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Abstract: Network slicing is a vital component of the 5G system to support diverse network
scenarios, creating virtual networks (slices) by mapping virtual network requests to real networks.
The mapping is an arduous computing process, mathematically studied and known as the Virtual
Network Embedding (VNE) problem, and its complexity is NP-Hard. The mapping process is
oriented to respect the QoS demands from the virtual network requests and the available resources in
the physical-substrate infrastructure. Meta-heuristic approaches are a suitable way to solve the VNE
problems because of their capacity to escape from the local optimum and adapt the solution search
to complex networks; these abilities are essential in 5G networks scenarios. This article presents a
systematic review of meta-heuristics organized by application, development and problem-solving
approaches to VNE. It also provides the standard parameters to model the infrastructure and virtual
network requests to simulate network slicing as a service. Finally, our work proposes some future
research based on the discovered gaps.

Keywords: meta-heuristics; network slicing as a service; NSaaS; network slicing; Virtual Network
Embedding (VNE); 5G

1. Introduction

Relevant organizations have proposed the concept of network slicing to address the
diversified technical service requirements in 5G underpinned by background technologies
such as Software-Defined Networking (SDN), Network Function Virtualization (NFV)
and Mobile Access Edge Computing (MEC) [1]. The technical service requirements of
the vertical sectors are composed of many different values, such as data rate, mobility,
latency, reliability, positioning accuracy, and coverage. A network slice is an end-to-end
logical network deployed with isolated virtual resources on the shared physical infras-
tructure. These logical networks are deployed as different services to meet the different
communication needs of the user. Therefore, 5G will provide a Network Slicing as a Service
(NSaaS) model that can be very flexible in allocating and reallocating resources according
to dynamic requirements so that it can adapt network slices for different and complex 5G
communication scenarios [2]. The notion of network slicing is to leverage the network
infrastructure resources to create multiple sub-networks for different classes of services
and applications. Slicing is a crucial component to turning 5G into a reality.

In recent years, regulators and other stakeholders such as research institutions, mobile
operators, network equipment suppliers, and international organizations have launched
research efforts to adapt the Network Slicing (NS) as omnipresent 5G technology. Some
leading groups are the International Telecommunication Union (ITU), European Telecom-
munications Standards Institute (ETSI), Open Networking Foundation (ONF), 5G Infrastruc-
ture Public Private Partnership (5G-PPP), and Next Generation Mobile Network Alliance
(NGMN).

Sensors 2022, 22, 6724. https://doi.org/10.3390/s22186724 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22186724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3582-1285
https://orcid.org/0000-0001-8418-6778
https://doi.org/10.3390/s22186724
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22186724?type=check_update&version=1


Sensors 2022, 22, 6724 2 of 12

The ITU works on the definition of the framework and overall objectives of the
future 5G systems, denoted as IMT-2020 systems in ITU terminology [3]. The ETSI has
defined several Industry Specification Groups (ISG) to develop standards, and its work [4]
has positioned the demands and business requirements beyond 2020 and introduced the
network service deployment concept of NS. The ONF, through its work in [5], aims to
describe how critical functional aspects of the SDN architecture are applied to enable the
business-oriented concept of NS. The 5G-PPP was initiated by the EU Commission and
industry manufacturers, telecom operators, service providers, Small and Medium-sized
Enterprises (SMEs) and researchers under the name 5G!Pagoda. The 5G!Pagoda aims to
align Europe’s and Japan’s views on a 5G slice-based mobile network infrastructure with
dynamic creation and runtime management of network slices as a means to deploy private,
tailored networks for various mobile services [6]. Finally, the NGMN defines the concept
of network slicing as a set of network functions and resources to perform those network
functions, forming a complete instantiated logical network to satisfy specific network
properties required for end-user service [7].

Some advantages of using NS are: (i) network slicing can provide logical networks
with better performance than unit networks; (ii) a network slice can be scaled up or down
as the service requirements and the number of users change; (iii) network slices can isolate
the network resources of one service from the others and, as a result, the configurations
of the different slices do not affect each other; (iv) finally, a network slice is customized
according to the service requirements, which can optimize the allocation and utilization of
physical network resources [8].

In the 5G system, the NSaaS is a service in which the provider offers the slice creation
on-demand. A slice tenant requests a slice by a document named Virtual Network Request
(VNR), which contains a virtual network (set of virtual nodes and virtual links) and a
set of Quality of Service (QoS) parameters. After receiving a VNR, the provider seeks to
meet the requisition by mapping the virtual network to a real network and respecting its
QoS demands. This mapping becomes a challenging problem when it seeks to minimize
or maximize some objectives. The mapping is a problem known and mathematically
named VNE.

The VNE is an NP-hard problem that has been receiving exhaustive attention from
researchers, and the works [9–12] have proved its NP-hardness and its complexity in dif-
ferent ways. The scientific community has been studying the VNE problem extensively.
In addition to the notorious advantage, 5G brings new challenges to VNE approaches.
For example, the work [13] points out that NS before 5G does not include as many heteroge-
neous scenarios and inter-domains as in 5G. Traditionally, virtual networks are created by
statically allocating the expected network resources, i.e., network, processing/computing,
and storage resources. However, this method is often not optimal, as network resources
are usually either over-or under-allocated. Technically, developing such a flexible optimal
allocation of slice resources is very challenging, especially when considering a set of func-
tional requirements. For this reason, network slicing is a latent issue in computer networks
and involves concepts of scheduling, optimizing, and predicting resource usage. Moreover,
looking for future network generations, this problem becomes harder due to the complex
scenarios in the sense of more world computing and networking integration [14].

In this work, we present a review of 18 papers to answer some questions considering
the application of meta-heuristics to solve VNE problems in 5G scenarios: (i) What is
the standard network structure to evaluate the Virtual Network Embedding Approaches
(VNEA)? (ii) What is the standard method and structure to create a set of VNR? (iii) What
are the most used solver and meta-heuristics to deal with VNE in the literature? (iv) What
are the most demanded QoS parameters? (v) What measures do the works use to eval-
uate mapping approaches? (vi) What types of nodes do the papers use to simulate the
network infrastructure?
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The remainder of this paper is organized as follows: Section 2 presents our systematic
review methodology; Section 3 reveals the results after grouping the works and extracting
the information; Section 4 relates the final considerations and suggests future research.

2. Methodology

The systematic review methodology adopted in this work is based on the study of
Biolchini et al. [15]. As depicted in Figure 1, the process consists of five stages: definition
of scope, initial search, filtering, classification, and information extraction. Regarding the
scope, we developed questions to conduct the searches, while in conducting the search,
strategies were outlined. In the end, we present the results.

Scope  
Definition

Initial 
Search Filtering Classification Information 

Extraction

Figure 1. Stages of systematic review.

2.1. Scope Definition

The first phase is dedicated to the definition of the scope. In this phase, the research
questions are essentially developed. These questions limit the scope of the work and, later,
the search terms to select the work. Thus, the starting point of this work is to formulate
these eight questions in order to delimit the scope of the work:

• Q1: What are the main categories that the approaches fall into? Fischer’s taxonomy [9]
defines 6 classification possibilities, and through this question, we want to know in
which classes the approaches are.

• Q2: What forms of coordination of the mapping of nodes and links do the approaches
use? Coordination indicates the order of the node and link mapping process. For
example, the process can perform the mapping of nodes first and then the links, or
vice versa. The third way is without any coordination; that is, the mapping of nodes
and links can coincide without one process interfering.

• Q3: What are the meta-heuristics applied in the mapping process? The literature is
rich in meta-heuristics; through this question, we want to know which ones are used
in the works.

• Q4: Are there parallelized versions? For this question, we want to know if there are
parallelized versions and how parallelization is used to solve mapping problems.

• Q5:What are the main evaluation metrics? The reason for this question is to find out
what are the main evaluation criteria of algorithms.

• Q6: Are approaches aware of multi-domains and network services? Naturally, the
5G network is composed of heterogeneity of technologies and composed of shared
infrastructure; furthermore, through the use of the Network Function Virtualization
paradigm, services can be spread across the network, so the purpose of this question is
to find out if mapping approaches explore these two characteristics of the 5G system.

• Q7: What are the required parameters and what are their values to simulate the
network slicing service? The purpose of this question is to find out how the physical
infrastructure and virtual networks are modeled.

• Q8: Considering a 5G system, which QoS parameters are part of the requests? With
this question, we want to find out, in addition to the traditional CPU and bandwidth
demands, if the works are considering the following QoS demands in the requests:
reliability, mobility, energy savings, location, wavelength, and security.

2.2. Initial Search

Cao et al. [16] classified the VNE approach into three categories: exact solution,
heuristic and meta-heuristic. The authors mentioned that the exact solution is limited
to small networks and that the meta-heuristic solution aims to find a suitable solution
with low execution time when faced with realistic network scenarios. Furthermore, exact
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approaches can easily suffer from the problem of becoming stuck in local optimal solutions
that may be far from the global optimum with respect to optimization theory; on the other
hand, the meta-heuristic solution can improve the quality of results by moving away from
the local optimum and can be more easily applied in different domains. Thus, our work is
interested in works that use meta-heuristics to solve VNE problems.

Therefore, the second stage addresses Initial Search, and it contemplates the creation
of the search terms (Figure 2). Many scientific-paper searchers are available; however, the
Scopus (www.scopus.com, accessed on 10 January 2022) and Web of Science (mjl.clarivate.
com/home, accessed on 10 January 2022) indexer are the two main searchers. Stahlschmidt
and Stephen [17] indicate that these two indexers index reputed journals. However, there is
a massive intersection between their results, so there is no reason to use both. Based on their
study, the Scopus indexer has a slightly more significant number of articles and reviews
published related to the computer and information science field. For that reason, we chose
Scopus as the unique indexer. Figure 2 shows the text string inserted in the Scopus; after
receiving the results, the filtering stage began.

In addition, we included the work of Fischer et al. [9], which is a cornerstone in
the virtual network embedding literature; the authors selected 78 references on virtual
network embedding approaches. One of the significant contributions is the creation of
a new taxonomy in which articles can be classified as: (a) whether the solution is centralized
or distributed; (b) whether the requests are static or dynamic; (c) if the approaches are
concise or redundant. Although this work is a comprehensive and well-referenced survey,
we did not find the answer to our questions in that article (Section 2.1); thus, we aggregate
the selected works from [9] to our results captured in the initial survey.

TITLE-ABS-KEY ( "virtual network embedding"  AND  "5G" )  AND   
( LIMIT-TO ( PUBYEAR ,  2014 )  OR  LIMIT-TO ( PUBYEAR ,  2015 )  
 OR  LIMIT-TO ( PUBYEAR ,  2016 )  OR  LIMIT-TO ( PUBYEAR ,  2017 ) 
 OR  LIMIT-TO ( PUBYEAR ,  2018 )  OR  LIMIT-TO ( PUBYEAR ,  2019 ) 
 OR  LIMIT-TO ( PUBYEAR ,  2020 )  OR  LIMIT-TO ( PUBYEAR ,  2021 ) 
)

01 
02 
03 
04 
05 
06 

Figure 2. Search string.

2.3. Filtering

The third stage deals with Filtering. The filtering strategy was based on the exclusion
of works that do not apply meta-heuristics to solve the virtual network embedding problem;
therefore, this criterion limits the results inside the scope of our research. Figure 3 shows
that, initially, we had 115 articles obtained from [9] and our search. After a straightforward
filtering processing, consisting of excluding all documents that do not use meta-heuristics,
the final number of articles analyzed was 18.

2.4. Classification and Information Extraction

The fourth stage deals with Classification. The classification consists of grouping
the remained papers in the groups to allow us to count the number of documents related
to (a) category of solutions; (b) types of coordination; (c) the primary solvers’ approach;
(d) parallel or not parallel approaches; (e) the main competitors; (f) the main virtual net-
work embedding measurements; (g) multi-domain; (h) infrastructure and virtual network
requisitions modeling features; (i) the main QoS parameters demanded and openings.

After the classification process, the following stage is the Information Extraction. In
this last stage, the papers were counted and organized. For each group, we presented
a summary, and that report is shown in the next section (Section 3).

www.scopus.com
mjl.clarivate.com/home
mjl.clarivate.com/home
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Fischer et al.
(2013)

SCOPUS: Search String
( "virtual network embedding" AND "5G" )

AND (2014 TO 2021)

72 papers 43 papersIN
IT

IA
L 

SE
A

R
C

H

Total Number of
Papers (n=115)

Filtered Full Text Reading,
remove all papers that do not

apply Meta-Heuristic
18 papers

FILTERING

Figure 3. The methodological process comprises the Fischer et al. [9] work and our search, ending
with the filtering flowchart.

3. Results

Table 1 summarizes the number of works classified in [‘C’/‘D’]/[‘S’/‘D’]/[‘C’/‘R’].
Fischer et al. defined that taxonomy is a tuple formatted by three characters separated by
two slashes. The first characters can be ‘C’ for solution centralized or ‘D’ for distributed.
The second character can be ‘S’ for the static solution; the algorithm fixes the number of req-
uisitions or value equal to ‘D’ for the dynamic quantity of requisitions, in which requisitions
arrive at a certain rate. The third part can be ‘C’ for concise, which means that solutions do
not have any reliability mechanism, and the value ‘R’ is for solutions with mechanisms of
enhancing the reliability. Table 1 reveals that the recent works have intensified distribution
approaches, and in addition, the majority of works are centralized solutions.

Table 1. Category of solutions.

Year C/S/C C/S/R D/D/C C/D/C

2011 1 2 0 0
2012 2 3 0 0
2017 1 0 0 0
2019 1 0 2 0
2020 1 0 3 2
Total 6 5 5 2

Coordination refers to the mapping process types that the VNE approach can achieve.
They are: (a) one stage: the selection of nodes and links are made together; (b) two stages:
the selection is carried out in two stages; first, the VNE approach maps the node and then
the link, or vice versa; (c) uncoordinated: the selection of nodes and links are performed
at the same time without one interfering with the other. Table 2 shows that most jobs are
two-stage, but single-stage jobs tend to be faster.

Table 2. Coordination.

One Stage Two Stages Uncoordinated

4 13 1
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Table 3 presents the most common solvers in the papers, which are Ant Colony
optimization algorithms (AC) [18]; Genetic Algorithm (GA) [19–25], Greedy [26,27], Markov
Random Walk (MRW) [28], Particle Swarm Optimization (PSO) [27,29–32], and Simulated
Annealing (SA) [33]. The sum of the solvers is greater than the number of articles as in the
work [27], which uses two approaches, one using Greedy and the other using PSO.

Table 3. The main solver approaches in VNE.

AC GA Greedy MRW PSO SA

1 9 2 2 5 1

Table 4 shows how parallel solutions have obtained more attention. Our survey filters
only work in the 5G scenarios, and these works need to improve the computing capacities
to face the complexity of recent slicing constraints. In this same way, distributed solutions
obtained more attention in recent works.

Table 4. Quantity of parallel and non-parallel works.

Year Parallelized Quantity

2011 Yes 0
2011 No 3
2012 Yes 0
2012 No 5
2017 Yes 0
2017 No 1
2019 Yes 2
2019 No 1
2020 Yes 3
2020 No 3

The Greedy, D-VINE and R-VINE (Table 5) approaches stand out as the leading
competitors. Greedy is a simple approach; it generally has the shortest execution time.
There are many variations in valuing the best choice of the node or link, but despite the
different forms of valuation, the algorithm always chooses the best option at each step.
R-VINE is a random node mapping-based approach with the shortest path method for
link mapping, and D-VINE is based on a deterministic node mapping with the shortest
path method for link mapping. In favor of these approaches, even in recent research,
both algorithms often provide excellent performance when implementing a relaxed linear
programming approach to node mapping.

Table 5. The main competitors.

Competitors Example Quantity

VNE-Least [34] 1
VNE-Cluster [34] 1

GLPK [35] 1
PSO [36] 1
Own [24,28,29] 3

R-VINE [37] 5
D-VINE [37] 6

VNE-Greedy [34] 11

Table 6 presents the virtual network embedding measurements. Virtual Network
Acceptance Rate (VNAR) denotes the number of virtual networks mapped with success.
Stress is a measure that indicates the distribution of mapping along the network, and lesser
values mean better distribution. There are many other measurements, some of them
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specific to evaluate each approach; however, from the perspective of the network provider,
the Runtime and VNAR are more important due to their association with provider profit.
The sum of the values in the table is greater than 18 because the use of metrics is not
exclusive, that is, some works use more than one metric at the same time.

Table 6. Virtual network embedding approach measurements.

Acceptance Ratio Runtime Stress

11 6 5

There are VNE works that consider the concept of multi-domain and others do not;
the majority, 16 works, do not consider this concept (see Table 7). There are two ways of
dealing with domains, one way divides the network into technological sections (e.g., [30]),
and the other divides the network into administrative areas (e.g., [32]). The technical
sections separate the computer network into distinct areas whose sites have different
characteristics, and an example is the division of the network into access, transport, and core.
The administrative domain considers that parts of the network have an administrator who
independently applies policies, e.g., pricing, traffic classification, security, and admission
control. Furthermore, the mapping process may consider that the request requires some
service associated with the slice; only the paper [31] has this ability.

Table 7. Multi-domain and service approach.

No-Multidomain Multidomain Adm-Multidomain No-Service Service

16 1 1 17 1

As mentioned before, some works consider the technology domain to select the nodes;
in this case, the physical infrastructure is segmented into areas; the distinct regions of the
5G network are access, transport, and core. In practice, these areas are distinguished by
their transmission capabilities, delay, reliability, and access heterogeneity. For example,
Table 8 reveals that only one work considers access and core networks.

Table 8. Types of nodes.

Reference Access Transport Core

[28] No No No
[18] Yes No Yes
[29] No No No
[26] No No No
[27] No No No
[33] No No No
[19] No No No
[20] No No No
[21] No No No
[38] No No No
[22] No No No
[39] No No No
[30] No No No
[31] No No No
[23] No No No
[24] No No No
[25] No No No
[32] No No No

Table 9 presents the main tools found to assist the work simulations. The primary
tool used in the papers is the Georgia Tech Internet Topology Model (GT-ITM) [40]; it is a
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network topology generator used to create flat random and hierarchical graphs to represent
network substrate and virtual network requisitions. Other works use their framework to
create datasets to represent the substrate and requisitions; the advantage of this way is that
the frameworks are more problem-oriented. Only one work uses the Mininet software [41].
This software is adequate for creating a realistic virtual network with the real kernel, switch,
and application code on a single machine with a single command.

Table 9. Tools to assist the VNE process.

GT-IMT Own Mininet

12 5 1

Each virtual network request has a lifetime; for the sake of abstraction, most works
use the concept of Time Unit (TU). Around 61% of the jobs use the exponential distribution
to select a value for the lifetime of the requests; in this modality, 100% of all jobs choose
between 0 and 1000 TU. Only three jobs create requests with fixed values. Four papers
could not capture the values used in the duration of the requests (Table 10).

Table 10. Types and duration of requests.

Type 0–500 TU 0–1000 TU Quantity

Exponentially distributed 5 6 11
Fixed 2 1 3

All selected works consider that requests arrive over time. Fischer et al. [9] define
this mode as dynamic. Dynamic VNEs are the most realistic as the network allocation
service will serve slices over time. Most works use the arrival rate as a Poisson distribution
(Table 11); the average value of the rate is five requests per 100 TU. Only four of the eighteen
articles selected did not report the request creation rate.

Table 11. Quantity of virtual network requisitions.

Type 0–500 1000–4000

Poisson 2 9
Fixed 2 1

Table 12 reveals that the Poisson distribution and fixed values are the most used to
define the number of nodes. The real nodes represent the physical nodes that make part
of the infrastructure, and the most common formation is oriented to use fixed values;
generally, the number of nodes is between 8 and 100. Considering the virtual nodes,
the works typically use a uniform distribution, and the number of virtual nodes is between
2 and 20. Two results did not inform how to generate the number of virtual nodes.

Table 12. Node and virtual node formation and quantity.

Uniform
Distributed Fixed Minimal

Quantity
Maximum
Quantity

Real Nodes 1 17 8 100
Virtual Nodes 13 3 2 20

Similar to the nodes’ formation, the simulation tools use fixed or dynamic values to
choose the number of links. The fixed mode is the most common for creating connections
in the real physical model, and the probability way is more common for selecting the
number of virtual links in the virtual network models. In Table 13, the Probability and
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Waxmax labels present the dynamic forms. Through the probability method, the algorithm
takes all pairs of possible nodes and randomly chooses whether the couples will have
a connection or not; the most common probability value is 50%. With a probability of 50%,
the average of the links can be calculated with the equation n · (n − 1)/4, where n indicates
the number of nodes. The Waxman random graph model places n uniformly random nodes
in a rectangular domain. An edge joins each pair of nodes at a Euclidean distance d with
probability alpha and beta, and the most common value of alpha is 0.5, and beta is 0.2.

Table 13. Link and virtual link formation and quantity.

Fixed Probability Waxman 0–500 500–3000

Real link 5 4 5 11 3
Virtual link 2 10 3 14 0

Table 14 describes some resources assigned to nodes and links. The most common
resource is the CPU for nodes and bandwidth for connections. Virtual network embedding
approaches use these features to constrain the mapping process. For example, only one job
considers the disk resource, and another considers the link delay. The critical point is that
no work considered the existence of memory (RAM).

Table 14. Most common resources associated with nodes and links.

Uniformly Distributed Fixed 0–50 50–100 100–3000 Not Informed Not Used

CPU 15 1 2 13 1 2 0
vCPU 14 0 4 14 0 4 0

Bandwidth 14 1 1 12 2 3 0
vBandwidth 14 0 14 0 0 4 0

Disk 1 0 0 1 0 0 17
vDisk 1 0 0 0 0 0 17
Delay 1 1 1 1 0 0 16

vDelay 1 1 1 0 0 0 16

The QoS parameters in Table 15 point out the essential aspects in the definition of
different types of slices in 5G; they were pointed out by the 5G Architecture Working
Group as part of the 5G PPP Initiative [1] with the characteristics that are present in the
5G architecture that will allow the definition of the network slices, mainly concerning
enhanced mobile broadband (eMBB), massive machine-type communications (mMTC),
and ultra-reliable and low-latency communications (URLLC).

Table 15. Main 5G network slices required parameters.

Reference Reliability Mobility Energy
Saving Location Wavelength Security

[28] No No No No No No
[18] No No No No No No
[29] No No No No No No
[26] No No No No Yes No
[27] No No No Yes No No
[33] No No No No No No
[19] No No No No No No
[20] No No No No No No
[21] No No No No No No
[38] Yes No No No No No
[22] No No No No No No
[39] No No No No No No
[30] No No No No No No
[31] No No No No No No
[23] No No No No No No
[24] No No No No No No
[25] No No No No No No
[32] No No No No No No
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The location is associated with the slice’s feature to contemplate the end-to-end con-
cept of a virtual network. The virtual network request can delineate the geographic areas
the slice must cover; only work [27] incorporates this property. Wavelength is a demand
in works that consider the aspect of network access to 5G that occurs through wireless
networks. In this case, the slicing system can protect the slices from overlapping waves
avoiding collision; only work [26] incorporates this property. Reliability is essential for
URLL slices and is present in supporting dense networks of IoT. It is a primary enabler for
many unique use cases in manufacturing, power transmission, transportation, and health-
care; only one work [38] considers this property.

No work considered mobility, energy efficiency, and security in the demands of virtual
network requests. Energy efficiency is defined as the duration of time for a component to be
operational without a power supply or is related to energy consumption. Mobility implies
if the mapping algorithm considers that mobile devices can move between different access
areas over time; in this case, the mapping system must allocate extra resources based on
the locomotion prediction to guarantee the permanence of the connection. Finally, despite
being one of the most sensitive aspects nowadays due to the profusion of personal data on
networks, no work has explored security.

4. Final Considerations and Future Works

We have investigated the use of meta-heuristics to solve virtual network embedding
problems. First, we extracted data from two sets of articles; the first set was taken from the
corresponding document published by Fischer et al. [9]. We then started the second group
through a systematic process limited to the domain of 5G, VNE, and meta-heuristics. Our
interest is because meta-heuristics use their schemes to escape the local optimum, and they
are suitable for complex networks, in addition to the fact that each meta-heuristic has gone
through a scientific review process. For these reasons, we have studied the application of
meta-heuristics to the VNE problem.

We have asked several questions that are not systematically answered in the current
literature; therefore, we have classified and organized the responses and presented the
rejoinders in numerous tables to facilitate reading. The results will enable researchers to
develop simulation environments for network slicing considering 5G.

The scope of CPU and bandwidth are the ubiquitous demands on the requests. How-
ever, regarding a 5G network, we have found that reliability, mobility, energy savings,
location, and security are poorly explored. Moreover, at least bandwidth, delay, and reliabil-
ity are expected to be considered simultaneously in 5G works. In real scenarios, the values
of QoS parameters and their priorities may vary; thus, the new approaches must be aware
of them simultaneously.

One technique to deal with scalability is parallelism, which is poorly explored in
the literature. Our survey found these recent works [21,22,25,39] from 2019 to 2020 that
use parallelisms. However, the parallelism technique is not incorporated into the meta-
heuristic. The authors’ solution is derived from the updated genetic algorithm with parallel
preprocessing to reduce the runtime. However, parallel preprocessing builds a collection
of paths for each virtual link, called a path pool, based on its source and destination pairs.
The path pool is used by n instances of the genetic algorithm to perform the mapping. It is
only possible in small networks, and the meta-heuristic remains sequential.

Meta-heuristics is a large and flourishing field that can be applied naturally to various
problems. We found the following meta-heuristics in the works: AC, GA, Greedy, MRW,
PSO, and SA. In this comprehensive work [42], the authors Arıcı and Kaya evaluated six
well-known population-based optimization algorithms (Artificial Algae Algorithm (AAA),
artificial bee colony algorithm (ABC), Differential Evolution (DE), Genetic Algorithm (GA),
gravitational search algorithm (GSA) and Particle Swarm Optimization (PSO)). Their work
was conducted on the CEC’17 test functions using these algorithms and comparing their
performance. The evaluations showed that AAA was the most successful among these six.
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Therefore, for future work, we propose the application of AAA to VNE problems, taking
into account the aforementioned QoS parameters that were not presented in the works.
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