the proposed multi-residual cascade attention block (MRCAB) is designed
to be embedded in the backbone network, which allows CFANet to avoid degradations and
maintain high resolution. Compared to other low-light image enhancement algorithms,
our proposed CFANet achieves significant improvements in PSNR and SSIM, and restores
suitable illumination, rich detail information, and vivid colors. Extensive experiments on
widely used low-light image datasets have demonstrated the effectiveness and generality
of our method.

Our method can effectively mitigate the detail blur of static images. In general, real-
world low-light images usually have the problem of image blur caused by fast target
movement and camera shake [57], we will explore solutions for the joint task of low-light
image enhancement and deblurring in future work.
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