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Abstract: The timely detection of equipment failure can effectively avoid industrial safety accidents.
The existing equipment fault diagnosis methods based on single-mode signal not only have low
accuracy, but also have the inherent risk of being misled by signal noise. In this paper, we reveal
the possibility of using multi-modal monitoring data to improve the accuracy of equipment fault
prediction. The main challenge of multi-modal data fusion is how to effectively fuse multi-modal data
to improve the accuracy of fault prediction. We propose a multi-modal learning framework for fusion
of low-quality monitoring data and high-quality monitoring data. In essence, low-quality monitoring
data are used as a compensation for high-quality monitoring data. Firstly, the low-quality monitoring
data is optimized, and then the features are extracted. At the same time, the high-quality monitoring
data is dealt with by a low complexity convolutional neural network. Moreover, the robustness of the
multi-modal learning algorithm is guaranteed by adding noise to the high-quality monitoring data.
Finally, different dimensional features are projected into a common space to obtain accurate fault
sample classification. Experimental results and performance analysis confirm the superiority of the
proposed algorithm. Compared with the traditional feature concatenation method, the prediction
accuracy of the proposed multi-modal learning algorithm can be improved by up to 7.42%.

Keywords: Internet of Things; multi-modal learning; equipment fault prediction; convolutional
neural network

1. Introduction

In order to ensure the normal operation of large equipment in the Internet of things,
an efficient and accurate fault diagnosis and prediction method is urgently needed. Usually,
sensors are deployed to monitor the running status of equipment in real time. For example,
temperature and humidity sensors can be used to obtain the current operating environment
of the equipment. These various types of sensors can describe the operating conditions
of the same equipment from different angles. Combining the data from multiple sensors
not only improves the accuracy of fault prediction, but also reduces the industrial safety
accidents caused by the failure of a single sensor.

Currently, there are a few available equipment fault diagnosis methods based on
single-mode data fusion [1–3]. However, different faults of equipment have different
characteristics. Furthermore, due to the different types and deployment locations of sensors,
the ability to capture fault characteristics is also different. Therefore, the data collected
by sensors have different contributions to the accuracy of fault diagnosis and prediction.
Accordingly, data that can make a high contribution to the accuracy of fault diagnosis
and prediction is called high-quality monitoring data, otherwise it is called low-quality
monitoring data. Low quality monitoring data is expected to help high quality monitoring
data to further improve the accuracy of fault diagnosis and prediction. The data gathered
by different sensors belong to different modes and should be usually extracted by different
methods. Moreover, the expression of different pattern features is too different to be directly
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used in discriminant analysis. Therefore, how to fuse the monitoring data of different types
of sensors in different locations faces great challenges.

In recent years, multi-modal feature fusion technology [4] has attracted extensive
attention of scholars and industry. Multi-modal data analysis has become a hot topic. How
to explore the potential relationship between different modes is the key to multi-modal
data fusion. GMA (Generalized Multiview Analysis) [5] only considers the discriminant
information in views, and ignores the discriminant information between views. MvDA
(Multi-view Discriminant Analysis) [6] considers both inter view and intra view informa-
tion, thus, MvDA has better multi-modal learning ability. Inspired by MvDA, we use the
common space projection method based on MvDA to fuse multi-modal monitoring data.

In this paper, we propose a multi-mode learning framework to fuse different quality
monitoring data collected by diverse sensors. To balance the accuracy and cost of prediction,
we use different methods to handle the data with different modes. Firstly, wavelet transform
is used to transform low-quality monitoring data, and then their features are extracted.
At the same time, one-dimensional convolutional neural network is used to extract the
features of high-quality monitoring data, and noise is added to high-quality monitoring
data to improve the robustness of the system, so as to conquer system noise and unknown
interference. Finally, different features are mapped to the common space through the fusion
model, the global optimal solution is obtained by using the trace difference method based
on iteration, and the accurate prediction of equipment failure is achieve.

Our contributions are summarized as follows.

• We make the first attempt to launch an multi-modal learning algorithm on equipment
fault prediction in the Internet of Things.

• We design a series of strategies to improve the accuracy of equipment fault pre-
diction, use different methods to deal with different quality of detection data, and
improve the robustness of fault prediction algorithm by adding noise to high-quality
monitoring data.

• We evaluate the performance of our proposed multi-modal learning algorithm on
the CWRU bearing dataset. Compared with the traditional feature concatenation
method, the prediction accuracy of the proposed multi-modal learning algorithm can
be improved by up to 7.42%.

The remainder of this paper is organized as follows. We survey the related works
in Section 2. We introduce system model and the target problem in details in Section 3.
The equipment fault prediction framework is described in Section 4. Experiment results
and performance analysis are presented in Section 5. Finally, we conclude this paper in
Section 6.

2. Related Work

In recent years, there has been a great deal of related work on equipment fault diagno-
sis and prediction. These existing research can be divided into three categories in terms of
the involved technology.

Physical model-based equipment fault diagnosis schemes explore the relationship
between input and output, and then establish a mathematical model to simulate the opera-
tion of the equipment. Hmida et al. [7] proposed a robust fault diagnosis method based on
third-order Kalman filter. A real-time linear fault diagnosis system was constructed in [8].
Shah et al. [9] built the aerodynamic difference simulation of the normal state and fault state
of the bearing. Benmoussa et al. [10] obtained the structural conditions of fault detectability
and isolation based on the bond graph model, and finally realized the electromechanical
system application of autonomous vehicle. James et al. [1] studied the fault diagnosis of
automotive power system based on fault tree analysis. Jaise et al. [11] proposed a fault
tree strategy for vehicle system fault diagnosis based on directed graph model. Physical
model-based equipment fault diagnosis has high accuracy and high system stability, but
professional knowledge is the key to establish the corresponding accurate model.
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Signal analysis-based fault diagnosis methods judge whether the equipment fails
by analyzing the time-frequency domain information of the sensor signal. Taking AR
model, variational modal analysis and random forest classifier into account, Han [12]
realized fault diagnosis of non-stationary features such as bearing vibration information.
Borghesani et al. [13] improved the diagnostic accuracy of bearing inverse spectrum un-
der variable speed. Bhakta et al. [2] extracted fault features using cepstrum, and then
improved the accuracy of equipment fault diagnosis based on gradient boost algorithm.
Coconcelli et al. [14] used an encoder to segment bearing signals in terms of speeds, and
utilized short-time Fourier transform to diagnose faults. Wang et al. [15] enhanced the
fault signal by using time-frequency reduction and short-time Fourier transform, so as to
improved the performance of bearing fault diagnosis finally. Chen et al. [16] extracted time-
frequency domain features based on short-time Fourier transform, and then improved the
accuracy of fault classification by compressing the feature scale. Although these methods
based on signal analysis have achieved good performance in equipment fault diagno-
sis, they highly rely on professional knowledge and need to extract different features for
different equipment operating conditions.

Machine learning-based prediction method has been widely used in the field of
equipment fault diagnosis and prediction because of its powerful feature extraction and
processing ability. Kumar et al. [17] identified the fault state of pump by solving the
optimal parameter problem of support vector machine. Ali et al. [18] quickly distinguished
short-circuit faults under different frequencies by clustering electrical and mechanical
faults based on the frequency response under different states. Kim et al. [19] analyzed the
operation data of power plant by using statistical methods and clustering algorithm, and
then proposed a neural network fault prediction model, which can predict the pipeline
leakage fault. Sohaib et al. [3] set up a boiler pipe leakage fault detection model based
on wavelet transform and deep neural network. Combined multi-scale convolution with
data enhancement, Zhuang et al. [20] implemented the classification and corresponding
severity of bearing faults. Qian et al. [21] proposed an adaptive superimposed convolu-
tional neural network to solve the translation error and the boundary problem of CNN,
and finally realized the classification of bearing faults over s small set of data samples.
Although classical machine learning algorithms shows its superiority in fault diagnosis
and prediction, system parameters need to manually be selected carefully. Furthermore,
the functions suitable for the network also need to be chosen wisely. Deep neural network
has become the key technology of fault diagnosis and prediction since 2006 because of its
strong ability of feature extraction and model transfer.

3. System Model and the Target Problem
3.1. System Model

We consider an equipment operating state monitoring system composed of J different
types of sensors, which are deployed in different locations of the equipment to collect
information of different device components. Each sensor collects K samples. The equipment
has I different faults. The feature extracted from the sensor data using CNN architecture
is expressed as Dijk = (dijk1, dijk2, . . . , dijkz), i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2, . . . , K, z
is the number of features extracted. Compared with the normal operation state, the data
collected by the sensor will deviate from the reference value when a specific fault occurs.
The performance characteristics of each fault can be captured by the deployed sensors to a
certain extent. Furthermore, the same fault has different effects on different sensors, and
different faults have different effects on the same sensor. Therefore, based on multi-modal
learning of the data collected by all deployed sensors, we can diagnose equipment faults
and accurately predict impending faults.

Due to the different characteristics of faults and the different deployment positions of
sensors, the data collected by each sensor makes different contributions to the accuracy of
fault diagnosis and prediction. To balance the performance and cost, for the monitoring
data with high accuracy of fault diagnosis and prediction, we use a quite simple machine
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learning algorithm to learn its feature, and for the sensor data with low accuracy of fault
diagnosis and prediction, we utilize a relatively complex machine learning algorithm to
extract its features.

3.2. The Target Problem
3.2.1. Pre-Experiments and Our Observations

We conduct pre-experiments on the CWRU bearing dataset, which is collected from
a bearing platform. The bearing platform is mainly composed of motor, torque sensor,
power detector and electronic control valve. The operating state of the bearing is monitored
constantly with a vibration sensor at the drive end and a vibration sensor at the fan end.
The sampling frequency of two sensors is 12 kHz. The failure of the bearing platform
includes inner ring failure, outer ring failure and rolling element failure. Each type of
fault corresponds to three different failure damage lengths, i.e., 0.1778 mm, 0.3556 mm and
0.5334 mm. Thus, there are nine fault states in total, as shown in Figures 1 and 2. The first
three subgraphs of Figure 1 are the inner ring faults with three corresponding different
damage lengths at driver end, and so on, the last subgraph shows the normal operation
state without any fault, which can be used as a benchmark.
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Figure 1. Time frequency diagram of failure samples at drive end.

Inspiring by [22], we adopt a similar convolution network structure (called 2D CNN
Structure) to extract features for monitoring data, and the settings of the 2D CNN Structure
is shown in Table 1. Comparatively, we use the 1D CNN similar to the structure proposed
in [23] to learn the characteristics of one-dimensional signals, and its settings is shown in
Table 2. We made the following observations:

• As shown in Figure 3a, the monitoring data collected by the sensor at the drive end can
always provide better performance whether 1D CNN or 2D CNN is used. Using 1D
CNN, the prediction accuracy of fault prediction based on driver data can be improved
by up to 10.67%. The evidence reinforces that the data collected by different sensors
have different contributions to the accuracy of fault diagnosis and prediction. Thus, we
distinguish between low-quality monitoring data and high-quality monitoring data.

• As shown in Figure 3a, for each type of monitoring data, compared with 1D CNN,
2D CNN can provide better performance thanks to its better learning ability. Using
2D CNN, the accuracy of fault prediction based on driver data can be improved by
2.46%, and the accuracy of fault prediction based on fan data can be improved by
2.66%. Combined with Figure 3b, the accuracy of fault prediction is improved by
about 2.5%, while the training time increases by more than three times. Using 2D
CNN, the training time based on driver data increases from 21.63 s to 97.01 s, and the
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training time based on driver data is increased from 23.64 s to 97.44 s. Therefore, it is
necessary to tradeoff the prediction accuracy and the running time.

• The 2D CNN does help improve the accuracy of fault prediction. As shown in
Figure 3a, the accuracy of using 2D CNN for two types of sensor data is higher than
that of using 1D CNN. For the monitoring data collected by the sensor at the driver
end, the prediction accuracy can reach 94.68% using ID CNN. For the monitoring data
collected by the fan end sensor, even if 2D CNN is used, the prediction accuracy is only
86.67%. It can be seen that the monitoring data collected by each sensor has different
contributions to the performance of fault prediction. Moreover, the performance of the
monitoring data collected by the fan end sensor in fault prediction is not satisfactory,
thus, its processing technology needs to be further optimized.
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Figure 2. Time frequency diagram of failure samples at fan end.
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3.2.2. The Target Problem

Generally, a variety of sensors are deployed to collect the operating status of the equip-
ment from different angles and different granularity in an industrial Internet equipment
fault diagnosis and prediction system. Because the sensor is deployed in different positions
of important parts of the equipment, the distance to the equipment fault point is different,
plus the influence of noise, resulting in the sensor providing different quality monitoring
data. To improve the accuracy of fault diagnosis and prediction, multi-modal data fusion
must be carried out on the monitoring data provided by all sensors.
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Table 1. 2D CNN Structure.

Name of the Layers Parameter Settings

1. Input layer The size of the input image is 64 × 64 × 3, and perfroming zerocenter normalization.
2. Convolution layer The number and size of convolution kernel are 8 and 5 × 5 ; step is [1,1]; filled as same.
3. Batch processing layer batch normalization
4. Activation function layer Relu
5. Pooling layer max pooling; size is 2 × 2; setp is [2,2]; filled as 0.
6. Convolution layer The number and size of convolution kernel are 16 and 5 × 5 ; step is [1,1]; filled as same.
7. Batch processing layer batch normalization
8. Activation function layer Relu
9. Pooling layer max pooling; size is 2 × 2; setp is [2,2]; filled as 0.
10. Full connection layer 4096

Table 2. 1D CNN Structure.

Name of the Layers Parameter Settings

1. Input layer The size of the vibration signal is 1 × 1024, and perfroming zerocenter normalization.
2. Convolution layer The number and size of convolution kernel are 8 and 1 × 1024 ; step is [1,1]; filled as same.
3. Pooling layer max pooling; size is 1 × 512; filled as same.
4. Convolution layer The number and size of convolution kernel are 16 and 1 × 512 ; step is [1,1]; filled as same.
5. Pooling layer max pooling; size is 1 × 256; filled as same.
6. Full connection layer 4096

Our goal is to design a high accuracy multi-modal learning algorithm for equipment
fault prediction. In view of the different quality of various sensor data and their different
contributions to the accuracy of equipment fault diagnosis and prediction, we need to
tradeoff the cost and performance when designing multi-modal learning algorithms. There-
fore, we should use a low complexity learning algorithm for high-quality monitoring data
and a high-performance learning algorithm for low-quality monitoring data. Moreover, to
improve the prediction accuracy of low-quality monitoring data, it is necessary to optimize
the low-quality data and improve the accuracy of equipment fault prediction based on low-
quality data as much as possible. In addition, due to the noise and unknown interference
factors in the environment of industrial Internet, multi-modal learning algorithm needs to
be highly robust.

4. The Proposed Equipment Fault Prediction Framework

Corresponding to our target problem stated in Section 3.2.2, the proposed equipment
fault prediction framework based on multi-modal learning adopts the following strategies:
(1) to improve the performance of equipment fault prediction algorithm, the monitoring
data are optimized first, i.e., the original monitoring data are resampled; (2) to tradeoff
performance and cost, 1D CNN is used to extract the features of high-quality sensor data,
e.g., the vibration signal at driver end collected by the sensor, and 2D CNN is utilized
to learn the features of low-quality monitoring data, e.g., the vibration signal at fan end
gathered by the sensor; (3) to improve the quality of low-quality monitoring data, wavelet
analysis technology is used to analyze the low-quality information, reduce noise, and
then reconstruct the wavelet time-frequency map; (4) to improve robustness of the fault
prediction algorithm, noise is added to the high-quality monitoring data; (5) The features
extracted by 1D CNN and 2D CNN are projected into the same common space using
multi-modal data fusion. The spatial optimization problem is solved by the classic ratio
trace iterative algorithm, and the fault classification is realized by support vector machine
(SVM). The system framework is shown in Figure 4.
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Figure 4. The framework of our proposed approach.

We summarize the key notations in Table 3.

Table 3. Key notations.

Notation Definition

I the number of equipment failures
J the number of types of sensors
K the number of samples per sensor
Z the number of features extracted

Dijk the feature extracted from the monitoring data
Pnoise the power of noise
Psignal the useful power of the signal

o the noise to be added to each sample
D the multi-modal monitoring dataset
F the projected samples

Lin the within-class scatter matrix
Lout the between-class scatter matrix

S the set of sensor mapping matrix
W, V block matrices

qj the feature dimension of the j-th sensor
B the projection matrix

4.1. Preprocessing and Feature Extraction
4.1.1. Preprocessing

In order to improve the accuracy of fault diagnosis and prediction, we use resampling
and noise adding methods to preprocess the data.

Resampling. It is worth noting that each type of fault sample needs to be normalized
before being input into the convolutional neural network and the selection of the size of
each data sample is critical. Moreover, sometimes the number of samples in the dataset
is insufficient. Therefore, we expand and standardize the samples by resampling. More
specifically, we set the sampling window as 1024 sampling points (for this bearing data
set, each initial data sample shows obvious periodicity, to ensure that the selected sample
size can cover the period of bearing damage, each sample was set to include 1024 sampling
points), and the sampling interval between two samples is 256 sampling points, as shown
in Figure 5. In other words, the resampling contains 768 sampling points.
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Figure 5. Illustration of the resampling method.

Noise Adding. To improve the robustness of multi-modal data fusion algorithm, we
mimic system noise or unknown interference by adding noise to the high-quality samples
based on the additive Gaussian noise. The quality of the signal is generally measured in
terms of SNR (Signal-Noise Radio), which is defined as:

SNB = 10 log10(
Psignal

Pnoise
) (1)

where Pnoise is the power of noise, and Psignal is the useful power of the signal, which can
be approximated by the variance.

The noise to be added to each sample can be calculated as:

o =
√

pnoiserandn(length(1024)) (2)

where randn(·) denotes the function that generates the standard noise, and length(·) repre-
sents the length of the signal. The signal after adding noise is the superimposition of the
original signal and the noise.

4.1.2. Feature Extraction

For high-quality monitoring data, we use 1D CNN to extract its features and obtain
the corresponding feature matrix Dijk = (dijk1, dijk2, . . . , dijkz), where i is the amount of
equipment faults, j is the total number of mounted sensors, k is the number of samples,
and z is the number of extracted features. For the low-quality sensor monitoring data, we
first convert the original monitoring data into wavelet time-frequency map, and then use
2D CNN to learn its feature matrix also represented as Dijk = (dijk1, dijk2, . . . , dijkz).

Due to the sparse features learned by the convolutional neural network and their huge
dimension, which will reduce the performance of subsequent public space projection and
increase the iteration time, principal component analysis (PCA) is utilized to deal with each
feature matrix. More specifically, by using PCA, we project the feature matrix onto a set of
mutually orthogonal matrices, then calculate the variance between the projected data, and
evaluate the importance of the feature matrix according to the variance. We let DN

ijk denote

the standardized matrix of Dijk. The covariance matrix of DN
ijk can be calculated as follows:

Cov(M, Y) = ∑n
i=1(Mi −M)(Yi −Y)

K− 1
(3)

where M and Y are two variables, M represents the mean of M, and Y is the mean of Y.
We first calculate the eigenvectors of DN

ijk, and then generate matrix DC based on these
eigenvectors. Finally, we can construct the principal component matrix.

4.1.3. The Loss Function

We define a loss function based on cross entropy to learn all parameters for 1D CNN
and 2D CNN. Mathematically, the loss function can be expressed as
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Llog(Y, P) = − log Pr(Y|P) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,k log pi,k (4)

where Y is the set of true labels, P is the set of predicted labels, N is the number of samples,
K is the number of categories, yi,k denotes the kth label value of the ith sample, and pi,k
denotes the probability that the model predicts the ith sample as the kth category.

4.2. Multi-Modal Learning Algorithm

Multi-modal fusion learning is the core of our proposed framework. The frame-
work aims at two modal features: low-quality monitoring data features and high-quality
monitoring data features, which are extracted at different granularity through different
convolutional neural networks. Usually, these two features can predict equipment fault
independently. To guarantee accuracy of the equipment fault prediction algorithm, we
needs to fuse these two kinds of features before classification. Most of the feature fusion
algorithms simply add and concatenate different features, and their performance are not sat-
isfactory, because they ignore the correlation between high-quality features and low-quality
features. Based on MvDA [6], we propose a supervised multi-modal learning algorithm
for equipment fault prediction, which projects the features of high-quality monitoring
data and low-quality monitoring data into a common space. Our learning objectives is to
make samples of the same faults as close as possible in the common space, and samples of
different types of faults as far away as possible in the common space.

For the aforementioned equipment fault monitoring system, we assume the multi-
modal monitoring dataset D =

{
Dijk ∈ Rqj |i = 1, 2, . . . , I; j = 1, 2, . . . , J; k = 1, 2, . . . , kij

}
,

where dijk is the kth sample of the jth sensor in the ith fault, I is the number of fault
types, J is the total number of sensors, qj is the feature dimension of sensor j, and
kij is the sample number of the ith fault of the jth sensor. At the same time, we let

F =
{

Fijk = sT
j Dijk|i = 1, 2, . . . , I; j = 1, 2, . . . , J; k = 1, 2, . . . , kij

}
denote the projected sam-

ples, where sj is the projection matrix we need to learn. The optimal projection matrix
can make the same fault samples as close as possible. Based on MvDA [6], mathemati-
cally speaking, the objective function of multi-modal learning algorithm can be expressed
as follows:

(s∗1 , s∗2 , . . . , s∗J ) = arg max
s1,s2,...,sJ

Tr(Lout)

Tr(Lin)
(5)

where Lin is the within-class scatter matrix of projection in common space, Lout expresses
the between-class scatter matrix.

To simplify calculations, define S =
{

sT
1 , sT

2 , . . . , sT
J

}
, sj is the l−th column of matrix

S, the within-class scatter matrix Lin and the between-class scatter matrix Lout can be
rewritten as:

Lin = STVS (6)

Lout = STWS (7)

where V and W are two block matrices, and their definitions are shown in MvDA [6].
By converting the objective function into the trace ratio problem, the solution of our

multi-modal learning algorithm will be simplified. Thus, we rewrite Equation (5) as follows:

(s∗1 , s∗2 , . . . , s∗J ) = arg max
s1,s2,··· ,sJ

Tr(STWS)
Tr(STVS)

(8)

The objective function represented by Equation (8) can be regarded as a trace ratio
problem. It is difficult to obtain the global optimal solution of the multi-modal data fusion
model by singular value decomposition. To solve this problem, an iterative algorithm based
on ratio trace method is introduced to solve the trace ratio problem. Firstly, to maintain the
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solvability of the trace ratio problem, orthogonal constraints STS = E are added, where E
is the unit matrix.

We assume Ṽ = W + V. Equation (8) is updated as follows:

S∗ = arg max
STS=I

Tr(STWS)
Tr(STṼS)

(9)

Given 0 ≤ Tr(STWS)
Tr(STṼS) ≤ 1, since the multi-model learning algorithm preprocesses the

monitoring data using PCA, Ṽ is equal to 0 with negligible probability. Thus, Ṽ can be
converted as follows:

Ṽ = BTΘB (10)

where Θ = [θ1, θ2, . . . , θc, . . . , θC], θc > 0, c = 1, 2, . . . , C, C is the number of positive singular
values in Ṽ. Let S = QB, Q ∈ RC×d, d be the rank of S, the objective function can be updated
as follows:

S∗ = arg max
BT B=I

Tr(BTW(u)B)
Tr(BTV(u)B)

(11)

where W(u) = BTWB, V(u) = BTṼB.
To solve the trace ratio problem of Equation (11) using singular value decomposition

method, even if there is a closed solution, there may still be a large error with the optimal
solution. Therefore, it is necessary to convert the trace ratio problem of Equation (11) into
the trace difference problem. Thus, Equation (11) is converted as follows:

B∗ = arg max
BT B=I

Tr(BT(W(u) − θnV(u))B) (12)

4.3. Global Optimum Solution Based on Eigenvalue Decomposition

Based on the eigenvalue decomposition method, the global optimal solution to the
trace difference problem is achieved iteratively. The steps are described as follows:

• Initialize B0 to any column orthogonal matrix.
• Calculate iteratively θn as follows:

θn =
Tr(Bn−1T

W(u)Bn−1)

Tr(Bn−1T V(u)Bn−1)
(13)

• Construct the trace difference problem as follows:

Bn = arg max
BT B=I

Tr(BT(W(u) − θnV(u))B) (14)

• Solve the trace difference problem based on eigenvalue decomposition method as follows:

(W(u) − θnV(u))bn
r = ηn

r bn
r (15)

where ηn
r is the r−th largest eigenvalue of (W(u) − λnV(u))bn

r , bn
r is the corresponding

eigenvector of ηn
r .

• Reconstruct the projection matrix to maintain orthogonality: Let Bn =
[
bn

1 , bn
2 , bn

3 , · · · , bn
d
]
,

d is the rank of low-latitude feature, and perform singular value decomposition on
S(b) = Bn(Bn)TV(u)Bn(Bn)T. The projection matrix can be updated as follows:

S(b) = BnΘb(Bn)T (16)

• The termination criterion for iteration: if ||Bn − Bn−1|| <
√

Cdε, Then the iteration
ends, B = Bn.
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The corresponding algorithm to find the global optimal solution to the trace difference
problem is presented in Algorithm 1.

Algorithm 1 Multi-modal Learning Algorithm

1: Input: Two block matrices V and W.
2: Output: The projection matrix B.
3: Initialize B0 to any column orthogonal matrix.
4: repeat
5: Calculate θn using Equation (13).
6: Construct the trace difference problem based on Equation (14).
7: Solve the trace difference problem using Equation (15).
8: Reconstruct the projection matrix Bn =

[
bn

1 , bn
2 , bn

3 , · · · , bn
d
]
.

9: Perform singular value decomposition S(b) = Bn(Bn)TV(u)Bn(Bn)T .
10: Update the projection matrix using Equation (16).
11: until ||Bn − Bn−1|| <

√
Cdε.

12: B = Bn.

5. Experiment Evaluation

We conduct experiments and analyze performance of the proposed algorithm on the
CWRU bearing dataset, which is widely used for bearing fault diagnosis and prediction.

5.1. Dataset and Data Preprocessing

The CWRU bearing dataset is collected from a bearing platform. According to the
monitoring system, the vibration sensors are mounted at the drive end and fan end of
the bearing, and can provide high-quality monitoring samples (samples collected by the
vibration sensor at drive end) and low-quality monitoring samples (samples gathered by
the vibration sensor at fan end) at the same time. As mentioned in Section 3.2.1, the dataset
includes 9 kinds of equipment fault samples and normal operation status data.

Because of the insufficient number of samples in the CWRU bearing dataset, we
expand the data by resampling. Since each original sample contains 121,556 sampling points
and shows obvious periodicity, according to the settings in Section 4.1.1, The expanded
equipment fault samples of each type by resampling have 400 samples, we randomly
selected 70% of them as the training set, and the remaining 30% as the testing set.

The accuracy of fault prediction based on low-quality samples is not satisfactory.
If noise is added to low-quality samples, the performance of our multi-modal learning
algorithm will be greatly degraded. To simulate noise or unknown system interference,
we choose to add noise to high-quality samples, i.e., samples collected by the sensor at
driver end.

To solve the problem that the prediction accuracy based on the fan end data is not
high, we choose wavelet transform to optimize the low-quality samples from the sensor at
fan end, and convert them into wavelet images. The converted wavelet images are shown
in Figure 6. We compress the resolution of wavelet image to 64 × 64 and learn the features
of wavelet image with 2D-CNN.

5.2. Baselines

We choose five algorithms that have achieved good performance in bearing fault
prediction in recent years as benchmarks, including SDIAE [24] (Stacked Discriminat
Information-based Auto-Encoder), VAEGAN-DRA [25] (Variational Autoencoding Genera-
tive Adversarial Networks with Deep Regret Analysis), SVM [26], SNN [27] (Spiking Neural
Network), and SIRCNN [28] (Stacked Inverted Residual Convolution Neural Network).



Sensors 2022, 22, 6722 12 of 16

Figure 6. Time frequency diagram of fault samples after wavelet conversion.

5.3. Performance Analysis

Prediction Accuracy Comparison. As shown in Table 4, compared with the five
benchmark algorithms, our proposed algorithm can achieve the highest fault prediction
accuracy. After adding noise to high-quality samples, although the prediction accuracy of
our algorithm decreases by 12.54%, the robustness of the algorithm has been enhanced.
Moreover, the accuracy of the five benchmark algorithms in the driver side data is higher
than that in the fan side data, which once again confirms that the samples have different
quality and have different contributions to the accuracy of the prediction algorithm.

Table 4. Prediction accuracy comparison.

SVM SDIAE VAEGAN-DRA SNN SIGCNN OURS

Drive End 92.64% 97.83% 98.17% 98.23% 98.93% 99.32%
Fan End 83.97% 89.34% 86.07% 91.67% 93.93%

Drive End (adding noise) 61.88% 71.94% 68.62% 82.62% 88.67% 86.78%

Effect of Wavelet Conversion. The results in Figure 7a confirm the effectiveness of
wavelet transform in optimizing low-quality samples, and the accuracy of fault prediction
based on fan end data is improved by 9%. At the same time, wavelet transform has little
effect on improving high-quality samples, and the accuracy of fault prediction based on fan
end data is only improved by 0.75%. It can be seen from Figure 7b that wavelet transform
increases the time complexity of the algorithm within an acceptable range. Combined with
Figure 7a,b, the training time is increased by 4.95 s, resulting in an improvement of 9%
accuracy. In order to balance performance and cost, wavelet transform is only applicable to
low-quality samples.
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Figure 7. Accuracy and training time comparison.
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Effect of Noise. 1D CNN implies that the features of data at the drive end is extracted
directly; feature concatenation with SVM means that the features of data at drive end is
extracted by 1D CNN, the feature of the wavelet images is extracted by 2D CNN, then
two kinds of features are concatenated as input, SVM is used for classification finally; Multi-
modal feature fusion refers to our proposed algorithm. As shown in Figure 8, Noise will
reduce the prediction accuracy of the three methods, but the accuracy difference between
with noise and without noise is different. ID CNN has the largest accuracy difference, and
our method has the smallest accuracy difference, which proves that our algorithm has
better robustness.

94.68 96.36
99.32

53.61

79.36

86.72

1D-CNN SVM multi-modal
0

20

40

60

80

100

A
c
c
u
ra

c
y
(%

)

Without noise

With noise

Figure 8. The influence Comparison of noise on accuracy.

Effect of SVM Parameters. After projecting the sensor features into the common
space, we use SVM as a classifier. Figure 9a shows the influence of four classical kernel
functions on SVM. Obviously, the linear kernel has the best performance because of less
parameters and faster speed. In Figure 9b, the influence of penalty factor on SVM is tested.
The penalty factor becomes stable at 0.1, but changes little thereafter. Therefore, we set the
penalty factor of SVM to 0.1. Moreover, we can also observe that the best performance can
be obtained by fusing high-quality samples with low-quality samples. This proves that the
fusion of low-quality samples is helpful to improve the accuracy of fault prediction.
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Figure 9. Effect of different parameters of SVM.

Effect of PCA. In the proposed framework, we used PCA to retain more than 95%
of the principal components after each feature extraction. Figure 10 shows the influence
of dimensionality reduction on the accuracy of fault prediction. The accuracy of fault
prediction can be improved by up to 30% with PCA. Among the four kernel functions,
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PCA has the least influence on the sigmoid kernel function, and the accuracy is reduced
by 17.5%.
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Figure 10. Accuracy comparison between using and not using PCA.

6. Conclusions

This paper presents a multi-modal learning algorithm for equipment fault prediction.
Taking the CWRU bearing dataset as an example dataset, the effectiveness of the following
strategies is confirmed: (1) 1D CNN is enough to extract the features of high-quality
monitoring data, and 2D CNN can extract the features of low-quality monitoring data
converted by wavelet transform. (2) Adding noise to the high-quality monitoring data can
improve the robustness of multi-modal learning algorithm. (3) Low quality monitoring
data can be used as a compensation for high-quality monitoring data, which can improve
the accuracy of equipment fault prediction. The core of the algorithm proposed in this
paper is to better analyze the potential relationship between various modal data, and adopt
different feature extraction methods for different quality monitoring data. The proposed
model can provide useful guidance for the design of equipment fault monitoring system
and the placement of sensors in the Internet of things, and allow a deeper exploration of
effective methods of multi-modal monitoring data fusion in industrial Internet.
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Abbreviations
In this study, we use the following abbreviations:

GMA Generalized Multiview Analysis
MvDA Multi-view Discriminant Analysis
CWRU Case Western Reserve University
CNN Linear dichroism
SVM Support Vector Machine
SNR Signal-Noise Radio
PCA Principal Component Analysis
SDIAE Stacked Discriminat Information-based Auto-Encoder
VAEGAN-DRA Variational Autoencoding Generative Adversarial Networks with Deep Regret

Analysis
SNN Spiking Neural Network
SIRCNN Stacked Inverted Residual Convolution Neural Network
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