
Citation: Kum, S.; Oh, S.; Yeom, J.;

Moon, J. Optimization of Edge

Resources for Deep Learning

Application with Batch and Model

Management. Sensors 2022, 22, 6717.

https://doi.org/10.3390/s22176717

Academic Editors: Claudio Gennaro

and Claudio Vairo

Received: 3 August 2022

Accepted: 29 August 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimization of Edge Resources for Deep Learning Application
with Batch and Model Management
Seungwoo Kum * , Seungtaek Oh , Jeongcheol Yeom and Jaewon Moon

Korea Electronics Technology Institute, Seongnam 13509, Korea
* Correspondence: swkum@keti.re.kr

Abstract: As deep learning technology paves its way, real-world applications that make use of it
become popular these days. Edge computing architecture is one of the service architectures to realize
the deep learning based service, which makes use of the resources near the data source or client. In
Edge computing architecture it becomes important to manage resource usage, and there is research on
optimization of deep learning, such as pruning or binarization, which makes deep learning models
more lightweight, along with the research for the efficient distribution of workloads on cloud or edge
resources. Those are to reduce the workload on edge resources. In this paper, a usage optimization
method with batch and model management is proposed. The proposed method is to increase the
utilization of GPU resource by modifying the batch size of the input of an inference application. To
this end, the inference pipelines are identified to see how the different kinds of resources are used,
and then the effect of batch inference on GPU is measured. The proposed method consists of a few
modules, including a tool for batch size management which is able to change a batch size with respect
to the available resources, and another one for model management which supports on-the-fly update
of a model. The proposed methods are implemented on a real-time video analysis application and
deployed in the Kubernetes cluster as a Docker container. The result shows that the proposed method
can optimize the usage of edge resources for real-time video analysis deep learning applications.

Keywords: batch inference; edge computing; edge optimization; deep learning application framework

1. Introduction

As the deep learning service spreads over wide areas including video/image analysis,
text analysis, or natural language processing, the edge computing architecture gets more
focus these days. In edge computing, a trained model and/or application is located on an
edge resource, rather than cloud. Though the local (edge) resources have rather limited or
restricted computational power when compared to the cloud, edge computing provides
many benefits for deep learning applications, especially from the perspective of the cost,
such as resources and delay. An edge resource refers to a computation resource that is
located close to the data or the service endpoint, and processing on an edge resource can
provide faster response, and it can reduce the cost of using cloud resources. However,
it is also true that the resources on the edge are restricted. Usually, it is not scalable or
extensible like those on the cloud, and is mostly not as powerful. Devices such as Nvidia
Xavier with Jetson platform [1] or Google’s Coral TPU [2] are good examples of embedded
hardware with acceleration capability, suitable to be used as an edge resource. Due to these
differences in computational resources, it is now quite a common practice to differentiate
the role of cloud and edge resources in the realization of a deep learning service—powerful
and scalable cloud resources for the training of a model, and restricted edge resources
for the inference. Many cloud platforms, such as the ones from Google Cloud Platform
(GCP) or MS Azure, adopt this concept to provide a deep learning service with cloud
and edge. Figure 1 depicts this concept of using cloud-edge resources in realization of a
deep-learning service.

Sensors 2022, 22, 6717. https://doi.org/10.3390/s22176717 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6834-9255
https://orcid.org/0000-0002-6679-6166
https://orcid.org/0000-0002-2504-0792
https://orcid.org/0000-0001-7451-6411
https://doi.org/10.3390/s22176717
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176717?type=check_update&version=2


Sensors 2022, 22, 6717 2 of 17

Figure 1. Cloud and Edge resources for a deep learning service.

The edge computing architecture is now considered one of the major pillars of
Industry 4.0, and is widely adopted in various applications from cloud-based IoT to the AI
service [3]. Various approaches to realize cloud computing for Industry 4.0 are presented [4].
Object detection is one of the famous use cases in realization of Industry 4.0 with edge
computing including defect detection, vehicle detection, and identification. Many neural
network architectures and platforms are there for object detection [5], and are improved for
use cases, including industrial surface defect detection, laser chip defect detection [6], and
fabric defect detection [7].

However, placing AI on the edge resources is still challenging due to the nature of
edge resources. It needs to resolve resource heterogeneity, transmission bandwidth with
other resources, and most of all, deal with limited resources. Unlike the cloud resources,
which are homogeneous and considered infinite, edge resources are limited with its own
hardware capacity that is hard to scale, and the platform may differ from each other. Such
a stochastic nature of edge may potentially degrade service quality.

Recent edge computing technology adopts solutions from cloud computing and deep
learning to deal with those issues through resource scaling, workload distribution, and
lightweight models. Larsson et al. have proposed an architecture for applying Kubernetes
on multi-edge cluster [8] to handle error conditions and scaling of resources. From the cloud
technology, it adopts scaling and scheduling of workload on distributed edge resources.
AirEdge [9] proposes a resource orchestration for the edge resources that consists an aerial
computing platform. Toka et al. [10] proposed scaling management of Kubernetes edge
clusters to maintain quality of service on edge cluster. KaiS [11] proposes a scheduling
method for Kubernetes-based edge–cloud cluster. These works approach efficient scaling of
edge resources, and Hadidi et al. [12] presented performance evaluation of edge resources
on various models from the viewpoint of time, energy, and temperature. Additionally,
there is another approach to resolve them by distributing workloads over cloud and edge
resources. EdgeLens [13] proposed a framework to distribute workloads on cloud and
fog nodes for object detection service, and Vater et al. proposed a modular framework for
workload distribution [14]. Further, a single model is split into sub-models and distributed
over multiple resources [15]. From the deep leaning side, a lightweight model is applied for
edge computing. By applying various methods, such as quantization or pruning, a model
can be transformed to the one with a small size and fewer computations [12]. Combined
with cloud technologies, those studies provide methods to enable efficient distribution of
small-sized workloads on edge resources.

One of the drawback of workload distribution is that it may degrade the quality
of service since it needs transmission of data between them. This becomes significant
when it comes to a data intensive application, such as video processing or a large amount
time-series data analysis. From the viewpoint of efficiency, it would be better if a single
workload is located on a single node utilizing as large a resource as it can get. Suppose that
there is an edge resource capable of video analysis processing with 10 fps. To increase the



Sensors 2022, 22, 6717 3 of 17

performance, it can try to optimize the model itself or distribute workloads on multiple
resources to reduce workload for better performance. This paper, on the other hand,
proposes a method to increase the workload with batch inference to maximize the usage of
existing resources. To this end, the batch inference has been applied to the edge resources
to make the optimal use of resources, and then a pipeline architecture for the inference
is designed and implemented to verify the effect of batch processing. To see how those
methods can be used in the actual cloud–edge environment, the proposed method is
implemented as a Docker Container [16] and applied to a Kubernetes [10] cluster which has
heterogeneous nodes from cloud and edge. The results show that the proposed methods
can provide a real-time analysis service with batching.

The contributions of this paper are as follows:

• Batch Inference and Its Management: an algorithm to manage the size of input batch
for an inference. Unlike other cloud technologies that focus on reducing workload
by distribution or scaling, this algorithm is designed to intensify the workload to
the maximum, so to make it able to host one application on a single node to reduce
communication costs between distributed resources in a cluster.

• Optimization of acceleration hardware usage: acceleration hardware is not involved
in the whole inference cycle, and sometimes it may go idle. The authors identify the
process where the acceleration hardware is mostly utilized, and proposed a novel
pipeline structure that is able to optimize the usage of acceleration hardware in the
batch inference process.

• Real-time service constraint: the authors analysed the delays in the inference process
to determine optimal batch size with respect to both resource availability and real-
time constraint.

• The authors demonstrate the proposed method’s performance with the usage of GPU,
memory, and the inference delay on an actual Kubernetes cluster in a testbed. The tools
for deployment, monitoring, and model management of a deep learning container is
implemented, along with a deep learning inference container itself.

The remainder of this paper consists as follows. The background and motives are
presented in Section 2, followed by the related works in Section 3. The details of the design
are presented in Section 4. The experiment results are given in Section 5.

2. Background

As stated in the previous section, this paper focuses on how to manage the size of
batch on inference so as to use resources in an optimized way and how to manage them on
the cloud–edge cluster. Before presenting the proposed methods, a brief description of the
backgrounds is presented in this section.

2.1. Embedded Devices with Acceleration

There are many embedded devices that can be used as an edge resource. The charac-
teristics of embedded edge resources are presented in this subsection.

• Architecture—aarch, aarch64
The embedded systems are not based on the same architecture as resources on the
cloud, but using SoC, such as ARM. Some of them have acceleration hardware module
integrated in SoC.

• Shared memory
Unlike a GPU module used on a PC or workstation, that is an independent device and
has dedicated memory, on embedded systems a GPU module is integrated as an IP
module in an SoC or SoM. The memory is shared for both CPU and GPU modules.
Suppose that a device has 16 GB of memory and the CPU consumes most of it like
15 GB. When GPU tries to assign 2 GB of memory to load a model, this will fail with
an ‘out of memory’ error. So, for embedded systems with acceleration hardware, care
needs to be taken to monitor usage of memory on CPU and GPU.

• Lightweight deep learning (inference) platform



Sensors 2022, 22, 6717 4 of 17

Usually, vendors provide lightweight deep learning platforms for their embedded de-
vices, for example, TensorFlow Lite from Google or TensorRT from Nvidia. The trained
models are transformed to corresponding formats to be used on those platforms, and a
few optimization methods, such as quantization can be applied in this transformation
step. Mostly these kinds of lightweight deep learning platforms provide inferences
only. Actually, TensorFlow Lite supports training but it needs to re-design the model
to train with TensorFlow Lite.

2.2. Pipelining Inference Process

Inference consists of a few processes: pre-processing, inference, and post-processing.
In many cases, the input layer of a deep learning model is not the same as the input data,
and it needs pre-processing of input data to make it fit the input layer of a model—for
example, images need to be resized and transformed to a matrix with fixed dimension to
be fed to a model, such as classification or object detection. The same applies to the output
layer. The output layer emits information that needs to be interpreted—for example, the
data emitted on the output layer of an object detection model, such as Yolo [17], contains
locations, classes, and confidence score of detected objects. Jeong et al. [18] have proposed
pipelining of these processes to optimize the performance of Jetson devices. Though it is
hard to separate those processes as per-clock operations, this pipelining concept is helpful
to identify where major delay causes and to optimize the performance with multi threading
or parallel processing.

Different resources are used on each process according to its operation. For the
inference, the parallel processing capability of a GPU can be utilized, especially when the
model is CNN-based. For the pre-processing and post-processing, CPU is used, unless the
binaries are built to use GPU for specific operations, such as image resizing.

Batch inference can be a good option for optimization on inference process. Instead
of feeding one image to the inference and repeating the next one sequentially, feeding
multiple images at once will make the inference delay shorter. For applying the batch
inference onto a real-time service needs one more consideration. In the batch processing,
the pre-processed inputs are to be held until the batch is ready, which will induce a starting
delay. For example, consider an object detection service from a live video stream with a
batch size of 4. It needs to wait for the first four frames to come when it is started, so with
30 fps it will have around 12 ms of starting delay.

2.3. Cloud–Edge Computing Platform

Edge computing in general is not an antonym or opposite to cloud computing. The
purpose of edge computing is to ease the workloads of cloud by offloading them to edge
resources, so, in edge computing, both cloud and edge work together to provide a service.
In cloud computing, a workload is deployed to a resource from a resource pool that consists
of federated resources. Edge computing is almost the same except that the resource pool
consists of heterogeneous resources. This heterogeneity brings a few more considerations
on edge computing—it needs multiple workload implementation according to the type of
the resource, it needs to decide where (to cloud or edge) to deploy the workload, and it
needs different metrics to monitor various kinds of resources.

The methods that are proposed in this paper leverage market-leading cloud technolo-
gies. To federate resources in a cluster and manage the resources, Kubernetes [19] is utilized.
The Docker container [16] is used to make the application deployable with Kubernetes.
Additionally, Prometheus [20] is used to monitor the resources on both cloud and edge
resources. Details are presented in Section 4.

2.4. Resource Monitoring

After resources (either cloud or edge) are assigned for each workload, it is important
to monitor those resources to see everything works fine. There are two kinds of metrics to
monitor from different perspectives. From the perspective of resource usage, the metrics



Sensors 2022, 22, 6717 5 of 17

can be usage of computing resources such as CPU usage, memory usage, GPU usage, or
storage usage. From another perspective of application, it also needs to ensure that all the
processes meet quality of service requirements. For example, it is important to process the
image in less than 3 ms for a service to process 30 fps real-time image.

The resource usage metric can be optimized with the monitoring results. An appli-
cation container which requires 30% of GPU usage can be deployed to a resource that
has 70% of GPU availability. Or if GPU usage goes higher for example 100% for more
than a specified period of time, a new resource can be assigned for the deployment of the
existing container application. For the second kind of metric, it can be used to monitor and
ensure the quality of service. If the requirements are met (takes more than 3 ms to process a
frame in the above example), it can re-configure the pipeline to increase fps, for example
increasing the batch size or increasing the number of threads for pre-processing.

3. Related Works

There is research on the optimization of a deep learning model for edge resources
based on microservice architecture. Microservice is a software architecture that builds a
service with the combination of loosely-coupled microservices [21,22], and edge resources
are utilized to offload workloads of cloud. Due to the rapid improvement of edge re-
sources [23], many video-processing applications, such as real-time object detection [24]
and surveillance [25], are using edge these days.

Utilization of edge analysis has been popular in IoT technology area. Edge computing
has been applied to process collected data on the edge resources [26]. Then, from the
cloud technology, offloading of AI onto edge resources has been investigated. To make a
model more lightweight, pruning or quantization has been investigated. Song et al. [27]
has proposed pruning to reduce the number of computation and size of a model on deep
learning. Quantization is an effective method to reduce the size of a model. TensorRT [28]
supports quantization of weights from 32-bit to 16-bit, and even to 8-bit. Courbariaux
et al. [29] proposed even further. It builds a model with weights that have only +1, 0, and
−1. Those studies focus on reducing required resource footprint to run the model so that
it can run on restricted resources. The proposed method can work together with those
research. With the lightweight model, there can be more available resources that can be
utilized with the proposed methods.

Workload offloading is another topic on realization of edge computing. Edge AI [30]
proposed a method that partitions Deep Neural Network (DNN) models and distributes
them on the cloud and edge resources. Ko et al. have applied similar model partitioning on
DNN model and distribute them on cloud and edge resources. Jiang et al. also distributed
workloads on cloud and edge resources [31]. JALAD [32] proposed decoupling of the deep
neural network. Goel et al. [33] proposed hierarchical neural network structure that is
suitable for edge resource collaboration. Couper [34] used container technology to locate
sliced model on edge resources with Kubernetes. Those research focuses on distribution of
workloads from cloud to edge resources, with optimization of costs regarding bandwidth
and delay for transfer data between them. The proposed work is different from them since
it focuses on delivering deep learning model as is to an edge resource.

From the viewpoint of pipeline, there is research to provide frameworks to utilize
edge resources. Coello et al. [35] proposed a framework to train a model from image set
and provide model serving with custom API. ALOHA [36] proposed a tool set to train
deep learning model and application design on embedded heterogeneous architectures.
KubeFlow [37] utilizes Kubernetes for building pipeline for training and deployment of
trained model in a container. Jeong et al. [18] defined processes that consist of an inference,
and proposed optimization methods on a Jetson platform. When a model is trained, it
needs to be served. BentoML [38] provides methods to containerize AI model and API
to access the model in it. DLHub [39] is proposed as a model hub to store and retrieve
machine learning models. InferLine [40] proposed a system to meet latency with minimal
cost by using a planner and tuner. PERSEUS [41] is proposed to reduce cost of serving



Sensors 2022, 22, 6717 6 of 17

a model. INFaaS [42,43] proposes a model-less serving with automated model variants
selection on heterogeneous resources. Gillis [44] proposes methods to serve a model with
partitioning. The proposed method provides serving of deep learning inference, but not as
a model serving, but as an inference. The proposed methods encapsulate whole inference
process to minimize latency due to transmission of intermediate data.

Regarding resource monitoring and scheduling, DART [45] proposed scheduling
architecture with data parallelism on heterogeneous resources. Olympian [46] proposed
GPU usage scheduling for deep learning model serving. Mabrook et al. analyzed the
cost of data analysis on edge resources with a container [47]. Additionally, there was a
study that assessed the effect of resources on deep learning model operation [48]. Those
studies focused on the scheduling of resources on a lower level, such as hardware resource
management. Valentino et al. [49] proposed methods to reduce a cost in a practical way.
This paper proposes resource usage on a rather high-level between CPU and GPU, along
with batch inference.

4. Methods

The proposed methods are described in this section. The proposed method consists of
a tool to manage batch size of a running application, and other tools to manage model and
monitor resources. In this section, first how the batch inference configured in an inference
pipeline is presented, followed by the analysis of delays in the batch pipeline to provide
a real-time service. Then, what is needed to deploy the inference pipeline in an actual
edge resources are presented, including containerization method, model management, and
resource monitoring.

Before going into details of them, the use cases and definition of edge that is used in
them for clarity here.

• Use case #1: non real-time object detection
The first use case is an object detection service from a video stream. It selects a few
frames from a video stream and build a batch of predefined batch size. The batch
input are fed to the inference and the results will be parsed in the post-processing.
This use case is suitable for the scenarios with less strict real-time requirements, such
as detection of diseases of a plant or detection of weight of a livestock.

• Use case #2: real-time object detection
The second use case is almost the same as the first one, except the real-time requirement.
It processes all the frames from video input, and generate the output in real-time. A
good example of this use case is the surveillance service that needs to detect something
right away.

• Edge device and its location
Here, an edge refers a device that is an embedded device with acceleration hardware.
Nvidia Xavier or Google TPU is a good example of an edge device that is used in this
paper. Additionally, the location of edge is not on the cloud, but on-site. These are just
to assume a kind of extreme edge configuration.

The authors have applied the proposed method on the second use case, to validate the
methods are useful to provide a deep-learning based real-time inference service. For a real-
time video analysis service, lagging is quite a common problem on resource-constrained
edge resources. If the previous frame processing is not completed until the next frame
arrives, the output will be lagged and not able to provide a real-time service. Figure 2
depicts this problem: if the inference processing delay becomes bigger than the time
between two consecutive frames, the output is to be lagged. Here in this paper, authors
have identified a major cause of the lagging, which is the acceleration hardware is not fully
utilized. If the inference pipeline can be optimized to increase acceleration hardware usage,
the inference delay can be reduced accordingly.

This Chapter consists as follows. Section 4.1 explains how the authors identified
resource-intensive processes that consist of an inference and a pipeline architecture to
optimize resource usage with batch processing. To avoid the lagging problem, the batch



Sensors 2022, 22, 6717 7 of 17

size needs to be decided with respect to the time to build a batch input, and Section 4.2
presents the analysis of those two variables and identifies constraints on batch size for
real-time video analysis service. The remainder of this Chapter presents architecture to
manage batch size on an edge cluster. In Section 4.3, the author’s previous work on model
containerization is introduced briefly, followed by model management for on-the-fly model
update, and resource monitoring in Section 4.4 and Section 4.5, respectively.

Figure 2. Real-time video analysis application. If inference processing delay is bigger than the time
between two consecutive frames, the output will be lagged.

4.1. Pipelining Inference Process with Batch Processing

As described in Section 2, the inference consists of three processes: pre-processing,
inference, and post-processing. A very simple implementation to process a video would be
adding a for or while loop on top of the sequence. The process is depicted in Figure 3a.
Here, the whole processes are iterated in sync with frame inputs. So when the second frame
comes, it has to wait until the completion of the first frame, which will generate additional
delay. Moreover, the resources are not used efficiently. Note the gap between the end of
first frame inference and the start of second frame in the figure. During that period only
CPU are engaged to the computation, and GPU will be idle.

In this paper, the authors propose to turn this sequence into a pipeline that consists
of processes using GPU and CPU. In the proposed pipeline, the inference process uses
GPU while the other process uses CPU. However, unlike the pipeline in the computer
architecture, those processes are not easy to be isolated since it is a more high level operation
than a CPU operation. So, in the proposed method, a queue is added between each process
to separate them from each other. This structure is depicted in Figure 3b. You can see the
input and output queue inserted between pre-processing and inference, and inference and
post-processing, respectively.

The proposed inference flow is presented in Figure 3c. For simplicity, only the input
queue is depicted in the figure. Here, the pre-processing puts the pre-processed input
to the input queue. The inference process fetches the input from the queue and do the
inference. If the pre-processing is faster than the inference, there will be always data to pop
in the queue, which will make the full use of the GPU usage for inference. In the figure,
inference fetches new data as soon as it completes previous computation. This will help
optimization of GPU usage—compare the figure with Figure 3a, which has a huge gap
where GPU resource is idle. Further, the authors propose to add batch concept to each
queue. An input batch is fetched from the queue to the inference module when the input
size matches the size of batch.

4.2. Considerations on Batch Size, Delay, and Real-Time Constraint

Obviously, the batch inference will reduce the time to process data since it needs only
one inference for a batch of input data. However, the pre-processing needs to wait some
additional time to acquire inputs to build a batch. In this section, the relationship between
the delays induced by each process, including batch inference, to provide a real-time video
analysis service is presented.

In sequential processing, the total delay for processing an input is sum of pre-processing
delay (dpre), inference delay(din f er), and post-processing delay(dpost).

dseq = dpre + din f er + dpost (1)



Sensors 2022, 22, 6717 8 of 17

(a)

(b)

(c)
Figure 3. Inference pipelines. (a) Sequential processing of a video input. (b) Pipeline of sequential
processing. Each process is separated with a queue. (c) Batch inference pipeline. Input data are
stacked on a queue, and inference fetches a batch of images. Lined boxes refer processes that make
use of GPU while dotted boxes refer those of CPU.

Additionally, the processing delay of multiple inputs with sequential processing can
be calculated with the following equation, where N denotes a number of images.

dmul_seq = N × dseq (2)

Let us take a look on batch processing delay. For a batch processing, images are to be
collected until batch size Nbatch, and then pre-processed. In this case, the pre-processing
delay will be dpre ∗ Nbatch. The batch inference will generate an additional delay which
depends on the size of batch, which is denoted as dbatch_in f . The post-processing delay
is a little bit different. It can be assumed that post-processing delay would be the same
of that of pre-processing, which is N times of single post-processing delay. However,
unlike the pre-processing, where all the parameters such as size of the image or array are
consistent, the computational load of post-processing varies due to the model structure.
For example, in object detection model, such as Yolo, the post-processing processes data
from the output layer of a model to find classes, confidence, and location of the detected
objects in the image. If there are many detected objects in an input image, this will take
longer. If there is no detected objects then this post-processing will do nothing. Thus,
the delay of post-processing in batch dbatch_post inference should be treated independent
from dpost. Considering these delays, batch processing delay can be represented as the
following equation.

dbatch = Nbatch × dpre + dbatch_in f er + dbatch_post (3)

The idea is that dbatch is to be equal or less than the dmulseq since it uses parallel
processing capabilities of hardware acceleration. The test results verify this idea, which is
given in the next section.

There is one more consideration if the service is to process data in real-time. It needs
to be able to process input data before the next input data arrives to support a real-time
processing of continuous data input. Suppose that we have a video input with 30 fps. To



Sensors 2022, 22, 6717 9 of 17

avoid frame drop or lagging, each frame needs to be processed in 1/30 s. Additionally, the
condition for real-time processing with respect to delay can be presented as follows.

tinterval < dseq, for single data processing, (4)

tinterval × Nbatch < dbatch, for batch processing. (5)

4.3. Containerization of a Model and Its Application

To make it able to deliver a batca inference application, the Docker container is
leveraged in the proposed method. As presented in Section 3, Container is widely used
for deployment of various Machine Learning applications. Here, the proposed method
is implemented as a container, with APIs to manage the batch size for the optimization
of resource usage. The authors have proposed a containerized AI microservice [50] that
exposes APIs to access the AI methods in it. Here, that container method is extended to
provide one additional interface to manage batch size.

4.4. Management of Models with Different Batch Size and Live Model Update

Batching is a kind of standard procedure for the training a model, but it is not quite
popular in inference or prediction. Actually, there are a few literatures describing using
batch for the inference, but many of them do not refer to methods that utilize parallel
processing of GPU devices. Some of them utilize multiple inference threads for the batching,
which can affected by the operating system. Some of them refer to loops or even use only
the CPU. To eliminate the effects of resource usage other than GPU’s parallel processing for
batch inference, in this paper the authors built each model that has a different size of input
layer with respect to the batch size. For example, if a model has 128 × 1 size of input, a
model with batch_size = 2 will have 2 × 128 × 1 input layer.

The proposed method is to manage the batch size according to the resource availability,
and it needs to update the model to a new one with new batch size when it is changed. The
proposed method includes a tool for this model update. The AI Model Repository (AMR)
stores a trained model with specific metadata, including model name, model version, and
size of batch, and supports query and retrieval of the model. This can help reduce service
downtime due to model substitution. The containerization API to change a batch size
mentioned in Section 4.3 will communicate with AMR to retrieve a model with a new
batch size.

4.5. Edge Resource Monitoring and Optimization

This subsection describes the monitoring of GPU resources, and optimization of
resource usage combining the components described in the previous sections. This paper
describes optimization of GPU resources. For the monitoring of GPU resource usage, it
depends on the libraries and APIs that are provided by the device vendor. Nvidia provides
APIs to find the usage of their own GPU devices such as nvidia_smi or tegra_stats
for Tegra-based devices. When the usage of a GPU is measured, it needs to be collected
for monitoring. Prometheus is a monitoring tool for resource usage and very flexible to
adopt various metrics. The proposed method in this paper leverages those technologies to
monitor resource and configure batch size accordingly.

Figure 4 depicts the architecture of the proposed management that consists of the four
major modules deployed in the following resources.

• Edge Resource: A Resource Usage Collector (RUC) is running on an Edge resource, to
collect the resource usage, mostly of GPU, and transfer the collected usage information
to Resource Usage Monitor (RUM). A RUC provides a few configuration variables,
including target resource, units, and their collecting frequencies. For example, an RUC
can be configured to monitor GPU resource usage in percent for every five seconds.

• Edge Usage Optimization Service: Resource Usage Monitor (RUM) retrieves collected
resource usage data from each edge resource. Basically, this RUM is a database. The



Sensors 2022, 22, 6717 10 of 17

Adaptive Batch Controller (ABC) retrieves the collected data from RUM and decides
the new batch size for each AI application running on an Edge resource. The new
batch size is then transmitted to an AI application to invoke loading of a new model
with a new batch size.

• AI Model Repository: This AI Model Repository (AMR) is a file-based database of AI
model files. It stores models that have the same network with different batch size. It
provides a query API with model name, version, and batch size to make it able to find
and download a model of interest.

Figure 4. Structure of the proposed architecture.

One of the important parts of the proposed method is how to decide a batch size.
The batch size needs to be selected with caution to prevent bottlenecks and reduce service
downtime. In the proposed method it takes three considerations on batch size decision—
available memory for GPU, GPU usage, and real-time criteria. The last one is more related
to the application level metric, rather than the resource metric. Suppose that only resource
metrics are used in batch size decision. In this case, it will try to reduce the batch size
when GPU consumption hits 100%. However, in the proposed method it keeps batch size
as is as long as the real-time criteria is met (Equation (5)). The algorithm is presented in
Algorithm 1. The algorithm takes considerations from perspectives of both resource and
application metrics. First, it sees whether the real-time criteria is met (line 5) and try to
increase the batch size. If it has available resources, it grants the new batch size (line 9). If
the memory is not sufficient to load a new batch size model, it will stay the same batch size
(line 12), or the current batch size cannot guarantee the real-time criteria, it will decrease
the batch size (line 15).



Sensors 2022, 22, 6717 11 of 17

Algorithm 1 : Batch Size Decision

1: Data: BatchSizeArray[N] // An array that stores batch size
2: for each processing do
3: Collect resource usage and store it to mem_used
4: Collect processing delay and store it to delay
5: if delay < real time criteria and n < N then
6: temp_batch_size = BatchSizeArray[n + 1]
7: break
8: if mem_used < mem_threshold_ratio then
9: new_batch_size = temp_batch_size

10: break
11: else
12: continue
13: end if
14: else
15: new_batch_size = BatchSizeArray[n − 1] unless new_batch_size is non-negative
16: end if
17: end for
18: if new_batch_size then
19: Break and load new model with new batch size
20: end if

5. Experiments and Results

The proposed work is implemented on a testbed for validation. The implementation
was completed on actual devices and applications to provide more ready-to-adopt tech-
nology, rather than proposing laboratory level proof-of-concept. The actual cluster that
consists of both cloud and bare-metal edge resources is implemented as follows. First,
the resources—a virtual machine (Cloud RSC) in Azure cloud platform and three edge
resources are prepared. The first edge resource (Edge RSC #1) is a baremetal device with
Intel i7 CPU, 32 GB memory and Nvidia 2080ti GPU (16 GB dedicated memory), and the
other two resources (Edge RSC #2 and #3) are Nvidia AGX Xavier developer kits, which
has Tegra-based ARM module with 32GB shared memory and 32 GB internal storage.
The storage is extended to 1 TB with NVME m.2 SSD. All the resources are running on
Ubuntu 18.04. To provide cloud-native environment, a Kubernetes cluster that consists of
those resources is constructed. Kubernetes version 1.22.4 are employed in the construction
of the cluster.

Software is prepared according to the architecture depicted in Figure 4. Two containers—
one for AI Application and the other one for Resource Usage Collector—are built. The AI
Application provides object detection deep learning service with Yolo v4 models. The Yolo
v4 application is containerized in a container, which provides RESTful interfaces for the
management of batch_size. The interface definitions follow the previous work [50].

For the RUC and RUM, the Prometheus is used. RUC is a container that is an instance
of Node Exporter of Prometheus, while RUM is an instance of Prometheus Server. The
metrics of RUC are configured for the GPU and Memory usage. Note that, for Edge RSC #2
and #3, which are embedded ARM SoC devices, the memory is shared between GPU and
CPU. RUC is built as two containers with respect to the architecture (AMD container for
Edge RSC #1 and ARM container for the others) and deployed on the Kubernetes cluster
with DaemonSet resource. The RUM is installed on a Cloud RSC. Prometheus exporters
are configured to collect GPU resource usage and memory used by GPU every second.

AMR is implemented as a file database, based on GridFS. It provides an API to store
a model with the model name, model version, and size of batch, and another API that
queries a model with the same arguments and downloads it. AMR is installed on a VM on
MS Azure cloud instance.



Sensors 2022, 22, 6717 12 of 17

The algorithm is implemented in ABC. It reads the collected metrics from PromQL
database of Prometheus in RUM, decides a new batch size and call the API of AI Application
deployed on the cluster.

To manage of deployment of a container to a node in a cluster, a Container Deployment
Service (CDS) is implemented. It provides a GUI that displays the nodes in a cluster and
container images in a container repository, and supports drag-and-drop user interfaces for
the deployment of a container to a specific node, along with a button to call the APIs of the
deployed container.

Figure 5 depicts the configuration of the actual testbed, and Figure 6 depicts imple-
mentation of CDS.

Figure 5. Testbed Configuration.

Figure 6. GUI of CDS.

The AI container works as follows. It loads the default model (with batch size = 1)
when it is initiated, and loads a sample video file then applies the input to the Yolo v4



Sensors 2022, 22, 6717 13 of 17

model. The metric (GPU and memory usage) is collected and transmitted with RUC. ABC
decides the new batch size based on the proposed algorithm and transmits the value to the
running containers. When a new batch size is received from ABC, it loads a model with
new batch size from AMR, and then applies the same sample video file.

The model files are prepared with batch sizes 1, 2, 4, 8, and 16. Each model is built from
the same Yolo v4 model with extended input layer to match the batch size and transformed
to a TensorRT model.

Table 1 shows the delay measured on AGX Xavier Edge Resources with batch size con-
figurations 1, 2, 4, 8, and 16. The video input used was a video file with 1080 × 720 resolution,
encoded with H.264 and AAC codecs in 30 fps. The delay for each step (pre-processing,
inference, and post-processing) are tracked for different batch sizes from 1 to 16. The delay
of processing batch inputs in each process is given on the first, second, and third rows.
Total delay for a single batch processing is given on the fourth row. As given in Equation (3)
in Section 4.2, it can be seen that the pre-processing delays are increased almost linearly
proportional to the batch size, while the inference delay is not linearly proportional due
to parallel processing of GPU or hardware accelerator. For the post-processing which the
number of detected objects has more effect than the number of images, does not relative
to the batch size. On the fifth and last row of the same table, the real-time constraints
can be found. The fifth column shows real-time conditions to build and process a batch.
For example, to build a batch with size 4, it needs 0.1333 s. In other words, to process a
batch with size 4 in real-time, it needs to be able to process it within 0.1333 s. The table
shows how much margin can be provided for real-time processing with different batch
sizes. The results of the same test on Edge RSC #1 are given on Table 2. Since it has more
powerful acceleration device, the table shows that more margin for real-time processing is
guaranteed with batch processing.

Table 1. Delays and real-time constraints on a Xavier.

Batch Size 1 2 4 8 16

Pre-processing 0.004 0.007 0.013 0.026 0.051
Inference 0.021 0.031 0.058 0.107 0.211
Post-processing 0.003 0.004 0.008 0.014 0.027
Total batch delay 0.031 0.048 0.089 0.166 0.324
Real-time condition 0.033 0.067 0.133 0.267 0.533
Real-time margin 0.002 0.019 0.044 0.101 0.209

Table 2. Delays and real-time constraints on a 2080 ti.

Batch Size 1 2 4 8 16

Pre-processing 0.003 0.006 0.013 0.027 0.053
Inference 0.003 0.005 0.01 0.017 0.035
Post-processing 0.001 0.002 0.003 0.006 0.009
Total batch delay 0.011 0.021 0.042 0.82 0.163
Real-time condition 0.033 0.067 0.133 0.267 0.533
Real-time margin 0.011 0.046 0.091 0.185 0.370

As the effect of the batch inference has been identified with the experiment, the
algorithm has been applied to the testbed. It reads the GPU usage within last one minute
from PromQL of the RUM, and then decide the new batch size with respect to the available
resources. However, even the proposed work utilized on-the-fly model change, which has
much less delay than re-deploying a new container, it was found that the interruption of a
service due to this model change is significant.

The usage of GPU resource and memory resources are depicted in Figure 7 and
Figure 8, respectively. Figure 7 shows different GPU usage pattern according to the batch
size. With smaller batch size, the individual GPU consumption ratio is rather low, and



Sensors 2022, 22, 6717 14 of 17

GPU consumption occurs very frequently, as can be seen on the left side of the figure. As
the batch size grows, the individual GPU consumption ratio goes high. It can be found
that almost all the batch inference consumes more than 90% of the resource. However, the
consumption occurs less frequently. With the batch size = 16, it becomes very sparse. Note
that the gaps between each batch size change. This gap is the service downtime that is
induced by a model change. In our experiment, it took less than 25 s to download a model
from AMR and load it onto memory. The size of model is 174 MB. This delay is way less
than the delay from re-deploying a new container. In our testbed it took more than one
minute to stop and reload a GPU container, even the container is pre-downloaded.

The memory consumption is depicted in Figure 8. It can be seen that the memory used
by GPU is increased as the batch size increases.

Figure 7. GPU resource usage with different batch size.

Figure 8. Memory consumption of GPU with different batch size.

6. Conclusions

In this paper, the authors propose a method to optimize usage of edge resources on
running a deep learning application with batch inference. The goal of the proposed method
is to optimize usage of edge resources by changing batch size with respect to the available
resources. If the resource is available, increase the size of batch, if not then decrease the size
of batch. To enable batch size configuration, the processes of which consists an AI inference
application and how the resources are used are identified, followed by analysis of delay on
an inference application.

The proposed method consists of a few components to realize optimization of edge re-
source usage. First it needs to know how much resources are available. RUM is responsible



Sensors 2022, 22, 6717 15 of 17

for this collecting of resource usage. The decision to change batch size is made in ABC, and
a request to change batch size is transmitted to the AI application container on an Edge
resource. To enable handling of batch size change, an AI container structure with RESTful
APIs are proposed along with AMR which stores and provide models with different batch
sizes. Upon receiving the request, the AI application stops running current task, download
a model with a new batch size from AMR, and resume the task.

The proposed method is implemented on a testbed, with actual cloud and edge
resources. Edge resources includes an embedded device, Nvidia AGX Xavier, to verify
that the proposed method can be applied to more practical use case in smart factory or
smart farm. A real-time object detection is chosen for the use case to see the effect of model
change. For the test, TensorRT platform is used for the inference engine, with Yolo v4
model. Each model with a batch size is built to have different size of input to fit the size of
batch and then transformed to TensorRT models. This is to reduce effects from processes
other than batch inference.

The result shows that the usage of an edge resource can be optimized with the pro-
posed method. By changing the size of the batch with respect to the available resources, it
can increase the usage of it to the optimum level. The proposed method enables real-time
processing on an edge resources, on the condition that it has sufficient resources to process
a batch input. Two perspectives from resource and application level metrics are used on
batch size decision, which makes it able to use the resources to the limit as long as it meets
the real-time criteria, which is the time earned by building a batch. Further, the results
show that the service downtime due to model substitution can be reduced with on-the-fly
update of a model, with the help of AMR. The proposed method can enhance utilization of
Edge resource on various services when it is combined to the model optimization, such as
pruning or binarization.

In the future, the authors plan to apply enhance the adaptive batch size decision by
applying deep learning algorithms. The empirical resource usage data collected on the
proposed RUM can be considered as a time-series data of resource utilization, which is
a valuable asset to analyze and predict workload of various AI or deep-leaning based
inference applications. The batch size decision can be improved for the accuracy when
more data are collected and applied to a deep learning algorithm for time-series analysis.
Further, more applications other than object detection will be applied and distribution of
workload on multiple edges are to be investigated.

Author Contributions: Conceptualization, S.K. and J.M.; methodology, S.K.; software, S.K., J.M., S.O.
and J.Y.; validation, J.Y. and S.O.; writing—original draft preparation, S.K.; writing—review and
editing, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2021-0-01578, Smart
Farm Platform for high-quality and traceable yield. A multi-purpose DDS based on proximal and
remote sensing).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NVIDIA Jetson Platforms. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

(accessed on 18 July 2022).
2. Google Coral. Available online: https://coral.ai (accessed on 18 July 2022).
3. Tsaramirsis, G.; Kantaros, A.; Al-Darraji, I.; Piromalis, D.; Apostolopoulos, C.; Pavlopoulou, A.; Alrammal, M.; Ismail, Z.; Buhari,

S.M.; Stojmenovic, M.; et al. A Modern Approach towards an Industry 4.0 Model: From Driving Technologies to Management. J.
Sens. 2022, 2022, 5023011. [CrossRef]

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://coral.ai
http://doi.org/10.1155/2022/5023011


Sensors 2022, 22, 6717 16 of 17

4. Ying, Z.; Ahmad, I.; Mateen, S.; Zia, A.; Ambreen; Nazir, S.; Mukhtar, N. An Overview of Computational Models for Industrial
Internet of Things to Enhance Usability. Complexity 2021, 2021, 5554685. [CrossRef]

5. Liang, F.; Zhou, Y.; Chen, X.; Liu, F.; Zhang, C.; Wu, X. Review of Target Detection Technology based on Deep Learning. In
Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence, Sanya, China, 14–16 January
2021; pp. 132–135. [CrossRef]

6. Hou, D.; Liu, T.; Pan, Y.T.; Hou, J. AI on edge device for laser chip defect detection. In Proceedings of the 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference, CCWC 2019, Las Vegas, NV, USA, 7–9 January 2019; pp. 247–251.
[CrossRef]

7. Qi, S.; Yang, J.; Zhong, Z. A Review on Industrial Surface Defect Detection Based on Deep Learning Technology. In Proceedings
of the 2020 The 3rd International Conference on Machine Learning and Machine Intelligence, Hangzhou, China, 18–20 September
2020. [CrossRef]

8. Larsson, L.; Gustafsson, H.; Klein, C.; Elmroth, E. Decentralized Kubernetes Federation Control Plane. In Proceedings of the
2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 7–10 December 2020;
pp. 354–359. [CrossRef]

9. Awada, U.; Zhang, J.; Chen, S.; Li, S. AirEdge: A Dependency-Aware Multi-Task Orchestration in Federated Aerial Computing.
IEEE Trans. Veh. Technol. 2022, 71, 805–819. [CrossRef]

10. Toka, L.; Dobreff, G.; Fodor, B.; Sonkoly, B. Machine Learning-Based Scaling Management for Kubernetes Edge Clusters. IEEE
Trans. Netw. Serv. Manag. 2021, 18, 958–972. [CrossRef]

11. Han, Y.; Shen, S.; Wang, X.; Wang, S.; Leung, V.C. Tailored Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud
System. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada,
10–13 May 2021; pp. 1–10. [CrossRef]

12. Hadidi, R.; Cao, J.; Xie, Y.; Asgari, B.; Krishna, T.; Kim, H. Characterizing the Deployment of Deep Neural Networks on
Commercial Edge Devices. In Proceedings of the 2019 IEEE International Symposium on Workload Characterization, IISWC 2019,
Orlando, FL, USA, 3–5 November 2019; pp. 35–48. [CrossRef]

13. Tuli, S.; Basumatary, N.; Buyya, R. EdgeLens: Deep Learning based Object Detection in Integrated IoT, Fog and Cloud Computing
Environments. In Proceedings of the 2019 4th International Conference on Information Systems and Computer Networks,
ISCON 2019, Mathura, India, 21–22 November 2019; pp. 496–502. [CrossRef]

14. Vater, J.; Schlaak, P.; Knoll, A. A Modular Edge-/Cloud-Solution for Automated Error Detection of Industrial Hairpin Weldings
using Convolutional Neural Networks. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications
Conference, COMPSAC 2020, Madrid, Spain, 13–17 July 2020; pp. 505–510. [CrossRef]

15. Hou, X.; Guan, Y.; Han, T.; Zhang, N. DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge
Devices. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France,
30 May–3 June 2022; pp. 1097–1107. [CrossRef]

16. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
17. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
18. Jeong, E.; Kim, J.; Ha, S. TensorRT-based Framework and Optimization Methodology for Deep Learning Inference on Jetson

Boards. ACM Trans. Embed. Comput. Syst. 2022. [CrossRef]
19. Mao, Y.; Fu, Y.; Gu, S.; Vhaduri, S.; Cheng, L.; Liu, Q. Resource Management Schemes for Cloud-Native Platforms with Computing

Containers of Docker and Kubernetes. arXiv 2020, arXiv:2010.10350.
20. Rabenstein, B.; Volz, J. Prometheus: A Next-Generation Monitoring System (Talk); USENIX Association: Dublin, Ireland, 2015.
21. Knoche, H.; Hasselbring, W. Using Microservices for Legacy Software Modernization. IEEE Softw. 2018, 35, 44–49. [CrossRef]
22. Sill, A. The Design and Architecture of Microservices. IEEE Cloud Comput. 2016, 3, 76–80. [CrossRef]
23. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A

Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 869–904. [CrossRef]
24. Grulich, P.M.; Nawab, F. Collaborative edge and cloud neural networks for real-time video processing. Assoc. Comput. Mach.

2018, 11, 2046–2049. [CrossRef]
25. Mudassar, B.A.; Ko, J.H.; Mukhopadhyay, S. Edge-cloud collaborative processing for intelligent internet of things: A case study on

smart surveillance. In Proceedings of the 55th Annual Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018.
[CrossRef]

26. Dey, S.; Mukherjee, A. Implementing Deep Learning and Inferencing on Fog and Edge Computing Systems. In Proceedings of
the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens,
Greece, 19–23 March 2018; pp. 818–823. [CrossRef]

27. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and
Huffman Coding. arXiv 2015, arXiv:1510.00149.

28. TensorRT. Available online: http://https://developer.nvidia.com/tensorrt (accessed on 18 July 2022).
29. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks

with Weights and Activations Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

http://dx.doi.org/10.1155/2021/5554685
http://dx.doi.org/10.1145/3448218.3448234
http://dx.doi.org/10.1109/CCWC.2019.8666503
http://dx.doi.org/10.1145/3426826
http://dx.doi.org/10.1109/UCC48980.2020.00056
http://dx.doi.org/10.1109/TVT.2021.3127011
http://dx.doi.org/10.1109/TNSM.2021.3052837
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488701
http://dx.doi.org/10.1109/IISWC47752.2019.9041955
http://dx.doi.org/10.1109/ISCON47742.2019.9036216
http://dx.doi.org/10.1109/COMPSAC48688.2020.0-202
http://dx.doi.org/10.1109/IPDPS53621.2022.00110
http://dx.doi.org/10.1145/3508391
http://dx.doi.org/10.1109/MS.2018.2141035
http://dx.doi.org/10.1109/MCC.2016.111
http://dx.doi.org/10.1109/COMST.2020.2970550
http://dx.doi.org/10.14778/3229863.3236256
http://dx.doi.org/10.1145/3195970.3196036
http://dx.doi.org/10.1109/PERCOMW.2018.8480168
http://https://developer.nvidia.com/tensorrt


Sensors 2022, 22, 6717 17 of 17

30. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing.
IEEE Trans. Wirel. Commun. 2020, 19, 447–457. [CrossRef]

31. Jiang, Z.; Chen, T.; Li, M. Efficient Deep Learning Inference on Edge Devices. In Proceedings of the SysML’18, Stanford, CA, USA,
15–16 February 2018.

32. Li, H.; Hu, C.; Jiang, J.; Wang, Z.; Wen, Y.; Zhu, W. JALAD: Joint Accuracy-And Latency-Aware Deep Structure Decoupling
for Edge-Cloud Execution. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS), Singapore, 11–13 December 2018; pp. 671–678. [CrossRef]

33. Goel, A.; Tung, C.; Hu, X.; Thiruvathukal, G.K.; Davis, J.C.; Lu, Y.H. Efficient Computer Vision on Edge Devices with Pipeline-
Parallel Hierarchical Neural Networks. In Proceedings of the 2022 27th Asia and South Pacific Design Automation Conference
(ASP-DAC), Taipei, Taiwan, 17–20 January 2022; pp. 532–537. [CrossRef]

34. Hsu, K.J.; Bhardwaj, K.; Gavrilovska, A. Couper: DNN model slicing for visual analytics containers at the edge. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, Arlington, VA, USA, 7–9 November 2019; pp. 179–194. [CrossRef]

35. Coello, C.; Sanchez, R.; de Lange, S.; Halvorsen, J.; Bertani-Økland, M.; Myrvang, V.; Heitmann, S. Workflowfor training and
serving deep learning models for image classification and object detection—Application to fault detection on electric poles.
In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Geneva,
Switzerland, 20–23 September 2021; pp. 1440–1444. [CrossRef]

36. Meloni, P.; Loi, D.; Busia, P.; Deriu, G.; Pimentel, A.D.; Sapra, D.; Stefanov, T.; Minakova, S.; Conti, F.; Benini, L.; et al. Optimization
and deployment of CNNs at the Edge: The ALOHA experience. In Proceedings of the 16th ACM International Conference on
Computing Frontiers, Alghero, Italy, 30 April–2 May 2019; pp. 326–332. [CrossRef]

37. KubeFlow. Available online: http://www.kubeflow.org (accessed on 18 July 2022).
38. BentoML. Available online: https://github.com/bentoml/BentoML (accessed on 18 July 2022).
39. Li, Z.; Chard, R.; Ward, L.; Chard, K.; Skluzacek, T.J.; Babuji, Y.; Woodard, A.; Tuecke, S.; Blaiszik, B.; Franklin, M.J.; et al. DLHub:

Simplifying publication, discovery, and use of machine learning models in science. J. Parallel Distrib. Comput. 2021, 147, 64–76.
[CrossRef]

40. Crankshaw, D.; Sela, G.E.; Mo, X.; Zumar, C.; Stoica, I.; Gonzalez, J.; Tumanov, A. InferLine: Latency-aware provisioning
and scaling for prediction serving pipelines. In Proceedings of the 11th ACM Symposium on Cloud Computing, Virtual,
19–21 October 2020; pp. 477–491. [CrossRef]

41. Lemay, M.; Li, S.; Guo, T. PERSEUS: Characterizing Performance and Cost of Multi-Tenant Serving for CNN Models. In
Proceedings of the 2020 IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 21–24 April 2020;
pp. 66–72. [CrossRef]

42. Romero, F.; Li, Q.; Yadwadkar, N.J.; Kozyrakis, C. INFaaS: A Model-less and Managed Inference Serving System. arXiv 2019,
arXiv:1905.13348.

43. Yadwadkar, N.J.; Romero, F.; Li, Q.; Kozyrakis, C. A Case for Managed and Model-less Inference Serving. In Proceedings of the
Workshop on Hot Topics in Operating Systems, Bertinoro, Italy, 13–15 May 2019; pp. 184–191. [CrossRef]

44. Yu, M.; Jiang, Z.; Ng, H.C.; Wang, W.; Chen, R.; Li, B. Gillis: Serving large neural networks in serverless functions with automatic
model partitioning. In Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
Washington, DC, USA, 7–10 July 2021; pp. 138–148. [CrossRef]

45. Xiang, Y.; Kim, H. Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference. In Proceedings of the 2019
IEEE Real-Time Systems Symposium (RTSS), Hong Kong, China, 3–6 December 2019; pp. 392–405. [CrossRef]

46. Hu, Y.; Rallapalli, S.; Ko, B.; Govindan, R. Olympian: Scheduling GPU usage in a deep neural network model serving system. In
Proceedings of the 19th International Middleware Conference, Rennes, France, 10–14 December 2018; pp. 53–65. [CrossRef]

47. Al-Rakhami, M.; Alsahli, M.; Hassan, M.M.; Alamri, A.; Guerrieri, A.; Fortino, G. Cost efficient edge intelligence framework
using docker containers. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th
Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 792–799.

48. Verucchi, M.; Brilli, G.; Sapienza, D.; Verasani, M.; Arena, M.; Gatti, F.; Capotondi, A.; Cavicchioli, R.; Bertogna, M.; Solieri, M. A
Systematic Assessment of Embedded Neural Networks for Object Detection. In Proceedings of the IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, Vienna, Austria, 8–11 September 2020; pp. 937–944. [CrossRef]

49. Armani, V.; Faticanti, F.; Cretti, S.; Kum, S.; Siracusa, D. A Cost-Effective Workload Allocation Strategy for Cloud-Native Edge
Services. arXiv 2021, arXiv:2110.12788. https://doi.org/10.48550/ARXIV.2110.12788.

50. Kum, S.; Kim, Y.; Siracusa, D.; Moon, J. Artificial Intelligence Service Architecture for Edge Device. In Proceedings of the 2020
IEEE 10th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany, 9–11 November 2020; pp. 1–3.
[CrossRef]

http://dx.doi.org/10.1109/TWC.2019.2946140
http://dx.doi.org/10.1109/PADSW.2018.8645013
http://dx.doi.org/10.1109/ASP-DAC52403.2022.9712574
http://dx.doi.org/10.1145/3318216.3363309
http://dx.doi.org/10.1049/icp.2021.1557
http://dx.doi.org/10.1145/3310273.3323435
http://www.kubeflow.org
https://github.com/bentoml/BentoML
http://dx.doi.org/10.1016/j.jpdc.2020.08.006
http://dx.doi.org/10.1145/3419111.3421285
http://dx.doi.org/10.1109/IC2E48712.2020.00014
http://dx.doi.org/10.1145/3317550.3321443
http://dx.doi.org/10.1109/ICDCS51616.2021.00022
http://dx.doi.org/10.1109/RTSS46320.2019.00042
http://dx.doi.org/10.1145/3274808.3274813
http://dx.doi.org/10.1109/ETFA46521.2020.9212130
http://dx.doi.org/10.1109/ICCE-Berlin50680.2020.9352184

	Introduction
	Background
	Embedded Devices with Acceleration
	Pipelining Inference Process
	Cloud–Edge Computing Platform
	Resource Monitoring

	Related Works
	Methods
	Pipelining Inference Process with Batch Processing
	Considerations on Batch Size, Delay, and Real-Time Constraint
	Containerization of a Model and Its Application
	Management of Models with Different Batch Size and Live Model Update
	Edge Resource Monitoring and Optimization

	Experiments and Results
	Conclusions
	References

