
Citation: Ren, D.; Yang, J.; Wei, Z.

Multi-Level Cycle-Consistent

Adversarial Networks with Attention

Mechanism for Face Sketch-Photo

Synthesis. Sensors 2022, 22, 6725.

https://doi.org/10.3390/s22186725

Academic Editors: Chih-Hsien Hsia,

Jing Chen and Miaohui Wang

Received: 6 August 2022

Accepted: 4 September 2022

Published: 6 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Level Cycle-Consistent Adversarial Networks with
Attention Mechanism for Face Sketch-Photo Synthesis
Danping Ren 1,2,*, Jiajun Yang 1,2 and Zhongcheng Wei 1,2

1 Hebei Key Laboratory of Security Protection Information Sensing and Processing, Handan 056038, China
2 School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
* Correspondence: rendanping@hebeu.edu.cn

Abstract: The synthesis between face sketches and face photos has important application values
in law enforcement and digital entertainment. In cases of a lack of paired sketch-photo data, this
paper proposes an unsupervised model to solve the problems of missing key facial details and a
lack of realism in the synthesized images of existing methods. The model is built on the CycleGAN
architecture. To retain more semantic information in the target domain, a multi-scale feature extraction
module is inserted before the generator. In addition, the convolutional block attention module
is introduced into the generator to enhance the ability of the model to extract important feature
information. Via CBAM, the model improves the quality of the converted image and reduces
the artifacts caused by image background interference. Next, in order to preserve more identity
information in the generated photo, this paper constructs the multi-level cycle consistency loss
function. Qualitative experiments on CUFS and CUFSF public datasets show that the facial details and
edge structures synthesized by our model are clearer and more realistic. Meanwhile the performance
indexes of structural similarity and peak signal-to-noise ratio in quantitative experiments are also
significantly improved compared with other methods.

Keywords: image transformation; face sketch-photo synthesis; convolutional block attention module;
generative adversarial network; multiscale feature

1. Introduction

Face sketches and face photos can be converted into one another. As the technology
of face photo-to-sketch synthesis becomes more mature, it is widely used in digital enter-
tainment, public security law enforcement, and case investigation [1]. For example, the
suspect’s face photos taken by surveillance cameras often have the conditions of occlusion
and low resolution, which affect face recognition. Law enforcement agencies have to ask
artists to draw face sketches of suspects based on eyewitness accounts and surveillance
videos. However, there is a large modal gap between face photos and face sketches, so
it is difficult to achieve accurate recognition. Therefore, it can solve the above problems
quickly by converting face sketches to face photos. Meanwhile, sketches are more artis-
tic than photos in digital entertainment, as more users upload their sketch portraits to
social platforms.

The traditional exemplar-based methods divide the image into overlapping patches
and operate at the patch level. These exemplar-based methods synthesize target images by
matching and combining image patches. However, exemplar-based methods often have the
disadvantages of being time-consuming, requiring a large amount of data, and generating
sketches that are too smooth. With the rapid development of deep learning, many sketch
synthesis methods based on convolutional neural networks (CNN) have emerged. A benefit
from the adversarial loss is that the sketches synthesized by the GAN-based methods are
more realistic. However, due to the lack of special constraints, the generated images also
have blurring artifacts. There has been a lot of work on face photo-to-sketch synthesis, but
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less research work on face sketch-to-photo synthesis. Although some methods to solve the
former can be used in the latter, the sketch-to-photo synthesis is a process of information
ascent leading to issues, such as a lack of detail and blurred edges in the synthesized
facial photos. At the same time, due to the limited amount of pairing sketch-photo data
nowadays, the collection and production would consume a lot of energy and resources.
Therefore, this paper proposes an unsupervised generative adversarial network to achieve
a higher-quality face sketch-to-photo synthesis.

First of all, this paper adopts the basic network structure of CycleGAN [2]. Previous
GAN-based synthesis methods normally only use a single-scale convolution kernel for
feature extraction. Sketch images have different styles and texture information features
at different scales, such as large-scale line features and small-scale shadow features. The
previous single-scale feature extraction cannot meet the needs of sketch-to-photo synthesis.
Considering the rich texture structure in face sketches, this paper adopts different styles
and scales of convolution and pooling ways to form a multi-scale feature extraction module.
It can extract feature information of multiple scales to add the multi-scale feature extraction
module (MFEM). The benefit from MFEM include that the reconstructed face photo retains
more semantic information that is similar to the face sketch. In the process of converting
sketches to photos, the reconstruction of the facial area is obviously more important than
the reconstruction of the background area, therefore, we should strengthen the constraints
on facial features. The Convolutional Block Attention Module (CBAM) [3] is introduced
into the residual block of the generator network, thus enhancing the representation ability
of the network structure, making the model focus on more important feature information
and suppressing unnecessary characteristic information. Secondly, compared with other
unsupervised image translation models, this paper not only applies the pixel-level cycle
consistency loss, but also increases the perceptual loss and facial detail feature loss proposed
from a global and regional perspective. The multi-level cycle consistency loss composed of
the three is applied in the model, which greatly reduces the information loss during the
conversion process and retains more facial structure information. Compared to six existing
models on CUFS and CUFSF dataset, the experimental results of the proposed model show
better qualitative and quantitative performance.

In summary, the main contributions of our paper are as follows:

• Considering that sketches contain texture feature information of different scales,
we add MFEM before the generator, enabling the network to extract multi-scale
feature information.

• We add CBAM to the residual block of the generator to improve the ability of the
model to extract important feature information for better synthetic results.

• Based on the CycleGAN method, we construct multi-level cycle consistency loss to
preserve the key facial features. Experimental results show that the photos synthesized
by our method are more real and clear.

2. Related Work
2.1. Face Photo—Sketch Synthesis

Face photo-sketch synthesis can be traced back to the traditional synthesis method of
the image patch level. These include local linear embedding methods based on subspace
learning [4], Markov random field models based on Bayesian theory [5], and Markov
weight field models [6], as well as methods based on sparse representation [7]. However,
the face image synthesized by traditional methods has a fuzzy effect, which leads to the lack
of real face details being to too smooth. In recent years, with the rapid development of deep
learning, many face sketch synthesis methods based on convolutional neural network have
been proposed. Zhang et al. [8] can obtain a rough face sketch by constructing a branch-full
convolution network. However, the sketch synthesized by the model is not able to retain
more facial details. As generative adversarial networks (GAN) [9] show more powerful
generative capabilities, it is also widely used in the field of image translation. Wang
et al. [10] supervised the hidden layer of the generator through multiple discriminators and
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iterated the low resolution image into a high-resolution image, which solved the problem
of low resolution of the synthetic image, to a certain extent. Fang et al. [11] proposed a new
identity awareness cycle generation countermeasure network model. The model combines
the synthesis model and the recognition model to optimize each other, which not only
improves the image quality, but also improves the accuracy of recognition. Chao et al. [12]
added the residual block to u-net as a new generator and designed an effective loss function
to enhance the pixels, edges, and high-level features of the generated face photos. This
model effectively generates high fidelity images. Zhu et al. [13] proposed a collaborative
framework for mapping sketches and photos to each other, which was set to map them
to the same potential domain in order to retain more common information between the
two domains. Yu et al. [14] proposed a framework for generating confrontation networks
combined with facial prior information. This model uses the decomposed single label of
facial pixels to help synthesize the target domain image, and solves the fuzzy deformation
problem of facial components. Isgan [15] ensures that the synthetic image retains more
recognizable information by embedding identity information in the training process and
using new network losses. Although the above methods improve the quality of synthesized
images, they have the limitation of requiring paired sketch-photo data for training.

2.2. Attention Mechanism

In recent years, attention models have been widely used in various deep learning
tasks such as image recognition, image super-resolution, image translation, and image
classification. Adding an attention mechanism to a convolutional neural network can
expand the expressiveness of the model and achieve better results. Bahdanau et al. [16]
introduced an attention mechanism to significantly improve the translation performance
of machine translation models. Hu et al. [17] adaptively adjusted the channel feature
information by stacking Squeeze-and-Excitation blocks. Woo et al. built a spatial attention
module based on SENET and integrated spatial and channel information to obtain more
comprehensive attention information. Fu et al. [18] combined FCN with CBAM and
proposed a DANet to build dependencies between local features and global features to
improve the segmentation performance of the model. Zhang et al. [19] added a self-
attention mechanism to GAN and proposed SAGAN to improve the ability of the model to
capture long-range dependencies.

3. Proposed Method
3.1. Framework

The goal of our model is to transform the face sketch into the face photo without
supervision (without pairing data). Given the samples of unpaired face sketches S = {Si, i =
1, 2, 3, . . . , n} and face photos P = {Pi, i = 1, 2, 3, . . . , n}, the overall framework structure
is shown in Figure 1, which includes two generators Gsp and Gps and two discriminators:
Ds and Dp. The model proposed in this paper mainly studies the mapping relationship
between the face sketch and the face photo. Real face sketches, Real_s, are converted to
the synthetic face photos, Fake_p, by the generator, Gsp. Synthetic face, Fake_p, can also
regenerate reconstructed sketches, Cyc_s, through Gps. The network branch above the right
frame of Figure 1 can be expressed as Formula (1):

Fake_p = Gsp(Real_s), Cyc_s = Gps(Fake_p) (1)
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Similarly, the network branch under the right box can be expressed as Equation (2):

Fake_s = Gps(Real_p), Cyc_p = Gsp(Fake_s) (2)

The discriminator model in this paper adopts PatchGAN [20], which divides the whole
image into areas for judgement. The purpose of the discriminator Ds is to distinguish the
unpaired real face sketches, Real_s, and the synthetic face sketches, Fake_s. Similarly, the
purpose of the discriminator, Dp, is to distinguish the unpaired real face photos, Real_p,
and the synthetic face photos, Fake_p. The results fed back to the generator by Ds and Dp
are used to iteratively optimize the whole model. The process of the model is shown in
Figure 1. After extracting multi-scale features from the input sketch, the corresponding
photos are synthesized by the generator, Gsp. At the same time, CBAM is used to adjust the
weight of important information during the conversion process. The synthesized photos
are reconstructed into sketches through the generator Gps. The multi-level cycle consistency
loss is used to supervise the generation of synthesized photos with more details preserved.
Finally, the discriminator, Dp, is used to distinguish real photos and synthesized photos,
and gradually reduce the distance between them.

3.2. Network Structure

The overall network architecture for converting face sketches into face photos is
illustrated in Figure 2. In order to make the synthesized target photo domain image retain
more abundant semantic information, a multi-scale feature extraction module is added in
front of the generator. Meanwhile, the attention mechanism is introduced into the residual
block to form a new convolution attention residual block, so that the network can better
capture the important feature information and ignore the redundant information such
as background.
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3.2.1. Generator Network Structure

In Generative Adversarial Networks, the deeper generator network can process more
location information and feature information to ensure that the generated photos are
more realistic and of higher quality. However, the superposition of network layers often
causes problems such as gradient dispersion, which leads to the failure of the network
to converge. Drawing on the deep Residual Network (ResNet) [21], the generator in this
paper uses residual blocks with shortcut connections as components to avoid gradient
dispersion. Although the stacked residual blocks reduce the difficulty of training and
extract rich feature information, the process of down-sampling will inevitably lead to the
loss of image feature information. Therefore, skip connections are added after the down-
sampling and up-sampling convolutional layers to reduce the information loss during
image transformation.

The network structure of the generator is shown in Figure 2. The encoding part con-
tains three convolutional layers. The size of the convolution kernel of the first layer
is 7 × 7, and the size of the other two layers is 3 × 3. The middle part consists of
9 convolutional attention residual blocks combined with attention mechanism. Finally,
the decoding part is composed of two deconvolution layers and one convolutional layer.
In the decoding part, the up-convolutional layers often use traditional transposed con-
volutions. However, the transposed convolution operation usually causes the generated
image to have a checkerboard effect. Therefore, this paper uses the method of combining
up-sampling and convolution to replace the transposed convolution. At the same time,
Instance Normalization (IN) and ReLU activation function operations are performed on
the feature map after each convolution operation.

3.2.2. Multi-Scale Feature Extraction Module

Inputting the source sketch domain directly into the generator will cause the output
target photo domain to have difficultly retaining facial details due to insufficient extracted
feature information. In order to adapt to the rich line textures of the sketch domain, the
feature information of different scales in the source sketch domain should be extracted in a
multi-scale way. Therefore, the constructed Multi-scale Feature Extraction Module (MFEM)
is added before the generator to ensure that the generated face photos retain more rich
semantic information as the input sketch face image.

The module adopts different ways and different sizes of convolution and pooling
operations to extract multi-scale feature information. As shown in Figure 3, borrowing
from the Inception basic network [22], the module as a whole is composed of two pooling
branches and five convolution branches. The pooling branches include two methods:
average pooling and maximum pooling. In order to obtain a larger receptive field range
with fewer parameters, the dilated convolution branches with dilatation rates of 3 and 4
are added to the convolution branches of the Inception network. The receptive fields of
each convolution branch are 1 × 1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9, respectively. Instance
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normalization (IN) and ReLU activation function operation is performed after each convo-
lution operation. Finally, the multi-scale features obtained by each line are concatenated
and fused at the channel level. To avoid gradient vanishing, we used identity mapping to
sum the input features and multi-scale features.
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3.2.3. Convolution Attention Residual Block

It is well known that attention plays an extremely important role in human perception.
Similar to the processing mechanism of the human visual system, the visual attention
mechanism is also designed to highlight certain significant features. CBAM considers
the difference of content information and location information in the input feature map
from the two dimensions of channel and space. As shown in Figure 4, the above branch
shows the operation process of the feature map by the channel attention module. First,
two one-dimensional feature vectors are obtained by applying two pooling methods to the
input feature map F, which are sent to the multi-layer perceptron (MLP) network with one
hidden layer and activated through the sigmoid function to generate a channel attention
map Mc ∈ RC×1×1. Finally, it can be expressed by Equation (3):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (3)
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The lower branch of Figure 4 shows the operation process of the feature map by
the spatial attention module. Compared with attention in channel dimension, attention
in spatial dimension pays more attention to the location of feature information. After
obtaining the feature map, F′ with the channel attention weight, the channel information is
aggregated along its channel axis using two methods: max pooling and average pooling.
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After concatenating and convolving the two pooled feature vectors, a spatial attention map,
Ms is generated, which can be expressed by Equation (4):

Ms(F′) = σ
(

f 7×7([AvgPool(F′), MaxPool(F′)])
)

= σ
(

f 7×7
([

F′avg; F′max

])) (4)

To sum up, after inputting the feature map F, it passes through the attention modules
in the two dimensions of channel and space in turn. After the feature map is multiplied by
the attention weight map, the feature information is adaptively adjusted to obtain a new
feature map F′′. Thus, the overall process can be described as follows:

F′ = Mc(F)⊗ F (5)

F′′ = Ms
(

F′
)
⊗ F′ (6)

As shown in Figure 5, the CBAM is added to the residual block in the generator to
form a convolutional attention residual block. The convolutional attention residual block
includes two convolutional layers with convolution kernels of size 3× 3 and a convolutional
attention unit. Finally, a skip connection is added between the original input and the feature
map obtained by convolution. The original convolution operation extracts features without
distinguishing channel information and spatial information, and the residual part will
bring redundant information that is not conducive to generate high-quality photos. The
network that joins the CBMA can extract more important detailed features and improve
the expressive ability of the network by applying the attention mechanism of the two
dimensions of channel and space in sequence.
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Figure 5. Convolutional attention residual block.

3.3. Loss Function

The loss function consists of three parts, namely adversarial loss, identity consistency
loss, and multi-level cycle consistency loss. Adversarial loss constraints generate images
closer to real photos. The identity consistency loss ensures that the mapping relationship is
more accurate. The multi-level cycle consistency loss confirms the generated image retains
more facial details, while ensuring the stable training process.

3.3.1. Adversarial Loss

To avoid gradient dispersion and to update the generator more smoothly, this paper
adopts the least-squares loss function [23] as the adversarial loss. It has the advantage
of penalizing erroneous samples that are judged to be correct but are further away from
the judgement boundary, allowing these erroneous samples to continue to be optimized
iteratively. For the mapping relationship Gsp: S→P and its discriminator, Dp, the adversarial
loss using the least squares loss function is expressed as Equation (7):

LLSGANp

(
Dp, Gsp, si, pi

)
= Epi∼Pdata(pi)

[(
Dp(pi)

)2
]
+ Esi∼Pdata(si)

[(
Dp
(
Gsp(si)

)
− 1
)2
]

(7)

where pi~Pdata(pi) is the probability distribution obeyed by the optical photo sample P, and
si~Pdata(si) refers to the probability distribution obeyed by the sketch image sample S. The
goal of the generator, Gsp, is to minimize the objective function to make the synthesized
optical photo image closer to the real photo sample. The goal of the discriminator, Dp, is
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to maximize the objective function to correctly distinguish the generated optical photo
images from the real optical photo samples. Similarly, for mapping Gps: P→S and its
discriminator, Ds, the adversary loss target using the least square loss function is expressed
as Equation (8):

LLSGANs

(
Ds, Gps, si, pi

)
= Esi∼Pdata(si)

[
(Ds(si))

2
]
+ Epi∼Pdata(pi)

[(
Ds
(
Gps(pi)

)
− 1
)2
]

(8)

3.3.2. Identity Consistency Loss

The mapping relationship between the generators Gsp and Gps is S→P and P→S,
respectively. To make the mapping relationship of the generator more accurate, we follow
CycleGAN to generate the same samples after inputting the target domain samples into
the generator. To this end, an identity consistency loss is constructed between the input
image and the generated image. Experiments showed that adding an identity consistency
loss could make the tones of the generated images closer to the real samples. The identity
consistency loss is expressed as Equation (9):

LIdentity
(
Gsp, Gps

)
= Esi∼Pdata(si)

[
Gps(si)− si

]
+ Epi∼Pdata(pi)

[
Gsp(pi)− pi

]
(9)

3.3.3. Multi-Level Cycle Consistency Loss

CycleGAN constructs a cycle consistency loss according to the mapping relation-
ship between the source domain and the target domain, which constrains the sketch
domain image to be converted into the sketch domain image after synthesizing the photo
domain image. The mapping relationship is as follows: si→Gsp(si)→Gps(Gsp(si)) ≈ si,
pi→Gps(pi)→Gsp(Gps(pi)) ≈ pi. In CycleGAN, the pixel-level cycle consistency loss is
adopted, As Equation (10):

Lcyc_pix
(
Gsp, Gps

)
= Esi∼Pdata(si)

[
Gps
(
Gsp(si)

)
− si

]
+ Epi∼Pdata(pi)

[
Gsp
(
Gps(pi)

)
− pi

]
(10)

For image synthesis problems with large modal differences between two domains,
the model only adopts pixel-level cycle consistency loss and often fails to learn high-level
features of source domain images, which affects the training process. Borrowing from
Johnson [24], an additional perceptual loss is adopted to constrain the Euclidean distance
between high-level features. We use the VGG-19 network trained on the ImageNet dataset
to extract the features of the source domain image and the reconstructed image, and then
the two are compared to preserve more detailed textures. The five layers of ReLU1_1,
ReLU2_1, ReLU3_1, ReLU4_1, and ReLU5_1 in the VGG-19 network are used as the feature
output part. Therefore, the cycle consistency loss at the global feature level is adopted, as
shown in Equation (11):

Lcyc_ f eature
(
Gsp, Gps

)
=

5

∑
j=1

(
1
Nj

∥∥Φj(si)−Φj
(
Gps
(
Gsp(si)

))∥∥2
2 +

1
Nj

∥∥Φj(pi)−Φj
(
Gsp
(
Gps(pi)

))∥∥2
2

)
(11)

where j represents the jth layer of the network, and Nj represents the number of perceptrons
in the jth layer. Simultaneously, Φj(x) represents the feature map obtained by inputting
the image x into the jth layer of the pre-trained VGG-19 network. In addition, due to the
lack of local constraints, the generated face images often lack realistic details. In particular,
mottle will occur in important facial areas such as the eyes and mouth of the generated
image. To make the generated face photos retain more identity information, we define the
facial detail feature loss from a regional perspective. According to the facial coordinate
information, the regions around the eyes, nose, and mouth of the source image and the
reconstructed image are segmented. As shown in Figure 6, the residual network Resnet50
is used to extract the features of several face regions of the source domain image and the
reconstructed image. Then, the cosine distance of the corresponding regions of the two
domain images is calculated. The final facial detail feature loss is obtained by adding the
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cosine distances of several regional features to constrain the generated image retain more
details. The facial detail feature loss function is shown in Equation (12):

lcyc_ f ace =
4

∑
c=1

Cos
(

Φ
(

Iori
c

)
, Φ
(

Icyc
c

))
(12)
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In Equation (12), Iori is the source domain image, Icyc refers the reconstructed image.
Meanwhile, I1, I2, I3, and I4 represent the four image areas of the left eye, right eye, nose,
and mouth of the image, respectively. Φ(*) represents the feature vector extracted by
the Resnet50, and Cos represents the cosine distance. Therefore, the multi-level cycle
consistency loss is expressed as Equation (13):

lcyc = λ1Lcyc_pix + λ2Lcyc_ f eature + λ3Lcyc_ f ace (13)

In summary, the total loss function is expressed as Equation (14), where λ1, λ2, λ3, λ4
are hyperparameters that control the importance of each part of the loss function.

ltotal = LLSGANp + LLSGANs + Lcyc + λ4LIdentity (14)

4. Results

This section begins with the details of the experimental settings. Experimental vali-
dation is performed on two public face sketch datasets: CUFS [3] and CUFSF [25]. Our
method is compared with the six other models, namely Pix2Pix [20], CycleGAN [15],
PS2MAN [8], CA-GAN [13], DivCo [26], and MSPC [27] in terms of visual presentation and
evaluation indicators. We also add ablation experiments to verify the effectiveness of the
proposed model.

4.1. Datasets

The CUFS dataset consists of three data subsets: CUHK, AR [28], and XM2VATS [29].
For each face, there exists a real photo and a corresponding sketch in the CUHK, AR, and
XM2VATS datasets. The sample sizes of the three datasets of CUHK, AR and XM2VATS
are 188, 123, and 295, respectively. The CUFSF database includes 1194 exaggerated face
sketches, which correspond one by one to the gray real face photo in the FERET [30] dataset.
Before the experiment starts, this paper divides training-testing set of different datasets
according to Table 1.
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Table 1. Partition of dataset.

Dataset CUHK AR XM2VATS CUFSF

Training
numbers 100 80 100 200

Testing numbers 88 43 195 994

4.2. Implementation Details

Our experiments are performed in PyTorch on an NVIDIA Quadro P4000 GPU. Before
the model training process, the input sketch is aligned with key points according to the key
position information of the face. The size of the input image is adjusted to 256× 256. Finally,
the synthesized photos are cropped from the size of 256 × 256 to the size of 250 × 200.
The number of iterations of the model is 200 epochs in total. The learning rate for the first
100 epochs is set to 0.0002, and linearly decayed down to 0 for the last 100 epochs. The
Adam optimizer with momentum parameters β1 = 0.5 and β2 = 0.999 is used to optimize the
model. The hyperparameters in the objective function are set to λ1 = 10, λ2 = 10, λ3 = 10−1,
λ4 = 5. To verify the effectiveness of our method, it compared the visualization results of
each model. Next, Structural Similarity (SSIM) [31] and Peak Signal-to-Noise Ratio (PSNR)
were used to evaluate the similarity between generated photos and real photos.

4.3. Comparative Analysis with Other Methods
4.3.1. Qualitative Analysis

Figure 7 recorded the synthetic results of our method and other methods on data from
CUFS dataset and the CUFSF dataset. The first 6 rows of Figure 7 were the experimental
results of various methods on the CUFS dataset. It was found that the CycleGAN method
could obtain complete facial components. However, photos synthesized by CycleGAN have
low-resolution and gave a hazy feeling. There were noise and artifacts in the local area of
face photos synthesized by Pix2Pix method. The above two methods were only constrained
at the pixel level and could not synthesize photos that were clearer and contained key facial
details. The experimental results obtained by the PS2MAN method had higher resolution,
but also lacked some face details. The CA-GAN method produced sharper photos with
fewer noise artefacts than the above method, which was closer to the real photo. The photos
synthesized by the DivCo method successfully retained most of the facial details, but some
of the synthesized face photos would be affected by the background color and produced
abnormal color blocks. The photos synthesized by the MSPC method had noise blobs in
key detail areas such as the eyes. Compared with our method, the skin color of the face
image generated by CA-GAN was closer to the real photo, but our method did better in the
key details and edge structure of the face.

The last two rows of Figure 7 showed the synthetic results on the CUFSF dataset.
Compared with the CUFS dataset, the lines of the face sketch in the CUFSF dataset were
too rough. Moreover, the characters in the CUFSF dataset did not belong to the same race,
and their appearances were quite different. Therefore, the synthesis task on the CUFSF
dataset was extremely challenging. The synthetic results obtained by the Pix2Pix and the
CycleGAN method had a large number of mottled artifacts. The translation results of the
PS2MAN method reduced the artifacts, but the synthetic results lacked key facial details.
The face synthesized by the DivCO method on the CUFSF dataset was not realistic enough,
and the skin color was between the sketch and the photo. The edge structure of the image
synthesized by MSPC method had slight local blurring. Compared with the above methods,
the synthesis results of CA-GAN and our method greatly retained more key details and
were closer to real photos.
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4.3.2. Quantitative Analysis

The SSIM and the PSNR were used as evaluation metrics to evaluate the experimental
results. Among them, the SSIM was an index used to compare the difference of structural
information between synthetic images and real images, which was more in line with human
visual perception. The PSNR was a measure of whether the synthetic image was close to
the real image at the pixel level. Therefore, these two evaluation indicators could estimate
the quality of synthesized images of different methods.

As shown in Tables 2 and 3, this paper compared the evaluation indicators obtained
by the proposed method with other methods on various public datasets. Tables 2 and 3
showed that our method achieved the highest SSIM value on AR and XM2VTS datasets,
highest PSNR value on AR, XM2VTS, and CUFSF datasets. Although the scores of the
CA-GAN model were higher than our method on the CUHK dataset, it could be seen
that the gap was not large. The data in Tables 2 and 3 were basically consistent with the
visual results shown in Figure 7. From the data in the table, it could be concluded that the
evaluation index of our method on public datasets was basically better than other methods.
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The value of SSIM can also be proved that the face photos synthesized by our method were
closer to real face photos.

Table 2. SSIM comparison of photos synthesized by different models on the data.

Methods CUHK AR XM2VTS CUFSF

Pix2Pix 0.647 0.676 0.548 0.529
CycleGAN 0.631 0.657 0.556 0.548
PS2MAN 0.653 0.689 0.562 0.583
CA-GAN 0.702 0.693 0.587 0.613

DivCo 0.657 0.635 0.590 0.547
MSPC 0.679 0.647 0.562 0.556
Ours 0.688 0.714 0.612 0.607

Table 3. PSNR comparison of photos synthesized by different models on the data.

Methods CUHK AR XM2VTS CUFSF

Pix2Pix 16.588 17.212 18.233 16.436
CycleGAN 16.356 16.835 18.161 16.386
PS2MAN 17.688 17.032 18.483 16.695
CA-GAN 18.472 17.431 18.605 17.120

DivCo 16.836 17.223 18.602 16.431
MSPC 17.771 17.353 18.414 16.785
Ours 17.896 17.683 18.892 17.358

4.4. Ablation Experiment

To further demonstrate the effectiveness of each module in our method, ablation
experiments were performed on the CUFS dataset. Using CycleGAN as the base network,
several different model variants were built. As shown in Table 4 and Figure 8, our model
was compared with three combinations of CycleGAN w/ MFEM, CycleGAN w/ CBAM-R,
and CycleGAN w/ Multi-level cycle loss for quantitative and qualitative experimental
comparisons. “w/” means with.

Table 4. Comparison of experimental indexes under ablation experiment.

Methods
CUHK AR XM2VTS

SSIM PSNR SSIM PSNR SSIM PSNR

CycleGAN 0.631 16.356 0.657 16.835 0.556 18.161

CycleGAN w/MEFM 0.647 16.751 0.679 17.235 0.568 18.327

CycleGAN w/CBAM-R 0.658 17.563 0.683 17.371 0.599 18.796

CycleGAN w/Multilevel
cycle loss 0.663 17.458 0.696 16.897 0.593 18.463

Ours 0.688 17.896 0.714 17.683 0.612 18.892
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Figure 8. Comparison of synthetic results of ablation experiment: (a) Original sketch; (b) Real Photo;
(c) CycleGAN; (d) CycleGAN w/MFEM; (e) CycleGAN w/CBAM-R; (f) CycleGAN w/Multi-level
cycle loss; (g) Ours.

According to the experimental indicators in Table 4, it can be seen that the introduction
of the three improved parts could obtain higher SSIM and PSNR values than the baseline,
and thus we could obtain synthetic results closer to the real face. The first and second
columns in Figure 8 were the input sketches and corresponding photos. It can be seen that
there were some black artifacts in the face photos synthesized by the CycleGAN model in
the third column, and the key parts of the face such as the eyes and nose were relatively
blurred. As shown in Figure 8d,e, adding a multi-scale extraction module and an attention
residual block increases the model’s ability to extract feature information. The synthesized
face photos reduced artifacts and noise. However, due to the lack of local constraints, the
facial details were too smooth and lost the original texture details. As shown in Figure 8f,
the model improved the ability to constrain facial details by applying a multi-level cycle
consistency loss. However, the synthetic photos were slightly different from real photos in
terms of realism. As shown in Figure 8g, the face photos synthesized by our model were
more realistic than the previous basic network, and the edge structure and facial details
were clearer and more complete.

5. Conclusions and Future Work

In this paper, we proposed an unsupervised CycleGAN-based model for convert-
ing face sketches into high-quality photos. A multi-scale feature extraction module was
designed in front of the generator to enable the model to extract multi-scale feature in-
formation. Meanwhile, we introduced CBAM within the network to adjust the weight of
important feature information more accurately and reduce the interference of irrelevant
factors, such as background. The introduced perceptual loss and facial detail feature loss
reduced the loss of information in the transformation process and preserved more facial
structural information. Compared with previous models, the model proposed in this paper
did not have the limitation of requiring paired data. Regardless of subjective visual effects
or objective evaluation indicators, compared with other models, the quality of the synthe-
sized images on the CUFS and CUFSF public datasets had been improved. Moreover, the
synthesized photos had more complete details and clearer edge structures. The model in
this paper was only suitable for frontal face image synthesis, and thus a subsequent work
will consider heterogeneous face synthesis from multiple perspectives.
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