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Abstract: In this paper, a cooperative search method for multiple UAVs is proposed to solve the
problem of low efficiency of multi-UAV task execution by using a cooperative game with incomplete
information. To improve search efficiency, CBBA (Consensus-Based Bundle Algorithm) is applied to
designate the tasks area for each UAV. Then, Independent Deep Reinforcement Learning (IDRL) is
used to solve Nash equilibrium to improve UAVs’ collaborations. The proposed reward function is
smartly developed to guide UAVs to fly along the path with higher reward value while avoiding the
collisions between UAVs during flights. Finally, extensive experiments are carried out to compare
our proposed method with other algorithms. Simulation results show that the proposed method can
obtain more rewards in the same period of time as other algorithms.

Keywords: task assignment; multi-UAV; deep reinforcement learning

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs), or drones, are widely used in the wit-
ness of a fast-paced development [1]. Equipped with radar, cameras and other equipment,
UAVs can be used in military areas [2] such as for tracking, positioning and battlefield de-
tection. However, due to the limitation of fuel load, it is difficult for a single UAV to search
a large area. Compared with a single UAV, multiple UAVs can perform more complex tasks.
Multiple UAVs sharing information and searching cooperatively can improve the efficiency
of task execution. In the process of the search task, the path planning of the multi-UAV is a
crucial problem [3].

For the above problem, many scholars have proposed some multi-UAV path planning
algorithms. For instance, hierarchical decomposition is one of the effective way to solve the
problem. The clustering algorithm is first used for the multi-UAV task assignment. Then the
path planning is based on the Voronoi diagram [4] or genetic algorithm [5]. However, these
path planning algorithms require a prior knowledge about the environment and centralized
task assignment algorithms require a control center to communicate among UAVs, which is
not suitable in dynamic scenarios. On the other hand, multi-agent reinforcement learning
(MARL) is effective to solve the above problem. The essence of MARL is a stochastic
game. MARL combines the Nash strategies of each state into a strategy for an agent while
constantly interacting with the environment to update the Q value function in each state of
the game. Nash equilibrium solution in MARL can replace the optimal solution to obtain
an effective strategy [6].

In this paper, we explicit Independent Deep Reinforcement Learning (IDRL) to solve
the problem of low efficiency when multiple UAVs perform tasks simultaneously. CBBA [7]
(Consensus-Based Bundle Algorithm) is first used for task assignment for multiple UAVs
under constraints of time and fuel consumption. Then the UAV chooses the best strategy to
complete the task based on the states and actions of other UAVs. A new reward function
is developed to guide the UAV to choose the path with high value and punish collisions
between UAVs.

The main contributions of this paper are summarized as follows:
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(1) Different from the centralized path planning algorithm that a central controller is
required for task allocation, a distributed path planning algorithm is designed in this
paper. UAVs can communicate with each other for task allocation and path planning
in a more flexible way.

(2) A cooperative search method is proposed. Before selecting the next action, the UAV
needs to adopt the corresponding cooperative method according to the incomplete
information obtained to improve the efficiency of task execution.

(3) A new reward function is proposed to avoid collisions between UAVs while guiding
UAVs to target points.

2. Related Work

In this section, we review the literature that settles multi-UAV target assignment and
path planning (MUTAPP), figure out their pros and cons and clarify the remaining gaps
and challenges for further investigations.

MUTAPP problem is an NP-hard problem in essence, which implies there is no perfect
solution to an NP-hard problem. However, for small- and/or medium-sized problems,
it is possible to be solved. Hierarchical decomposition is one of the effective methods to
solve MUTAPP [8], which decomposes the MUTAPP problem into task assignment and
path planning.

At present, MUTAPP is mainly divided into traditional MTSP and objective function
optimization problems. For traditional MTSP, Wang et al. [9] try to use genetic algorithms
for task assignment and cubic spline interpolation for path planning. In [10], Liu et al.
use Overall Partition Algorithm (OPA) for task assignment and use cycle transitions to
generate shortest paths. Simulation results show that the proposed algorithm achieves
better performance than traditional algorithms based on GA to solve MTSP problems.
In [11], Dubins curves are used to model the UAV kinematics model to make the generated
path more realistic. The improved particle swarm optimization algorithm based on heuristic
information is proposed to solve MTSP. The results show that the proposed algorithm can
generate paths in a small number of iterations. However, in practical applications, the
multi-UAV system not only needs to consider the total flight distance, but also the efficiency
of the task which is usually evaluated by the objective function.

With a single UAV and no altitude effects, the standard coverage path planning (CPP)
problem has been studied extensively in the literature [12,13]. The objective function of CPP
is defined as the area of the covered region. Miles et al. [14] proposes rectangle partition
relaxation (RPR) algorithm to divide the UAV flight area. In [15], based on the single UAV
algorithm, a density-based sub-region of UAV coverage with a unique role is proposed
to optimize the coverage area. Xie et al. [16] provides a mixed-integer programming
formula for CPP and develops two algorithms based on this method to solve the TSP-CPP
problem. Based on this research, Xie extends the proposed algorithm in [17] and proposes
a branch-and-bound-based algorithm to find the optimal route. Although these algorithms
continuously optimize the UAV coverage area, it is difficult to evaluate the efficiency of
UAV execution with a single constraint.

In [18], the objective function of the multi-UAV system is to minimize energy loss.
K-means is used to assign tasks to multiple UAVs, and then genetic algorithm is used
to generate specific paths. In [19], simulated annealing algorithm is used to increase
the coverage area of the UAV. Reference [18] uses the more advanced k-means++; the
experimental results show that the generated path is shorter than k-means. In [20], the
Minimum Spanning Tree (MST) is used to generate trajectories and simulation results
show that compared with other algorithms, the generated trajectories can obtain more
rewards during task execution. Also, there are some algorithms [21–25] that use clustering
algorithm to solve MUTAPP related problems. However, clustering algorithm is sensitive
to noise points. If the task point is far from the central point, it will be assigned to the UAV
separately, which is unrealistic.
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Wang et al. [26] use MST to decompose MTSP into multiple TSPs, and then Ant colony
algorithm is used to solve TSP. In [27], a fuzzy approach with a linear complexity level
is used to convert the MTSP to several TSPs, then Simulated Annealing (SA) is used to
solve each problem. Similarly, Cheng et al. [28] decouples the MTSP problem into TSP and
solves the subproblems through sequential convex programming. Reference [29] propose a
task allocation algorithm based on maximum entropy principle (MEP). Simulation results
show that the proposed MEP algorithm achieves better performance than SA algorithm.
Cao et al. [30] introduces Voronoi diagram method into Ant colony algorithm and the
unmanned aerial vehicle cooperative task scheduling strategy which conclude task alloca-
tion and path planning is gained. Compared with clustering algorithm, these algorithms
are more flexible in task allocation and the number of tasks performed by each agent is
reduced through reasonable task allocation, which increases the execution efficiency of the
algorithm. However, since the cooperation among agents is not considered, which would
affect the efficacy of these algorithms.

MARL provides a new solution for MUTAPP problems; it models the decision-making
process in the multi-agent environment as a random game where each agent needs to make
decisions according to the strategies of other agents. MARL has become a prevalent method
to solve the problem of multi-agent cooperation.

In [31], DRL is used to generate paths for data collected by multiple UAVs without
prior knowledge. Reference [32] uses MADDPG for the cooperative control of four agents;
the experimental results show that MADDPG has good performance in complex environ-
ments and successfully learns the strategy of multi-agent collaboration. However, with the
instability of the environment caused by the increase in the number of agents, the proposed
algorithm has certain difficulties in the joint action space. In [33], MADDPG is used to
control the formation of multiple agents during transportation in order to prevent the agent
from colliding with other agents on the way to the target point. Chen et al. [34] use MARL
for the collaborative welding of multiple robots. The way of cooperation between robots is
also to prevent collisions between agents.

Han et al. [35] use MADDPG for both task assignment and path planning, and a
reward value function is designed to guide the UAV to the target point and avoid collisions
between UAVs. In fact, the cooperative approach of avoiding conflict can improve the
success rate of task execution but does not directly affect the efficiency of task execution.
Also, the proposed algorithm only works in environments where each agent performs
one task and cannot be used to solve the multiple traveling salesman problem. Moreover,
the performance of value-based reinforcement learning is better than that of policy-based
reinforcement learning in the task environment with few actions.

3. Overview of CBBA

In this section, we will review the CBBA algorithm, which is generally divided into
two parts: bundle construction and conflict resolution.

3.1. Bundle Construction

In the process, each CBBA agent creates only one bundle and updates it during the
allocation process. In the first phase of the algorithm, each agent keeps adding tasks to its
bundle set until no other tasks can be added.

During the task assignment process, each agent needs to store and update the following
four necessary information vectors: a bundle bi ∈ (J ∪ {∅})Lt , the corresponding path
pi ∈ (J ∪ {∅})Lt , the winning agent list zi ∈ J Nt and the winning score list yi ∈ RNt

+ .
The sequence of tasks in the bundle is arranged according to the order in which the

tasks are added to the collection, and the tasks in the path are arranged according to the
order in which the tasks are best executed. Note that the vector size of bi and pi cannot
be greater than the maximum assigned task number Lt. Spi

i is defined as the total reward
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score value of the task i performing the task along the path pi. In CBBA, adding task j to
bundle bi will result in an increase in marginal scores:

cij[bi] =

 0, i f j ∈ bi

max
n≤|pi |+1

Spi⊕n{j}
i − Spi

i , otherwise (1)

where |·| represents the vector size of the list, ⊕n represents the insertion of a new element
after the n-th element of the vector (in the later part of this article, ⊕end will also be used to
indicate the addition of a new element at the end of the vector). CBBA’s bundle scoring
scheme inserts a new task into the position where the highest score increases, which will be
the marginal score associated with the task in a given path. Therefore, if the task is already
included in the path, there will be no extra scores.

The score function is initialized as S{∅}i = 0, and the path and bundle are recursively
updated to

bi = bi ⊕end {Ji}, pi = pi ⊕ni ,Ji {Ji} (2)

where Ji = argmaxj(cij
[
bi × hij

)
, ni,Ji = argmaxnSpi⊕n{Ji}

i , hij = I I
(
cij > yij

)
and I I(·)

indicates an index function that having a value of 1 when the judgment result is true and a
value of 0 when the judgment result is false. The bundle algorithm is continuously looped
until |bi| = Lt or hi = 0.

3.2. Conflict Resolution

In the conflict resolution phase, there are three aspects that need to be communicated
to reach a consensus. The two vectors that have been introduced are the winning score
list yi ∈ RNt

+ and the winning agent list zi ∈ J Nt . The third vector si ∈ RNu represents
the timestamp of the last information update from each other agent. The time vector is
updated by:

sik =

{
τr, i f gij = 1

max
m:gim=1

smk, otherwise (3)

where τr is the message reception time.
When agent i receives a message from agent k, zi and si are used to determine the

information of which agent in each task is up to date. For task j, agent i has three possi-
ble actions:

1. Update: yij = ykj, zij = zkj

2. Reset: yij = 0, zij = ∅
3. Leave: yij = yij, zij = zij

Table 1 in [7] outlines the decision rules for information interaction between agents.

Table 1. Task area coordinates and ROR of Map (a).

No Coordinate ROR No Coordinate ROR

0 (35, 5) 4.2 8 (35, 45) 5.9

1 (65, 5) 4.9 9 (55, 55) 3.5

2 (25, 15) 4.4 10 (75, 55) 5.2

3 (55, 15) 4.2 11 (15, 65) 4.1

4 (5, 25) 3.7 12 (45, 65) 4.3

5 (45, 25) 4.6 13 (35, 75) 5.7

6 (75, 25) 3.8 14 (55, 75) 2.3

7 (15, 35) 5.6 15 (65, 35) 5.9
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If the elements in the winning score list change due to communication, each agent will
check whether the updated or reset tasks were in their bundle. If the task is actually in the
bundle, then this task and all other tasks added to the bundle later will be released:

yi,bin
= 0, zi,bin

= ∅, ∀n > nl (4)

bin = ∅, n ≥ nl (5)

where bin represents the n-th element of the bundle, and nl = min
{

n : zi,bin
6= i
}

. It should
be noted that the task that adding to the winning agent and the winning list after bi,nl will
be reset because the deletion can change all the task scores after bin. After completing the
second phase of conflict resolution, the algorithm will return to the first phase and add a
new task.

4. IDRL Based Path Planning Algorithm

Independent Reinforcement Learning (IRL) is widely and successfully applied in the
field of multi-agent autonomous decision-making. This paper uses IDRL to solve Nash
equilibrium in a cooperative game with incomplete information, and each UAV chooses
the optimal strategy according to the states and actions of other UAVs to maximize the
total rewards.

4.1. System Model

In this paper, we establish a model based on IDRL to enhance the efficiency of task
execution through multi-UAV cooperation. We make the following assumptions:

(1) Any two UAVs with intersected flight paths can communicate with each other to
know the states and actions when the distance between them is less than a threshold.
The game between UAVs belongs to incomplete information games.

(2) Each UAV can choose the optimal strategy according to the state and action of other
UAVs, so the game between UAVs belongs to cooperative games.

(3) The UAVs do not choose actions at the same time, so the game between UAVs belongs
to dynamic games.

The task environment of multiple UAVs is briefly divided into two-dimensional grids,
as shown in Figure 1. The blue part represents the task area to be executed.
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In the cooperative game with incomplete information, the objective function of UAVs
is to maximize the search efficiency. ROR and revenue defined in [36] are used to evaluate
the search efficiency of UAVs.

The detection function is used to estimate the detection ability in a probable target
grid j with time consumption z. A common exponential form of regular detection function
is given as:

b(j, z) = 1− e−εz (6)

where ε is a parameter related to the UAV equipment, z represents time consumption.
When an UAV is searching in grid j, the revenue function defined as

e(j, z) = p(j)b(j, z) (7)

where p(j) represents the target probability in grid j.
The efficiency of a multi-UAV system to perform a search task is assessed by the

amount of reward per unit of time earned by multiple UAVs. Therefore, the ROR of grid j
is introduced with a definition as:

ROR(j, z) =
d(e)
d(z)

= ε·e−εz·p(j)b(j, z) (8)

where indicates that the ROR value decreases as the search time z increases. In other words,
a lower ROR indicates that the area is searched more thoroughly.

We assume that each UAV knows the ROR value of all grids, as shown in Figure 1.
The problem can be solved into strategies on CBBA and DRL.

4.2. Nash Equilibrium in MARL

In MARL, Vi(π1, ···, πi, ···, πn) represents the expected reward of i-th agent under the
joint strategy (π1, ···, πi, ···, πn). In a matrix game, if the joint strategy satisfies Equation (9),
then the strategy is a Nash equilibrium.

Vi(π
∗
1 , ···, π∗i , ···, π∗n) ≥ Vi(π

∗
1 , ···, πi, ···, π∗n) (9)

The essence of MARL is a stochastic game. MARL combines the Nash strategies of
each state into a strategy for an agent and constantly interacts with the environment to
update the Q value function in each state of the game.

The random game consists of a tuple
〈

N, S,
{

Ai}
i∈{1,...,N}, P, γ,

{
Ri}
{1,...,N}

〉
, N rep-

resents the number of agents, S is the state space of the environment, and Ai is the action
space of agent i, P is the probability matrix of state transition, Ri is the reward function of
agent i, and γ is the discount factor. For multi-agent reinforcement learning, the goal is to
solve the Nash equilibrium strategy in each stage game and combine these strategies.

The optimal strategy of multi-agent reinforcement learning can be written as
(
π∗1 , ···, π∗n

)
and for ∀s ∈ S, i = 1, ···, n, it have to satisfy Equation (10).

Vi
(
s, π∗1 , ···, π∗i−1, π∗i , π∗i+1, ···, π∗n

)
≥ Vi

(
s, π∗1 , ···, π∗i−1, πi, π∗i+1, ···, π∗n

)
(10)

Q∗i (s, a1, ···, an) represents the action value function. In each phase game of state s, the
Nash equilibrium strategy is solved by using Q∗i as the reward of the game. According to
Bellman’s formula in reinforcement learning, MARL’s Nash strategy can be rewritten as
Equation (11).

∑
a1,···,an

Q∗i π∗1 ···, π∗i−1, π∗i , π∗i+1, ···π∗n ≥ ∑
a1,···,an

Q∗i π∗1 ···, π∗i−1, πi, π∗i+1, ···π∗n (11)

In a random game, if the reward function of each agent is the same, the game is called
complete cooperative game or team game. In order to solve the random game, stage game
at each state s needs to be solved, and the reward obtained by taking an action is Qi(s).
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4.3. Path Planning Algorithm Based on IDRL
4.3.1. Environment States

In the cooperative game, UAVs need to choose the optimal strategy according to
the state and action of other UAVs. Thus, at timestep k, the state vector of the j-UAV is
represented by:

sj
k =

[
xj, yj, x1, y1, xt1, yt1, a1, ρ

]T (12)

where xj and yj represent the abscissa and ordinate of the j-UAV, respectively. x1, y1
represent the coordinates of the nearest UAV, a1 represents the action of the nearest UAV at
timestep k. xt1, yt1 represent the current task coordinates of j-UAV. The value of ρ is 0 or 1,
indicating whether the area surrounding the UAV has been searched by other UAVs.

4.3.2. Discrete Action Set

Since the length of the grid in the task environment is much larger than the turning
radius of the UAV, it can be assumed that the UAV moves in a straight line in the grid. As
shown in Figure 2, when the UAV is in the grid 0, it can perform eight actions to go to the
corresponding grid. The numbers in the grids represent eight actions, including: left up,
up, right up, left, right, left down, down, and right down.
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4.3.3. Reward Function

The reward function is used to evaluate the quality of the action. In fact, there are
many factors that could affect the action selection of UAV, but within the scope of research,
the following three factors are mainly considered:

• Choosing the shortest path to the destination.
• Encouraging actions passing high ROR areas.
• Preventing collisions between UAVs.

Choosing the shortest path to the target area is not always optimized for path planning,
but still has a very high priority in the process. In order to prevent the reward value from
being too sparse and speed up the convergence of the IDRL algorithm, a continuous reward
function is proposed for the discrete environment. The reward for taking the shortest path
is formulated as follows:

R1 =

{
40 i f end
100
dt
∗ 10(−y) else (13)
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In which, y is the integer that increases with the distance of UAV from the target point,
dt is the current Euclidean distance from the UAV to the target point. We set the coordinates
of j-UAV as (xj, yj), and the coordinates of the target point as (x2, y2), then

dt =
√(

xj − x2
)2

+
(
yj − y2

)2 (14)

In the process of reward value learning, if the reward values of adjacent states are too
close, the algorithm may fall into the trap of local optimization due to insufficient training
samples. Therefore, for the discovery rate ε, the discovery rate is set to 0.4 to encourage
exploration at the beginning of searching for the optimal path. When the algorithm tends
to converge, the discovery rate should be reduced to make it approach 0.

The reward function of R1 is shown in Figure 3. By using the reward function R1, the
UAV can choose the shortest path to the target point according to the reward value obtained.
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When UAVs perform search tasks in the same area without a preset mode of cooper-
ation, different UAVs may detect repeated messages, causing meaningless time loss. In
addition, performing search tasks in the same area can easily lead to UAV collisions.

To prevent collisions between UAVs, we add a small penalty when the distance
between two UAVs is less than (2 ∗

√
2 ∗ dg) in length.

R2 =


−e−100du , du ≤ 2 ∗

√
2 ∗ dg

0, du > 2 ∗
√

2 ∗ dg
−1, du = 0

(15)

where du is the minimum distance between the i-th UAV and the nearest UAV. dg is the
length of the grid in the task model.

When an UAV flies to the assigned target area, the UAV needs to choose a reasonable
path. Specifically, UAVs need to make decisions before moving to target areas. As shown
in Figure 4, r1 is the shortest path for the UAV to the target area. If the path is always
the shortest route, the UAV will sometimes miss the target grids with high ROR values.
Compared with the path r1, the path r2 is a more reasonable path. In order to improve the
efficiency of UAVs to perform search tasks, the reward function needs to guide the UAV to
the target point while passing through the high ROR area on the way. Thus, the reward
function R3 is related to the ROR value of each grid. The combination of reward functions
R1 and R3 is shown in Figure 5.
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When the reward function R1 is used to train the UAV, the UAV will choose the straight
path. When R1 is combined with R3, the UAV will choose the detour path and will not fall
into the local optimum.

However, when a task area has been searched by UAV, it will waste time for other
UAVs to search this area again, so it is more reasonable to choose path r1. Therefore, UAV
needs to decide which path to choose according to the following formula:

R3 =

{
0, i f ρ = 1
ROR, i f ρ = 0

(16)

Therefore, the final reward value function is the sum of the reward values of all parts,
each part of the reward value multiplied by an appropriate coefficient.

Rtotal =
3

∑
i=1

Ri ∗ ki (17)

where ki is the coefficient for rewarding of each reward.
These coefficients represent the proportion of importance of each reward, which can

be different between UAVs. Variation of these coefficients could alternate the output results.
For example, getting more rewards can use a high value for the coefficient of R3, while
avoiding collisions that can use a low value for the coefficient of R2.
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5. Experiments and Discussions

In this section, we build two simulated search task environments, with 16 points and
29 points, respectively. Experiments are carried out using the above method as well as
other algorithms.

5.1. Simulation Environment

Map (a) in Figure 6A is 80 × 80 (m2) while Map (b) in Figure 6B is 130 × 130 (m2). The
coordinate and ROR of each task area in two maps are shown in Tables 1 and 2.
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Table 2. Task area coordinates and ROR of Map (b).

No Coordinate ROR No Coordinate ROR

0 (65, 5) 4.1 15 (125, 65) 3.8

1 (95, 5) 3.8 16 (65, 75) 3.8

2 (25, 25) 4.3 17 (25.85) 3.8

3 (35, 25) 3.0 18 (45, 85) 4.9

4 (65, 25) 3.9 19 (105, 85) 3.2

5 (95, 25) 3.9 20 (85, 95) 4.6

6 (115, 25) 4.1 21 (125, 95) 4.6

7 (125, 35) 4.1 22 (15, 105) 4.8

8 (15, 45) 4.1 23 (45, 105) 3.1

9 (35, 45) 4.9 24 (95, 105) 4.7

10 (85, 45) 4.6 25 (55, 115) 4.7

11 (65, 55) 4.2 26 (15, 125) 4.4

12 (105, 55) 4.1 27 (75, 125) 5.0

13 (15, 65) 4.8 28 (125, 125) 4.3

14 (35, 65) 4.9
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5.2. Parameters Setting

The parameter Settings of the experiment are shown in Table 3. In the experiment,
parameters of CBBA and IDRL need to be set, respectively. For CBBA, the maximum
number of tasks each UAV can carry out is 9. There is no termination time for each task,
and the end condition of the UAV search task in each area is that the ROR of the current
task area is less than 0.15 times the initial ROR of the task area.

Table 3. Experimental parameter setting.

Parameters Values

number of UAVs 4

number of task areas 29

max bundle capacity 9

speed of UAV 4 m/s

mission start time 0

mission end time RORcurrent < 0.15 × RORinitial

max episode 2000

discount factor 0.95

learning rate 0.01

reward Rtotal

number of neurons per layer 100

memory size 500

batch size 30

number of iterations to replace the target 200

For IDRL, the number of iterations of UAV is 20,000 times. When each UAV completes
its task, it stops moving and communicating.

5.3. Results and Discussions

We first compare our proposed algorithm with k-means algorithm and minimum
spanning tree algorithm in the same simulation environment.

In terms of task allocation, the results of using the clustering algorithm on two maps
are shown in Figure 7.

Compared with CBBA, the advantage of using clustering algorithm for task allocation
is that the task areas of each UAV are concentrated, and the UAV will not collide with other
UAVs during flight. However, the dispersed task area makes it difficult to cooperate among
multiple UAVs.

The result of using CBBA for task allocation is shown in Figure 8. For CBBA, since
CBBA is essentially an auction algorithm, each UAV chooses tasks with the goal of maxi-
mizing rewards. Compared with clustering algorithm, the task area assigned by CBBA is
more dispersed. At the same time, due to the consideration of time constraints, multiple
UAVs can complete the tasks around the same time. The task completion time of each UAV
using CBBA algorithm is shown in Table 4.

However, the disadvantage of using CBBA for path planning is that UAVs are prone
to collision and crash, and the cooperation between UAVs is not considered in CBBA. IDRL
overcomes the above shortcomings. As shown in Figure 9, collisions between UAVs can be
avoided by using IDRL and UAVs can choose the path with higher rewards.
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is applied to map (b), convergence can be achieved in 1000 iterations, and the collision-
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Table 4. CBBA task assignment results.

Type of Map No Bundle List Path List End Time

Map (a) UAV1 [2, 5, 15, 10, 14] [2, 5, 15, 10, 14] 31.430

Map (a) UAV2 [7, 4, 11] [7, 4, 11] 23.227

Map (a) UAV3 [0, 3, 1, 6] [0, 3, 1, 6] 23.942

Map (a) UAV4 [8, 13, 12, 9] [8, 13, 12, 9] 28.168

Map (b) UAV1 [2, 14, 18, 25, 27, 24, 20, 19] [2, 14, 18, 25, 27, 24, 20, 19] 39.301

Map (b) UAV2 [9, 11, 10, 12, 15, 21, 28] [9, 11, 10, 12, 15, 21, 28] 38.952

Map (b) UAV3 [8, 13, 17, 22, 26, 23, 16] [8, 13, 17, 22, 26, 23, 16] 37.366

Map (b) UAV4 [3, 4, 0, 1, 5, 6, 7] [3, 4, 0, 1, 5, 6, 7] 31.301
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The reward value curves of UAVs in the training process are shown in Figure 10.
The reward curve of the UAV in the training process represents the convergence of the
algorithm. For map (b), with a more complex task model, as shown in Figure 9, the four
agents will undergo a lot of trial and error at the beginning of training. The proposed
algorithm is applied to map (b), convergence can be achieved in 1000 iterations, and the
collision-free path can be formed eventually.

The changing rules of total revenue of the different algorithms are shown in Figure 11.
In two experimental environments, our proposed algorithm can obtain more rewards in
the same time period than the K-means+MST algorithm. It is proved that our proposed
algorithm has higher search efficiency. In addition, in order to prove that the proposed
algorithm can improve the efficiency of search task execution through cooperation, we
compared the proposed algorithm with the classical DRL algorithm under the premise that
CBBA task assignment is also adopted. The results show that although DRL can get more
reward value after completing the task, the time to complete the task is higher than IDRL
and the reward value obtained by DRL is lower than IDRL in the same time. It is proved
that IDRL can improve the efficiency of task execution through cooperation.

The residual ROR after simulations is shown in Table 5. For CBBA and IDRL, the ROR
of most target grids can be reduced to a lower level due to the reasonable path optimization.
Though some grids are also fully searched in another algorithm, there are more target
grids with high ROR. The results show that our proposed algorithm can search the area
more thoroughly.

For a multi-UAV system, the time for each UAV to complete the task needs to be
as short and close as possible. We compare the time for each UAV to complete the task
between the two algorithms. As shown in Figure 12a, in small-scale scenarios, the proposed
algorithm is close to the MST method in terms of time variance and mean value. However,
in large-scale scenarios, our proposed algorithm shows obvious advantages, compared
with k-means and MST algorithms, and the average time to complete the task with IDRL
and the variance of the time to complete the task with four UAVs are smaller.



Sensors 2022, 22, 6737 14 of 18Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Reward value curves of four UAVs during training: (a) UAV1; (b) UAV2; (c) UAV3 (d) 
UAV4.  

  
(A) (B) 

Figure 11. Total revenue variation in different algorithms. (A) Map (a). (B) Map (b). 

Figure 10. Reward value curves of four UAVs during training: (a) UAV1; (b) UAV2; (c) UAV3
(d) UAV4.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Reward value curves of four UAVs during training: (a) UAV1; (b) UAV2; (c) UAV3 (d) 
UAV4.  

  
(A) (B) 

Figure 11. Total revenue variation in different algorithms. (A) Map (a). (B) Map (b). Figure 11. Total revenue variation in different algorithms. (A) Map (a). (B) Map (b).



Sensors 2022, 22, 6737 15 of 18

Table 5. Task area coordinates and ROR.

Type of Map No CBBA + IDRL K-Means + MST No CBBA + IDRL K-Means + MST

Map (a) 0 0.3810 0.3810 8 0.4382 0.3587

Map (a) 1 0.2439 0.4445 9 1.2875 0.3175

Map (a) 2 0.3991 0.2675 10 1.9129 0.3862

Map (a) 3 0.0422 0.2554 11 0.3719 0.2493

Map (a) 4 0.0204 0.3356 12 0.0237 0.3901

Map (a) 5 0.4173 0.4173 13 0.1275 2.0969

Map (a) 6 0.2310 0.3447 14 0.4643 1.0334
Map (a) 7 0.0301 2.0601 15 0.0019 2.1704

Map (b) 0 0.5549 0.5549 15 0.6281 0.7672

Map (b) 1 0.5142 0.344 16 1.3979 0.2310

Map (b) 2 0.0353 0.096 17 0.2822 0.1548

Map (b) 3 0.0033 0.0819 18 0.0492 0.6631

Map (b) 4 0.5278 0.5278 19 1.1772 0.2902

Map (b) 5 0.5278 0.5278 20 0.2797 0.2797

Map (b) 6 0.3719 0.2493 21 0.6225 0.6225

Map (b) 7 1.0110 0.2493 22 0.6496 0.6496

Map (b) 8 0.5548 0.5548 23 0.0380 0.1885

Map (b) 9 0.0897 0.6631 24 0.7769 0.2858

Map (b) 10 0.7603 0.4173 25 0.2858 0.2858

Map (b) 11 0.3810 1.545 26 0.3991 0.5954

Map (b) 12 0.5548 0.3719 27 0.1118 0.1668

Map (b) 13 0.6496 0.6496 28 1.5818 1.5818

Map (b) 14 0.663 1.803
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6. Conclusions

This paper first summarizes the existing path planning algorithms and points out their
shortcomings. Then the search task model is introduced. On this basis, a cooperative search
method of multiple UAVs is proposed. For task points with different reward values, CBBA
is first used for task assignment. Then we use IDRL for UAV path planning and propose
a new reward function. The proposed reward function consists of three parts, which are
respectively used to guide UAV to the target point, avoid collision between UAVs and
encourage UAV to choose the path with higher rewards. Experimental results show that
compared with the other method, our proposed method can obtain more reward values in
the same time and it is feasible and effective for multi-UAV path planning. In our future
work, our focus will be on the constraints of the UAV kinematics by integrat-ing the Dubins
curve model, which would make the proposed framework more practical.
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Nomenclature

Parameter Definition
s state of UAV
a action of UAV
R reward function
d euclidean distance
ρ switch for R3
k discount factor
π strategy of the agent
p action choice probability
yi winning score list
zi winning agent list
V state value function
Q action value function
P state transition matrix
e revenue function of the searched area
z time
ε search capability of UAV
α learning rate
bi bundle of agent
cij[bi] score function
Lt maximum assigned task number
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Abbreviations
The following abbreviations are used in this manuscript:
CBBA Consensus-based bundle algorithm
UAV Unmanned aerial vehicle
IDRL Independent deep reinforcement learning
MARL Multi-agent reinforcement learning
MUTAPP Multi-UAV target assignment and path planning
TSP Traveling salesman problem
MTSP Multiple traveling salesman problem
GA Genetic algorithm
OPA Overall partition algorithm
MST Minimum spanning tree
MEP Maximum entropy principle
SA Simulated annealing
MADDPG Multi-agent deep deterministic policy gradient
ROR Rate of return
CPP Coverage path planning
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