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Abstract: Motion segmentation is one of the fundamental steps for detection, tracking, and recogni-
tion, and it can separate moving objects from the background. In this paper, we propose a spatial-
motion-segmentation algorithm by fusing the events-dimensionality-preprocessing algorithm (EDPA)
and the volume of warped events (VWE). The EDPA consists of depth estimation, linear interpolation,
and coordinate normalization to obtain an extra dimension (Z) of events. The VWE is conducted by
accumulating the warped events (i.e., motion compensation), and the iterative-clustering algorithm
is introduced to maximize the contrast (i.e., variance) in the VWE. We established our datasets by
utilizing the event-camera simulator (ESIM), which can simulate high-frame-rate videos that are
decomposed into frames to generate a large amount of reliable events data. Exterior and interior
scenes were segmented in the first part of the experiments. We present the sparrow search algorithm-
based gradient ascent (SSA-Gradient Ascent). The SSA-Gradient Ascent, gradient ascent, and particle
swarm optimization (PSO) were evaluated in the second part. In Motion Flow 1, the SSA-Gradient
Ascent was 0.402% higher than the basic variance value, and 52.941% faster than the basic conver-
gence rate. In Motion Flow 2, the SSA-Gradient Ascent still performed better than the others. The
experimental results validate the feasibility of the proposed algorithm.

Keywords: event camera; motion segmentation; motion compensation; depth estimation; motion flow

1. Introduction

As a new type of sensing imaging device, event cameras, such as the dynamic vision
sensor (DVS) or dynamic and active-pixel vision sensor (DAVIS) [1,2], are different from
traditional cameras that shoot scenes or objects at a fixed frame rate [3]. The moving objects
and light-intensity changes are focused on by event cameras. In general, the intensity
change of each pixel is transmitted by a stream of asynchronous events. The information
carried by an event includes the pixel coordinates (x, y), trigger time (t), and positive- or
negative-event polarity (p). Compared with traditional cameras, event cameras have many
advantages, for example, latency in microseconds, low motion blur, and high dynamic
range (HDR) [4]. In computer vision, event cameras are often used in many fields, such as
detection, tracking, recognition, and simultaneous localization and mapping (SLAM) [5,6].

In motion segmentation, independent motion-related pixels can be separated from
the video sequence. Based on different motion types, the foreground objects are divided
from the background by clustering these pixels [3,7]. Traditional vision-based processing
algorithms usually assume that the video is shot under ideal circumstances [8–10]. Many
factors are not taken into account by traditional vision tasks (e.g., moving speed, stability,
and lighting conditions). In practical-application scenarios, the performance of motion-
segmentation algorithms will be severely affected by fast-moving devices, such as drones
and self-driving vehicles. The problem is well handled by motion segmentation based on
event cameras [11]. The task of spatial-motion segmentation aims to separate the tracked
feature points according to the respective rigid three-dimensional (3D) motion [12].
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In this paper, we propose a framework by fusing the EDPA and 3D-motion-compensation
approach to establish the spatial-motion-segmentation algorithm. The advantages of 3D
information and motion segmentation are well combined by the proposed algorithm, which
can not only satisfy the accuracy and stability requirements of vision works, but also sepa-
rate the objects from the redundant background. The datasets of the experiments derive
from the ESIM, which is an event-camera simulator [13]. After collecting the datasets, the
pseudo-depth of the per-event is obtained by the EDPA in each frame of a pixel. The VWE
is conducted by accumulating the warped events, and the iterative-clustering algorithm
is presented to maximize the contrast in the VWE. The proposed algorithm has great seg-
mentation effectiveness in low-speed- and high-speed-motion scenes, and in low-light and
low-exposure scenes (e.g., high noon and night scenes). The main contributions of this
paper are as follows:

(1) In order to inexpensively and conveniently extend 3D (2D plane (x, y) and time (t))
to 4D (3D space (x, y, z) and time (t)) for events without an RGB-depth-map (RGB-D)
camera [14], or based on the light detection and ranging system (LiDAR), the EDPA is
proposed for application in a variety of scenarios in this paper;

(2) Compared with the traditional frame-based and plane-based methods [15–17], the
proposed algorithm combines the EDPA and 3D-motion compensation to accomplish
the spatial-motion segmentation. The proposed algorithm provides a more refined
segmentation model, and the segmentation accuracy can be greatly improved;

(3) The SSA-Gradient Ascent is presented to maximize the contrast in the VWE in this
paper, which blends the advantages of SSA [18] and gradient ascent to obtain a better
fitness value and faster convergence rate than other algorithms, such as PSO (see
Section 4.2).

The remainder of this paper is organized as follows. In Section 2, we review some
related works on depth estimation and motion segmentation. The mathematical model and
main methods are presented in Section 3. Section 4 presents the process of the experiments.
The conclusions are shown in Section 5.

2. Related Work

Depth estimation is one of the most important components of the EDPA. In [19],
the authors introduced some of the high-accuracy and high-speed structured-light 3D-
reconstruction methods. Deep learning enables us to accomplish visual tasks that are
difficult to achieve by traditional geometry-based algorithms. Muhammad, K. et al. pro-
posed a bidirectional long short-term memory (BiLSTM)-based attention mechanism with
a dilated convolutional neural network (DCNN) to recognize the different human actions
in videos [20]. A primary-prioritized recurrent deep reinforcement learning algorithm for
dynamic-spectrum access based on cognitive-radio (CR) technology was proposed in [21].
In [22], a game-theory strategy was proposed to improve the energy-consumption perfor-
mance of the MEC system. David et al. presented the first monocular depth estimation
based on a convolutional neural network (CNN) [23]. Ibraheem et al. presented supervised
learning without coupled geometric information [24]. To overcome the disadvantages of the
RGB information-only-based method, an improved moving-object-detection method was
proposed in [25]. Depth estimation based on event cameras has been gradually developed
in recent years. In [26], the authors introduced the event-based multiview stereo (EMVS)
to estimate semidense 3D structures with known trajectories. A novel 3D-reconstruction
method was researched by Kim et al., which can perform real-time 3D reconstruction
from a single hand-held event camera with no additional sensing [27]. In [28], a unifying
framework was studied to solve several computer-vision problems with event cameras:
motion, depth, and optical-flow estimation.

A variety of segmentation algorithms have been proposed by researchers to recognize
and separate the objects from the background in the scene. Wang et al. proposed the EvDis-
till to learn a student network on the unlabeled and unpaired event data (target modality)
via knowledge distillation (KD) [29]. In [30], the authors introduced a framework for the
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segmentation of human-motion sequences based on sensor networks. Li et al. presented a
novel approach, which is the motion segmentation of 3D-active-contour registration [31].
Event cameras are also widely made use of in motion segmentation. Stoffregen et al. pre-
sented a motion-compensation-based approach to establish the image of warped events
(IWE) for segmentation [10]. The dataset was proposed by Mitrokhin et al. to perform
the motion segmentation of event cameras [32]. The authors developed a technique for
generalized motion segmentation based on spatial statistics across timeframes [33]. In [34],
Zhou et al. introduced an event-based motion-segmentation method with spatiotemporal
graph cuts, which cast the problem as an energy minimization one involving the fitting of
multiple motion models.

3. Main Methods

The objectives of our research are to extend 4D events and realize spatial-motion
segmentation. We assume the prior knowledge of the scene that we cannot know. Because
the information carried by the per-event is limited, the events in the set ε = {ek}Ne

k=1 are
processed so that we can obtain enough information. The depth maps of the images
are obtained by depth estimation. The initial motion parameter θ =

[
θx, θy, θz

]T can be
obtained by motion-flow estimation [35]. The contrast maximization is a framework that
provides state-of-the-art results on several event-based computer-vision tasks [36]. A
coherent motion is represented by a cluster. The problems we need to address are to classify
the events into distinct clusters and maximize the contrast in the VWE.

3.1. Events from 3D to 4D by EDPA

The target of EDPA is to obtain an extra dimension (Z) for events. Firstly, the pre-
pixel depths of Frame1 and Frame2 are derived by depth estimation as Z f rame1 and Z f rame2 ,
respectively. As shown in Figure 1a, we calculate the depth of the per-event by Equation
(1). At the same time, the depth (Z) and events coordinates (x, y) are not in the same
coordinate system. The coordinates need to be normalized by transformation. Then, we
transform the pixel coordinates and depth (Z) into the same coordinate system through a
global transformation, as shown in Equations (2) and (3) and Figure 1b. Finally, we have an
extra dimension, as shown in Equation (4):

Zk =
tk − Tf rame1

Tf rame2 − Tf rame1

∣∣∣Z f rame2 − Z f rame1

∣∣∣ (1)

where tk is the time when the event (k) is triggered; Tf ramej
is the time of the frame (j) in a

video; Z f ramej
is the pixel depth on the frame (j), and Zk is the depth of the event (k);

xk
Xk

=
yk
Yk

=
f

Zk
(2)

where (xk, yk) is the raw coordinate of the event (k); (Xk, Yk, Zk) are the global coordinates
of the event (k); f is the scale factor;

Writing Equation (2) in matrix form, we have:

Zk

xk
yk
1

 =

 f 0 0
0 f 0
0 0 1

Xk
Yk
Zk

 (3)

{ek = (xk, yk, tk)}Ne
k=1 → {ek = (Xk, Yk, Zk, tk)}Ne

k=1 (4)

where ek is the event (k) in the set, and Ne is the total number of events.
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Figure 1. The events-dimensionality-preprocessing algorithm. (a) Two images are keyframes. The 
upward and downward arrows between the two images represent positive and negative events, 
respectively. (b) The point ( )1 1,p x y  is on the Ω  plane, and the p  is back-projected into the 
global coordinate system O X Y Z− − −  by coordinate transformation. 
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Figure 2. Grayscale-invariance assumption. According to the assumption, the grayscale value of the 
voxel is not changed between 1t  and 2t  in space. 

Figure 1. The events-dimensionality-preprocessing algorithm. (a) Two images are keyframes. The
upward and downward arrows between the two images represent positive and negative events,
respectively. (b) The point p(x1, y1) is on the Ω plane, and the p is back-projected into the global
coordinate system O− X−Y− Z by coordinate transformation.

3.2. Motio-Flow Estimation

A method of voxel motion in space over time is described by the motion flow. The
grayscale-invariance assumption is shown in Figure 2.

It1(x1, y1, z1, t1) = It2(x2, y2, z2, t2) (5)

where Itk is the grayscale value at the time (tk), and (x, y, z) are the coordinates of the voxel
in space.
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Figure 2. Grayscale-invariance assumption. According to the assumption, the grayscale value of the
voxel is not changed between t1 and t2 in space.

As shown in Figure 2, according to the grayscale-invariance assumption, the move-
ment of a voxel from t to t + dt is shown in Equation (6):

I(x + dx, y + dy, z + dz, t + dt) = I(x, y, z, t) (6)

When Taylor expansion is performed on the left side of the above equation and retains
the first-order term, we will obtain:

I(x + dx, y + dy, z + dz, t + dt) ≈ I(x, y, z, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂z

dz +
∂I
∂t

dt (7)
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Comparing the right sides of Equations (6) and (7), we have:

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂z

dz +
∂I
∂t

dt = 0 (8)

Both sides of the above equation are divided by dt, and ∂I
∂t is moved to the right side

of the equation:
∂I
∂x

θx +
∂I
∂y

θy +
∂I
∂z

θz = −
∂I
∂t

(9)

where θx, θy, θz are the velocities in the x, y, z directions, respectively.
To obtain enough equations to estimate the θ, three planes (S1, S2, S3) are created as

(x, y, t), (y, z, t), (z, x, t), respectively, and their grayscale values are I1, I2, I3, respectively,
which are shown in Figure 3. Equation (9) can be written as:

∂Ik
∂i

θi +
∂Ik
∂j

θj = −
∂Ik
∂t

(10)

where (i, j) is the element that belongs to {(x, y), (y, z), (z, x)}, and k is the index of the
set that belongs to {1, 2, 3}. For example, when k = 1, (i, j) = (x, y), Equation (10) can be
written as:

∂I1

∂x
θx +

∂I1

∂y
θy = −∂I1

∂t
(11)
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Figure 3. 2D projection of a 3D time surface (TS) of events. The 3D TS is a 3D map in which each
voxel stores a single time value [37]. The object (P) is obtained by accumulating events from t0 to t1,
and then projecting it onto three planes (S1, S2, S3 ) to form TSs in space.

Equation (10) can be written as a matrix form:I1,x I1,y 0
0 I2,y I2,z

I3,x 0 I3,z

θx
θy
θz

 = −


∂I1
∂t
∂I2
∂t
∂I3
∂t

 (12)

where I1,x is k = 1 and the partial derivative of I1 to x.
Ik,(i,j) are recorded as ak and bk, and the above equation can be written as:a1 b1 0

0 a2 b2
b3 0 a3

θx
θy
θz

 = −

c1
c2
c3

 (13)



Sensors 2022, 22, 6732 6 of 15

By calculating the optical flow, θx can be obtained such that:

θ =

 θx
−a1θx+c1

b1
−b3θx+c3

a3

 =

θx
θy
θz

 (14)

3.3. 3D-Motion-Compensation and the Iterative-Clustering Algorithm

As shown in Figure 4, the objects are warped in the direction of the optical flow, and
the image becomes sharp; in the contrary case, the image becomes a blur. The warped
events are given by:

xk = (xk, yk, zk)
T (15)

x′k = xk −
(

tk − tre f

)
θ = xk − ∆tkθ (16)

where tk is the trigger time of the event (k), and x′k is the position where the event (xk)
is warped.
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warped in the direction of the “hand”, and so the image of the “hand” becomes sharp, and the image
of the “face” becomes a blur; (c) the condition presented by the image is counter to (b).

Similar to the IWEs, we accumulate the warped events according to the weight values.
The definition of the VWE is:

Vj(x) =
Ne

∑
k=1

pkjδ
(

x− x′kj

)
(17)

where pkj represents the probability that the event (k) belongs to the optical flow (j), and

δ =

{
1, x− x′kj = 0
0, otherwise

represents the Dirac function. x′kj is the location, where the event (k) is

warped along the optical flow (j).
Variance is employed to evaluate the contrast in this paper. To make the VWE sharper,

the contrast is maximized as:

Var
(
Vj
)
=

1
|Ω|

∫
Ω

(
Vj(x)− µVj

)2
dx (18)

where Ω is the image volume, and µVj denotes the mean of the VWE over the image volume (Ω).
For the discrete VWE, the above equation can be written as:

Var
(
Vj
)
= ∑

a,b,c∈Ω

(
Vabc − µVj

)2
(19)

where a, b, c is the index of the voxel in spacetime.
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Now, the θ and P are needed to initialize and iterate. The elements of the P are
the event-cluster membership probabilities, and the elements of the θ are the motion
parameters. Because our clustering type is motion flow, the k-means algorithm was used
to find the cluster center to initialize the θ. The loss function of the k-means algorithm is
defined as follows:

J(c, λ) = min
M

∑
i=1
‖xi − λci‖

2 (20)

where xi represents the sample point (i), c is the cluster to which xi belongs, λci represents
the center point corresponding to the cluster, and M is the total number of samples.

To make the per-event have the same probability of being classified into the cluster,
we initialize the P:

P =
1
Nl

(21)

where Nl is the clusters number.
The above process can be summarized as the need to optimize the θ and P that

maximize the variance, and the θ and P are updated by the iterative-clustering algorithm.
Each iteration of the iterative-clustering algorithm has two steps: a fixed P to update the θ,
and a fixed θ to update the P:

(θ∗, P∗) = argmax
(θ,P)

Nl

∑
j=1

Var
(
Vj
)

(22)

The iteration of the θ makes use of the SSA-Gradient Ascent. In SSA, the producers’
location update is given by:

θt+1
i,j =

θt
i,j · e

( −i
α·itermax

) i f R2 < ST

θt
i,j + q · l i f R2 ≥ ST

(23)

where t is the current iteration number, and θt
i,j represents the value of the dimension

(j) of the sparrow (i) at iteration (t). The largest number of iterations is represented by
itermax.α ∈ (0, 1], and q is a random number obeying a normal distribution. R2 ∈ [0, 1]
represents the alarm value, and ST ∈ [0.5, 1] represents the safety threshold (l ∈ R1×d).

The scroungers are updated by:

θt+1
i,j =

 q · e(
θt
worst−θt

i,j
i2

) i f i > n
2

θt+1
p +

∣∣∣θt
i,j − θt+1

p

∣∣∣ · n+ · l otherwise
(24)

where θp is the optimal position currently occupied by the producers; θworst represents the

present global worst position; n ∈ R1×d, and n+ = nT(nnT)−1.
The sparrows that are aware of the danger are given by:

θt+1
i,j =


θt

best + β ·
∣∣∣θt

i,j − θt
best

∣∣∣ i f fi > fg

θt
i,j + K ·

( ∣∣∣θt
i,j−θt

worst

∣∣∣
( fi− fw)+ε

)
i f fi = fg

(25)

where θbest represents the present global best position; β is the step-size-controlled parame-
ter; K ∈ [−1, 1]; fg and fW are the current global fitness values, which represent the best
and worst fitness values, respectively; ε is a constant that avoids zero in the denominator.

The SSA is used to find the better θ in the global area. Gradient ascent is used to obtain
the best in the local area, as shown in (25).
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θ← θ+ µ∇θ

(
Nl

∑
j=1

Var
(
Vj
))

(26)

where µ is the iteration step size.
The iteration of the P is given by:

pkj =
cj(x′k(θj))

Nl
∑

i=1
ci(x′k(θi))

(27)

where ci is the VWE of the i-th; x′k(θj) is the position where the event (k) is warped along
the 3D-motion flow (j); pkj is the probability that the event (k) belongs to the j-th.

The algorithm flowchart is shown in Figure 5. The Algorithm 1 and Figure 5 show
the overall process of our method. Variance convergence can usually be judged by the
following conditions:

(1) The variance curves tend to be horizontal, or the fluctuation changes a little;
(2) In the variance values, more than a certain constant can be considered variance

convergence;
(3) The iterations will be interrupted when the number of iterations reaches a cer-

tain value.
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Figure 5. The spatial motion segmentation algorithm flowchart. The n is the current number of
iterations. The N represents the total number of iterations required. In the whole algorithm, the
dataset we need is obtained by the preprocessing part, and the extension of events from 3D to
4D is realized by the EDPA. The VWE is conducted by accumulating the warped events, and the
iterative-clustering algorithm is used to maximize the contrast in the VWE.
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Algorithm 1. Spatial-Motion Segmentation

Start
Input: Raw events, set ε1 = {ek = (xk, yk, tk, pk)}Ne

k=1; original images; the number of clusters (Nl).
Output: Event-cluster membership probabilities (P), and motion parameters (θ).
Procedure:
1: For each image, do depth estimation.
End for;
2: For k← 1 to Ne, do:

Zk =
tk−Tf rame1

Tf rame2−Tf rame1

∣∣∣Z f rame2 − Z f rame1

∣∣∣
Zk

xk
yk
1

 =

 f 0 0
0 f 0
0 0 1

Xk
Yk
Zk


End for:
ε2 = {ek = (Xk, Yk, Zk, tk, pk)}Ne

k=1
3: For ek, do:

computing θk according to θ =
(

θx, −a1θx+c1
b1

, −b3θx+c3
a3

)T

End for:
4: For k← 1 to Ne, do:
warping ek according to x′k = xk −

(
tk − tre f

)
θ = xk − ∆tkθ

End for:
5: For each warped ek, do weighted accumulate:

Vj(x) =
Ne

∑
k=1

pkjδ
(

x− x′kj

)
6: For i← 1 to ∞, do:
If the variance is not converged, then:

update the P using pkj =
cj(x′k(θj))

Nl
∑

i=1
ci(x′k(θi))

update the θ according to SSA-Gradient Ascent:

computing Var
(

Vj

)
= ∑

a,b,c∈Ω

(
Vabc − µVj

)2

End if:
i← i + 1
End for:
End

4. Experiments

The performance of the proposed algorithm was evaluated by two experiments. The
following experiments were conducted to verify the feasibility of the proposed algorithm.
We utilized our datasets, which were derived from the event-camera simulator (ESIM).
Our experimental process consisted of two parts: in the first part, the spatial-motion
segmentation was implemented in the exterior scene and interior scene, and in the second
part, the influence of the optimization-algorithm performance on the variance in the VWEs
was estimated by SSA-Gradient Ascent, PSO, and gradient ascent.

4.1. Experiment 1: Spatial-Motion Segmentation of Exterior and Interior Scenes

The Monodepth2 [38] depth-estimation network was utilized to predict the exterior
scene in this paper, which was in a situation where the camera was stationary and only had
moving objects. The predicted result is shown in Figure 6a, which displays the depth map
of the first keyframe. The EDPA needs to utilize two images to expand the dimension of
the events. After we obtained the depth map of the first key frame, the second key frame
was selected for the depth estimation based on the trigger time of the 15,000th event. The
spatial-motion segmentation was performed as shown in Figure 6b,c. Figure 6b is warped
in the wrong direction, which is not the motion-flow direction of the objects. Figure 6c is
the segmentation result by warping in the correct direction. When the algorithm iterates
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to around the 10th round, the variance has been maximized, and we can consider that
the variance has converged. The iterative plots of variance are shown in Figure 6d. The
changes in the θ are shown in Figure 6e–g. Six curves represent lateral-velocity vectors (θx),
column-velocity vectors (θy) and velocity vectors on the z-axis (θz).

The fully convolutional residual network (FCRN) [39] was applied to predict the
interior scene, as shown in Figure 7a. In Figure 7b,c, two carts along the upper-left and
lower-right corners of the table with different directions and speeds were successfully
separated into different classes in 3D space, and little redundant background information
was segmented into the foreground. Experimenting with the objects moving in different
directions demonstrated the feasibility of the proposed algorithm in the interior scene.
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Figure 6. Results of exterior-scene experiment. (a) The left is an image of the original scene. The
right is the predicted depth map. The time of the first frame comes from the first event’s trigger time.
(b,c) Warping events to obtain the VWE. The initial value of the velocity vectors of warping events
comes from the k-means algorithm. (d) Variance 1 and Variance 2 represent the variance change in
the VWE after events are warped along with different motion flows. (e–g) Iterating process of motion
parameters (θ).
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PSO, and gradient ascent were evaluated in this part, as shown in Figure 8. The variance-
convergence rate of the algorithms and the value of the variance after convergence are 
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method as the benchmark value. In Motion Flow 1, the proposed algorithm outperforms 
the basic value, with the gradient ascent 0.402% lower than the baseline. In Motion Flow 
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Figure 7. Results of interior-scene experiment. (a) Original image and predicted depth map. (b)
Events are warped by the motion flow towards the lower-right corner. The red car is sharpened, and
the silver car is blurred. (c) Events are warped by the motion flow towards the upper-left corner, the
silver car being sharpened, and the red car being blurred. (d) Variance 1 and Variance 2 represent
the variance change in the VWE after events are warped, along with different motion flows. (e–g)
Iterating process of motion parameters (θ).

4.2. Experiment 2: Comparison of the Effects of Different Optimization Algorithms

The SSA has a preferable ability in global optimization, while it is weak in local
searches. The gradient ascent has an excellent performance in local optimization, but it
easily falls into the local extreme value. The SSA-Gradient Ascent combines the advantages
of SSA and gradient ascent. The updates of the θ by the SSA-Gradient Ascent, PSO,
and gradient ascent were evaluated in this part, as shown in Figure 8. The variance-
convergence rate of the algorithms and the value of the variance after convergence are
listed in Table 1. As presented by the data in Table 1 and Figure 8, we chose the PSO
method as the benchmark value. In Motion Flow 1, the proposed algorithm outperforms
the basic value, with the gradient ascent 0.402% lower than the baseline. In Motion Flow 2,
the gradient ascent is 0.731% higher than the basic value, while the proposed algorithm is
0.819% higher than the basic value. The same initial value of the θ is used by the above
algorithms, and the maximum-variance value of the SSA-Gradient Ascent indicates that
the proposed algorithm is less dependent on initialization. The gradient-ascent method
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does not converge until 19 iterative rounds. Compared with PSO, the proposed algorithm’s
convergence rate was 52.941% higher in Motion Flow 1, and 46.154% higher in Motion
Flow 2. The better performance of the proposed algorithm was confirmed according to
this experiment.
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Figure 8. The variance convergence curves of VWEs when the θ is optimized by SSA-Gradient Ascent,
PSO, and gradient ascent. (a) Variance curves along the direction of Motion Flow 1 (b) Variance
curves along the direction of Motion Flow 2.

Table 1. Comparison of algorithm performances.

Motion Flow 1 Motion Flow 2

Variance value
SSA-Gradient Ascent (ours) 0.00200104 +0.800% 0.00189911 +0.819%

PSO 0.00198522 0% 0.00188369 0%
Gradient Ascent 0.00197723 −0.402% 0.00189746 +0.731%

Convergence speed
(iteration no.)

SSA-Gradient Ascent (ours) 8 +52.941% 7 +46.154%
PSO 17 0% 13 0%

Gradient Ascent None None

5. Conclusions

A spatial-motion-segmentation algorithm is proposed in this paper, which has fused
the EDPA and 3D-motion-compensation approach. The accuracy for tasks such as feature
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detection in complex environments is addressed by the proposed algorithm, while the
advantages of 3D information and motion segmentation are well combined. The pseudo-
depth of the per-event was obtained by the EDPA in each frame of a pixel. The VWE
was conducted by accumulating the warped events, and a spatial-motion-segmentation
algorithm is presented to maximize the contrast in the VWE. Interior and exterior scenes
were segmented in the first part of the experiments. In the second part, the effect on the
variance in the VWEs was estimated by SSA-Gradient Ascent, PSO, and gradient ascent. In
Motion Flow 1, the SSA-Gradient Ascent was 0.402% higher than the basic variance value,
and 52.941% faster than the basic convergence rate. In Motion Flow 2, the gradient ascent
was 0.731% higher than the basic value, and 46.154% faster than the basic convergence rate.
As a result, the experimental results validate the feasibility of the proposed algorithm. For
future research, more complex scenes and conspicuous-spatial-motion segmentation will
be studied by us.
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