
Citation: Wang, P.; Jiang, Y.

Transportation Mode Detection Using

Temporal Convolutional Networks

Based on Sensors Integrated into

Smartphones. Sensors 2022, 22, 6712.

https://doi.org/10.3390/s22176712

Academic Editor: Andrey V. Savkin

Received: 16 August 2022

Accepted: 1 September 2022

Published: 5 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Transportation Mode Detection Using Temporal Convolutional
Networks Based on Sensors Integrated into Smartphones
Pu Wang * and Yongguo Jiang

College of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
* Correspondence: wangpu@stu.ouc.edu.cn

Abstract: In recent years, with the development of science and technology, people have more
and more choices for daily travel. However, assisting with various mobile intelligent services
by transportation mode detection has become more urgent for the refinement of human activity
identification. Although much work has been done on transportation mode detection, accurate
and reliable transportation mode detection remains challenging. In this paper, we propose a novel
transportation mode detection algorithm, namely T2Trans, based on a temporal convolutional
network (i.e., TCN), which employs multiple lightweight sensors integrated into a phone. The feature
representation learning of multiple preprocessed sensor data using temporal convolutional networks
can improve transportation mode detection accuracy and enhance learning efficiency. Extensive
experimental results demonstrated that our algorithm attains a macro F1-score of 86.42% on the
real-world SHL dataset and 88.37% on the HTC dataset, with an average accuracy of 86.37% on the
SHL dataset and 89.13% on the HTC dataset. Our model can better identify eight transportation
modes, including stationary, walking, running, cycling, car, bus, subway, and train, with better
transportation mode detection accuracy, and outperform other benchmark algorithms.

Keywords: deep learning; temporal convolutional networks; activity recognition; transportation
mode detection

1. Introduction

In recent years, transportation mode detection has many new applications in all aspects
of daily human life [1–3]. For example, identification of detailed human environment
in the field, carbon footprint calculation [4], and mining population flow patterns [5].
Smartphones have been inseparable from people, and many mobile phone models have
now been equipped with various sensors, which can provide rich sensor data.

The IMU data can be accessed passively via the operating system or app and can be
applied to research on reducing carbon dioxide production, uncovering population move-
ment patterns, designing energy-efficient transport systems, building transport networks,
traffic scheduling, predicting future traffic conditions, etc. In terms of carbon footprint
calculations, as the sensor sits on a smartphone, it can collect the transportation mode
of a large number of people over a long period of time. Transportation mode detection
can motivate people to assess and reduce their carbon dioxide consumption [4]. In addi-
tion, some research centers organize volunteers to collect transportation mode detection
samples, whose transportation modes are recorded almost every second by the sensors
on the smartphone, for studies such as mining population movement patterns [5]. An
energy-efficient transport system contributes to the country’s economic development and
green environment. Transportation mode detection plays a key role in the design of energy-
efficient transport systems. Researchers use sensors on experimenters’ mobile phones to
collect data to build tools for traffic modeling, such as traffic networks and parking facili-
ties. In addition, traffic congestion can be time and economically costly. Understanding
human choices of traffic modes in large transport networks is crucial for urban congestion

Sensors 2022, 22, 6712. https://doi.org/10.3390/s22176712 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22176712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8186-3163
https://doi.org/10.3390/s22176712
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22176712?type=check_update&version=2

Sensors 2022, 22, 6712 2 of 20

prediction and traffic scheduling [3]. In several studies on transportation mode detection,
researchers have collected a large amount of IMU data and constructed intelligent systems.
Given an arbitrary time and location, and combined with identified human transportation
modes, the system can automatically simulate or predict future traffic conditions.

Many previous studies have simplified the modes of transportation into four cate-
gories: stationary, walking, bicycling, and vehicle-riding [6]. Unlike previous studies, to
obtain more practical information, we used fine-grained modes of transportation: stationary,
walking, running, cycling, car, bus, subway, and train.

In this paper, we propose a more accurate and concise data training model, T2Trans,
based on a TCN for transportation mode detection. T2Trans is evaluated on the SHL
dataset [7] and HTC dataset [8]. It should be noted that this study on transportation mode
detection removed the limitations of previous GPS or motion sensors [5,9] and used IMU
data that were more targeted at daily practicability. Methods also changed from old to
new, from traditional machine learning based on manual feature extraction [9–14] to deep
learning automatic feature extraction.

In the research of transportation mode detection, data pertinence and effectiveness are
essential aspects of identifying people’s daily transportation mode detection. What kind of
data to choose for mining is critical. Based on the GPS sensor on users’ mobile devices, L.
Stenneth and O. Wolfson et al. used the knowledge of the underlying traffic networks to
infer users’ transportation modes. A Roy et al. [15] investigated the use of GPS data to assess
the role of geography in transportation mode detection. Integrating the geographic context
in which mobility occurs can provide contextual clues that make models for predicting
transportation mode detection more general. Chandrasiri G. et al. [16] investigated the
application of GPS-based travel mode detection methods in energy-efficient transportation.
Rule-based algorithms and heuristic-based approaches are the two main methods used
to detect the four travel modes (walking, bus, motor vehicle, and motorcycle). However,
the high power consumption of GPS and the limitation of data classification limit more
detailed classification and recognition research. Nowadays, with the rapid development
and broad application of smartphones, a variety of sensors on mobile phones can collect
more diverse data, which provides a more promising basis for us to realize transportation
mode detection. Recently, some researchers have introduced deep learning technology
into transportation mode detection, such as recursive neural networks [17], convolutional
neural networks [18], and long and short memory recursive neural networks [19]. However,
existing studies are only evaluated on small datasets, with fewer transportation modes and
accuracy that cannot meet application requirements. Model optimization of IMU data still
faces significant challenges:

• Availability: The technology used in current transportation mode detection is generally
based on GPS, but the common problem is excessive energy consumption and poor
adaptability and stability. Secondly, in the process of motor vehicle driving, due to the
uncertainty of road conditions and the differences in drivers’ driving habits, etc., it
will also lead to the difficulty of getting the desired effect on the distinction between
motor vehicles.

• Lightweight: IMU data sources have the advantage of being lightweight. Now many
models have too many parameters, and we need the model parameters to be less,
faster running technology.

• Expert knowledge: Transportation mode detection does not require manual extraction
of features and does not rely on manual challenges.

Therefore, it is necessary to design a better transportation mode detection model
to alleviate the impact of poor model design and identify eight more detailed modes of
transportation: stationary, walking, running, cycling, car, bus, subway, and train.

Several recent studies have used deep learning models to capture complex nonlinear
dependencies [19]. However, they are still limited in terms of the model’s accuracy and the
model design’s complexity. In our study, we designed T2Trans based on the TCN algorithm

Sensors 2022, 22, 6712 3 of 20

to investigate the problem of transportation mode detection. To address these challenges,
we have made the following contributions:

• We identified eight specific modes of transportation: stationary, walking, running,
cycling, car, bus, subway, and train. We exploit TCNs for transportation feature
representation learning. Through TCNs and a parallel implementation of convolution,
we alleviate the computation burden. TCNs change the receptive field by increasing
the number of layers and changing the expansion coefficient and filter size. The
gradient of the TCN is in the direction of network depth. For long sequences, a TCN
connected by residuals is more stable.

• We use two IMU datasets, which are lightweight, and our proposed T2Trans can
comprehensively identify features that differ between traffic modes by analyzing
sensing data at a fine-grained level. Moreover, the T2Trans model has fewer parameters
and runs faster.

• We evaluate our new approach on two large public datasets, the SHL dataset [7]
and the HTC dataset [8]. Experimental results show that T2Trans is significantly
better than baseline algorithms, including DT, RF, XGBOOST, CNN, MLP, MLP + LR,
Bi-LSTM, CNN + LSTM, and other transportation mode detection methods. Reason-
able scalability of T2Trans has also been demonstrated. Extensive results showed
that T2Trans achieved the best performance on F1-scores compared to all baselines,
with an improvement of 5.94% over the best baseline on the SHL dataset and a 6.40%
improvement over the best baseline on the HTC dataset.

2. Related Work

In recent years, several researchers used GPS data for transportation mode detection.
L. Stenneth et al. [16], based on GPS sensors on users’ mobile devices, inferred users’ modes
of transportation with the knowledge of underlying transportation networks and inferred
various modes of transportation with an accuracy rate of more than 93.5%, including car,
bus, ground train, walking, bicycle and fixed mode. S. Dabiri and K. Halip et al. [18] used a
convolution neural network to infer the transportation mode from the GPS track, in which
the mode is marked as walking, cycling, bus, driving, and train, achieving the highest
accuracy of 84.8%. H. Liu et al. [19] combined the feature learning of timestamp, latitude,
and longitude obtained from GPS sensors and proposed a classification framework of track
transportation modes based on an end-to-end bidirectional LSTM classifier. Although GPS
data can be used from the perspective of facilitating transportation mode detection [9], the
high power consumption and environmental limitations of GPS affect the progress of many
pieces of research in this aspect.

GPS can suffer from high power consumption, and if the user is in an environment such
as a subway where the connection between GPS and satellites is blocked, data acquisition
can be difficult and inaccurate. Therefore, some existing work has used other environment-
dependent sensors for transportation mode detection. A. Jahangiri et al. [13] utilized
smartphone sensors such as accelerometers, gyroscopes, and rotation vector sensors to
identify modes of transportation, including driving a car, riding a bicycle, taking a bus,
walking, and running. I. Drosouli et al. [20] used machine learning techniques to perform
transportation mode detection on cell phone sensor data. The classifier was developed
without dimensionality reduction and then used the PCA algorithm to use a more lightly
modeled model. After dimensionality reduction, the best performing algorithm achieved
very good classification results, while training time was significantly reduced. S. Hemminki
et al. [12] adopted supervised learning methods in machine learning to develop a multi-
class classifier and evaluated the performance in different ways. RF and SVM methods are
found to produce the best performance for identifying modes of transportation, including
driving a car, cycling, riding a bus, walking, and running. Ashqar et al. [9] used an
accelerometer sensor to estimate the gravity component measured by the accelerometer to
improve the generalization and robustness of detection. In general, manual extraction of

Sensors 2022, 22, 6712 4 of 20

features from raw sensor data may be a heavy burden on users in most machine learning,
and the accuracy and robustness of transportation mode detection remain improved.

With the continuous development and broad application of deep learning in recent
years, compared with traditional machine learning, the upper limit of deep learning in
transportation mode detection is higher. S. Dabiri et al. [18] predicted transportation modes
based on original GPS trajectories and used a CNN architecture to mark walking, bicycle,
bus, driving, and train modes. A four-channel input volume is created, including veloc-
ity, acceleration, jerkiness, and load-bearing rate. The method of early stop is adopted
to select the best epoch number. Integrating the best CNN configuration achieves the
highest accuracy of 84.8%. U. Majeed et al. [21] use multiple smartphone sensors for vanilla
split learning of transportation mode detection. The researchers performed vanilla seg-
mentation learning for transport pattern detection on a smartphone sensor-based dataset,
demonstrating that the split neural network (SplitNN) performs similarly to a baseline
typical deep neural network. C. Wang et al. [22] use a multimodal sensor integrated into a
smartphone, combined with residuals and an LSTM recurrent network, for transportation
mode detection. The researchers propose a transportation mode detection algorithm based
on residuals and LSTM recurrent networks, using data collected by multiple lightweight
sensors in cell phones. A residual unit is introduced to speed up training, and an attention
model is used to learn different features and time steps to improve recognition accuracy.
M. Ahmed et al. [23] established a convolutional neural network to determine the trans-
portation mode using the acceleration sensor on a smartphone, achieving an accuracy as
high as 94.48%. Jahangiri et al. [13] proposed a recurrent neural network (i.e., RNN) to
classify eight modes of motion and transportation activities. The network is assigned to
select the best universal classifier (random forest, decision tree, gradient lifting, etc.) to
classify the active tags. It utilizes the rotation of acceleration and magnetometer values
from mobile phone coordinates to earth coordinates to propose the characteristics of JERK
and position insensitivity. L. Wang et al. [24] identified eight modes of transportation
(stationary, walking, running, bicycle, bus, car, train, and subway) through the inertial
sensor of smartphones, provided different types of input to the classifier, and adopted the
post-processing scheme to improve the recognition performance. The convolutional neural
network running on the raw data in the frequency domain achieves the best performance
among all classifiers. H. Liu et al. [19] proposed a classification framework of trajectory
transport mode based on an end-to-end bidirectional LSTM classifier, which automatically
learns features from the trajectory and leverages them for classification. Meanwhile, a
method to identify and adjust the outliers naturally contained in the trajectory data is
applied in flexible route discovery based on GPS trajectory data [25]. Chen L. et al. and
the Ito et al. [26] used FFT from acceleration and gyro sensor data to convert 5-s sensor se-
quence data into two-dimensional spectrographic images and applied the transfer learning
method to pre-training models from other sensors labeled as hips and torsos. Ganbare A.M.
et al. [27] used long- and short-term memory networks with common preprocessing steps,
adopted two-layer LSTM to identify transportation modes, and achieved 63.68% accuracy
with the internal test data set. A convolutional neural network (CNN) is used to learn
appropriate and robust feature representation and further learn time-dependent features of
feature vectors outputted by CNN through the LSTM network [28]. The CL-Transmode
identification algorithm can accurately distinguish eight modes of transportation: walk-
ing, running, cycling, driving, bus, subway, train, or standing still. The accuracy of the
CL-Transmode algorithm can reach 98.1% on the SHL data set containing barometric data.
The authors of [29] proposed attention-based bidirectional long- and short-term memory
(ABLSTM) for passive human activity recognition using WiFi CSI signals. The attention
mechanism is exploited to assign different weights to all learned features. Practical ex-
periments have been conducted to evaluate the performance of the proposed ABLSTM
in human activity recognition, distinguishing between various activities, including lying
down, falling, walking, running, sitting, and standing up, with an average recognition rate
of 97%. Although it is energy saving compared with GPS, uneven WiFi access point density

Sensors 2022, 22, 6712 5 of 20

and GSM cellular size will significantly impact the experiment and require more stringent
environmental requirements.

Unlike previous studies, we propose a TCN-based T2Trans, which uses multiple light
sensors integrated into the mobile phone for transportation mode detection. TCN realizes
convolution in parallel, making the network faster. Compared with other studies, we use
TCN to change the receptive field. Especially for long sequences, less memory is occupied
during training, and our algorithm attains a macro F1-score of 86.42% on the real-world
SHL dataset and 88.37% on the HTC dataset.

3. Algorithm
3.1. Overview

In the data preprocessing step, all datasets are transformed into a unified matrix and
fed into the input layer structure. In the model training step, preprocessed sensor data
from the selected dataset is used as training data and is fed into the T2Trans model to
optimize the trainable parameters in the T2Trans model. We consider the identification task
of barometric pressure and three other inertial sensors: linear acceleration, gyroscope, and
magnetometer. Each sensor contains three elements including the x, y, and z axes of the
device, which were fused due to the unknown posture and orientation of the smartphone.
To make the extracted temporal features have causal characteristics and achieve multi-scale
feature extraction and receptive field enlargement, the convolution operation of the time
convolution network [30] is carried out on a single sensor immediately after pretreatment,
and then the feature representations from sensors are combined into one tensor. To directly
transmit the underlying features across layers and enhance the gradient propagation
capability, the convolution operation of the time convolution network is applied to the
merged feature representation again. At last, representations with time dependencies are
passed through multiple fully connected layers and finally produce the transportation
mode estimation using Softmax. In the model inference step, testing data are leveraged
to evaluate the performance of our proposed T2Trans model based on accuracy, precision,
recall, and F1-score metrics.

3.2. T2Trans Model

In this section, we will introduce the overall architecture and details of the T2Trans
model. The overall architecture of T2Trans is shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

Figure 1. The schema of the overall overview of our proposed T2Trans model. Preprocessed sensor
data are fed into the model from the multimodal input layer, which are fed into ten channel TCN
layers, respectively. The fusion TCN layer model structure is similar to that of the channel TCN
layer. In the MLP layer, feature representations from the fusion TCN layer are implicitly learned.

1. Multimodal Input Layer. All preprocessed sensor data are fed into the model from
the multimodal input layer, defined as tensors 𝐴௡,ௗ,௞ where 𝑛 denotes the total
number of samples, k denotes the total number of units of all sensors, and 𝑑 denotes
the length of the selected sliding window (i.e., 500 samples correspond to a sampling
period of 5 s, with a sampling frequency of 100 Hz). In this paper, 𝑘 = 10 represents
linear acceleration axis X, Y, and Z; gyroscope axis X, Y, and Z; magnetometer axis-
X, Y, and Z, and barometric pressure. 𝐴௡,ௗ,ଵ଴ is converted into 10 tensors denoted by 𝐴௡,ௗ,ଵ, which are fed into ten channel TCN layers, respectively. Barometric pressure
is directly sent to the CTN layer, and the three elements of the other three sensors
(i.e., linear acceleration, gyroscope, and magnetometer) are fused first and then fed
into the channel TCN layer, as illustrated in Figure 2.

Figure 2. The overview of the proposed multimodal input layer. A_(n,d,10) is converted into ten
tensors denoted by 𝐴௡,ௗ,ଵ, which are fed into ten channel TCN layers, respectively.

Figure 1. The schema of the overall overview of our proposed T2Trans model. Preprocessed sensor
data are fed into the model from the multimodal input layer, which are fed into ten channel TCN
layers, respectively. The fusion TCN layer model structure is similar to that of the channel TCN layer.
In the MLP layer, feature representations from the fusion TCN layer are implicitly learned.

Sensors 2022, 22, 6712 6 of 20

1. Multimodal Input Layer. All preprocessed sensor data are fed into the model from the
multimodal input layer, defined as tensors An, d,k where n denotes the total number
of samples, k denotes the total number of units of all sensors, and d denotes the
length of the selected sliding window (i.e., 500 samples correspond to a sampling
period of 5 s, with a sampling frequency of 100 Hz). In this paper, k = 10 represents
linear acceleration axis X, Y, and Z; gyroscope axis X, Y, and Z; magnetometer axis-X,
Y, and Z, and barometric pressure. An, d,10 is converted into 10 tensors denoted by
An, d,1, which are fed into ten channel TCN layers, respectively. Barometric pressure
is directly sent to the CTN layer, and the three elements of the other three sensors (i.e.,
linear acceleration, gyroscope, and magnetometer) are fused first and then fed into
the channel TCN layer, as illustrated in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21

Figure 1. The schema of the overall overview of our proposed T2Trans model. Preprocessed sensor
data are fed into the model from the multimodal input layer, which are fed into ten channel TCN
layers, respectively. The fusion TCN layer model structure is similar to that of the channel TCN
layer. In the MLP layer, feature representations from the fusion TCN layer are implicitly learned.

1. Multimodal Input Layer. All preprocessed sensor data are fed into the model from
the multimodal input layer, defined as tensors 𝐴௡,ௗ,௞ where 𝑛 denotes the total
number of samples, k denotes the total number of units of all sensors, and 𝑑 denotes
the length of the selected sliding window (i.e., 500 samples correspond to a sampling
period of 5 s, with a sampling frequency of 100 Hz). In this paper, 𝑘 = 10 represents
linear acceleration axis X, Y, and Z; gyroscope axis X, Y, and Z; magnetometer axis-
X, Y, and Z, and barometric pressure. 𝐴௡,ௗ,ଵ଴ is converted into 10 tensors denoted by 𝐴௡,ௗ,ଵ, which are fed into ten channel TCN layers, respectively. Barometric pressure
is directly sent to the CTN layer, and the three elements of the other three sensors
(i.e., linear acceleration, gyroscope, and magnetometer) are fused first and then fed
into the channel TCN layer, as illustrated in Figure 2.

Figure 2. The overview of the proposed multimodal input layer. A_(n,d,10) is converted into ten
tensors denoted by 𝐴௡,ௗ,ଵ, which are fed into ten channel TCN layers, respectively.

Figure 2. The overview of the proposed multimodal input layer. A_(n,d,10) is converted into ten
tensors denoted by, which are fed into ten channel TCN layers, respectively.

2. Channel TCN Layer. A temporal convolutional network (TCN) is a variant of the
convolutional neural network. A temporal convolutional network is a convolutional
neural network model based on a traditional one-dimensional convolutional neural
network and combined with causal convolution, extended convolution, and residual
link. Preliminary empirical evaluations of TCN show that simple convolutional
architectures exhibit better performance over a variety of tasks and datasets than
conventional recursive networks such as LSTM [31] while demonstrating longer
effective memory. TCN has flexible receptive fields and stable gradients and can
map timing data to output sequences of the same length [32]. TCN uses the one-
dimensional convolution kernel to sweep into the current time node and the historical
time series data before the node for data processing along the network layer. We use
an input sequence x0, . . . , xT , to predict some related outputs y0, . . . , yT at each time
period. In order to predict the output yT at some time t, we can only use those inputs
that were previously observed: x0, . . . , xT . A sequence modeling network is any
function f : X T+1 → YT+1 that produces the mapping:

ŷ0, . . . , ŷT = f (x0, . . . , xT) (1)

Like RNN, the architecture of TCN can take a sequence of any length and map it to an
output sequence of the same length. In addition, we emphasize how to use a combination of
very deep networks (with the enhancement of residual networks) and extended convolution
to build very long effective history sizes. We are now in the position to elaborate on the
technical details of TCN in three ways:

Sensors 2022, 22, 6712 7 of 20

• TCN uses causal convolution. The output at this moment is only convolved with the
corresponding input at the moment in the previous layer and the input at the earlier
moment and has nothing to do with the future moment. As shown in Figure 3a, the
size of each convolution kernel denoted by k is 3. TCN adds an extra length of zero
padding to keep subsequent layers the same length as previous layers.

• TCN uses extended convolution. By increasing the size of the convolution ker-
nel and the value of the expansion coefficient, the receptive field of the data is
enlarged, and the longer convolution “memory” is formed. Figure 3a depicts its
structure. More formally [28], for a one-dimensional sequence input x ∈ R and a filter
f : {0, . . . , k− 1} → R , the extended convolution operation F on sequence element s

is defined as:

F(s) = (x× d f)(s) =
k−1

∑
i=0

f (i) · xs−d·i (2)

where d is the expansion coefficient, k is the filter size, and s− d·i denotes the past
direction. As shown in Figure 3a, the expansion coefficient of layer I of the hidden
layer is d = 1. Layer II is d = 2, which means that every two-time step is taken as an
input. As the effective window size increases exponentially, larger receptive fields and
lower network complexity can be obtained with fewer layers.

• TCN introduces a residual network. The characteristic of a residual block is that it
contains a branch that produces output by a series of transformations F and then
adds its output to the input x of the block. Its core idea is to “connect” network layers
separated by one or more layers to effectively solve the problem of gradient vanishing
in complex models [33]:

o = Activation(x +F (x)) (3)

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

weight normalization to the convolution kernel. To account for the different input–output
widths, we use an additional 1 × 1 convolution to ensure that the elements summing up
receive tensors of the same shape, as shown in Figure 4. The initial inputs of the channel
TCN layer are four tensors: 𝐴௡,ହ଴଴,ଷ, 𝐴௡,ହ଴଴,ଷ, 𝐴௡,ହ଴଴,ଷ, and 𝐴௡,ହ଴଴,ଵ. The four output tensors
are all 𝐴௡,ହ଴଴,ଷଶ, respectively. The four output tensors passing through the channel TCN
layer are merged into 𝐴௡,ହ଴଴,ଵଶ଼, which are fed into the fusion TCN layer.

Figure 3. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors 𝑑 = 1, 2 . The perceptual field is able to cover all values of the input sequence. (b) When the
remaining inputs and outputs have different sizes, a 1 × 1 convolution is added. Inputs and outputs
have different sizes.

Figure 4. An example of residual connection in a TCN. An additional 1 × 1 convolution is added to
ensure that the elements summing up receive tensors of the same shape. The red lines are filters in
the residual function and the yellow lines are identity mappings.

3. Fusion TCN Layer. The fusion TCN layer model structure is similar to that of the
channel TCN layer. The size of each convolution kernel is denoted by 𝑘 = 3 and

Figure 3. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors
d = 1, 2. The perceptual field is able to cover all values of the input sequence. (b) When the remaining
inputs and outputs have different sizes, a 1 × 1 convolution is added. Inputs and outputs have
different sizes.

In the T2Trans model, we exploit a generic residual module to replace the convolution
layer. The remaining block of TCN is shown in Figure 3b. In the residual block of each layer,

Sensors 2022, 22, 6712 8 of 20

there are two layers of dilated causal convolution and the activation function ReLU [34].
ReLU can significantly speed up the training process and apply weight normalization to the
convolution kernel. To account for the different input–output widths, we use an additional
1× 1 convolution to ensure that the elements summing up receive tensors of the same
shape, as shown in Figure 4. The initial inputs of the channel TCN layer are four tensors:
An,500,3, An,500,3, An,500,3, and An,500,1. The four output tensors are all An,500,32, respectively.
The four output tensors passing through the channel TCN layer are merged into An,500,128,
which are fed into the fusion TCN layer.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

weight normalization to the convolution kernel. To account for the different input–output
widths, we use an additional 1 × 1 convolution to ensure that the elements summing up
receive tensors of the same shape, as shown in Figure 4. The initial inputs of the channel
TCN layer are four tensors: 𝐴௡,ହ଴଴,ଷ, 𝐴௡,ହ଴଴,ଷ, 𝐴௡,ହ଴଴,ଷ, and 𝐴௡,ହ଴଴,ଵ. The four output tensors
are all 𝐴௡,ହ଴଴,ଷଶ, respectively. The four output tensors passing through the channel TCN
layer are merged into 𝐴௡,ହ଴଴,ଵଶ଼, which are fed into the fusion TCN layer.

Figure 3. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors 𝑑 = 1, 2 . The perceptual field is able to cover all values of the input sequence. (b) When the
remaining inputs and outputs have different sizes, a 1 × 1 convolution is added. Inputs and outputs
have different sizes.

Figure 4. An example of residual connection in a TCN. An additional 1 × 1 convolution is added to
ensure that the elements summing up receive tensors of the same shape. The red lines are filters in
the residual function and the yellow lines are identity mappings.

3. Fusion TCN Layer. The fusion TCN layer model structure is similar to that of the
channel TCN layer. The size of each convolution kernel is denoted by 𝑘 = 3 and

Figure 4. An example of residual connection in a TCN. An additional 1 × 1 convolution is added to
ensure that the elements summing up receive tensors of the same shape. The red lines are filters in
the residual function and the yellow lines are identity mappings.

3. Fusion TCN Layer. The fusion TCN layer model structure is similar to that of the
channel TCN layer. The size of each convolution kernel is denoted by k = 3 and
d = 1, 2. The output of An,500,128 from the channel TCN layer is fed into the fusion
TCN layer, and the output tensor of the entire fusion TCN layer is An,500,32.

4. MLP Layer. In the MLP layer, feature representations from the fusion TCN layer
are implicitly learned. The MLP layer consists of five fully connected networks. We
use the dropout method [35] at the MLP layer to reduce the impact of overfitting
problems [36] on the performance of T2Trans, and L2 regularizers further enhance the
generalization capability of the model. We define the output of the i-th fully connected
layer by the following formula:

oi = Activation (W · x + b) (4)

We define W as the weight of the hidden layer and b as the deviation.
In the MLP layer, the number of cells in all hidden layers is 128, 256, 512, 1024, and

8, respectively, and the activation functions are ReLU, ReLU, ReLU, ReLU, and Softmax,
respectively. Set the dropout probability of hidden layer I, hidden layer II, hidden layer
III, and hidden layer IV to 0.25, 0.5, 0.25, and 0.5, respectively. Set L2 regularizers of
hidden layer II and hidden layer IV to 0.01 to avoid overfitting. Finally, hidden layer V
uses Softmax as the activation function, and finally outputs the result An, 8, as shown in
Figure 5.

Sensors 2022, 22, 6712 9 of 20

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

𝑑 = 1, 2. The output of 𝐴௡,ହ଴଴,ଵଶ଼ from the channel TCN layer is fed into the fusion
TCN layer, and the output tensor of the entire fusion TCN layer is 𝐴௡,ହ଴଴,ଷଶ.

4. MLP Layer. In the MLP layer, feature representations from the fusion TCN layer are
implicitly learned. The MLP layer consists of five fully connected networks. We use
the dropout method [35] at the MLP layer to reduce the impact of overfitting
problems [36] on the performance of T2Trans, and L2 regularizers further enhance
the generalization capability of the model. We define the output of the i-th fully
connected layer by the following formula: 𝑜௜ = Activation (𝑊 ⋅ 𝑥 + 𝑏) (4)

We define W as the weight of the hidden layer and b as the deviation.
In the MLP layer, the number of cells in all hidden layers is 128, 256, 512, 1024, and

8, respectively, and the activation functions are ReLU, ReLU, ReLU, ReLU, and Softmax,
respectively. Set the dropout probability of hidden layer I, hidden layer II, hidden layer
III, and hidden layer IV to 0.25, 0.5, 0.25, and 0.5, respectively. Set L2 regularizers of
hidden layer II and hidden layer IV to 0.01 to avoid overfitting. Finally, hidden layer V
uses Softmax as the activation function, and finally outputs the result 𝐴௡,଼, as shown in
Figure 5.

Figure 5. The architecture of the MLP layer. The MLP layer consists of five fully connected networks.
Hidden layer V uses Softmax as the activation function and finally outputs the result.

4. Experimental Evaluation
In this section, we conduct several experiments to evaluate the performance of

T2Trans on the SHL dataset and HTC dataset. Firstly, the two datasets and the process of
data processing in the experiment are introduced in detail. The performance of T2Trans
is then compared to the baseline. Detailed settings for several baseline algorithms are
listed below. Finally, the computational complexities of the algorithm and the comparison
algorithm are evaluated.

4.1. Datasets
• SHL Dataset: We chose the SHL dataset [7] to evaluate the performance of the model.

First, it is transformed into an 𝑁 × 𝑀 matrix, where 𝑁 denotes the total number of
samples collected and 𝑀 denotes the total number of elements observed by different
sensors. In particular, 𝑀 = 10 for the SHL dataset. After preprocessing the SHL
dataset, we divided it into the training part (70%) and the test part (30%). We are now
in a position to elaborate on the details of the SHL dataset. In 2017, three British
volunteers spent seven months collecting their traffic data to form the SHL dataset.

Figure 5. The architecture of the MLP layer. The MLP layer consists of five fully connected networks.
Hidden layer V uses Softmax as the activation function and finally outputs the result.

4. Experimental Evaluation

In this section, we conduct several experiments to evaluate the performance of T2Trans on
the SHL dataset and HTC dataset. Firstly, the two datasets and the process of data processing
in the experiment are introduced in detail. The performance of T2Trans is then compared to
the baseline. Detailed settings for several baseline algorithms are listed below. Finally, the
computational complexities of the algorithm and the comparison algorithm are evaluated.

4.1. Datasets

• SHL Dataset: We chose the SHL dataset [7] to evaluate the performance of the model.
First, it is transformed into an N ×M matrix, where N denotes the total number of
samples collected and M denotes the total number of elements observed by different
sensors. In particular, M = 10 for the SHL dataset. After preprocessing the SHL
dataset, we divided it into the training part (70%) and the test part (30%). We are
now in a position to elaborate on the details of the SHL dataset. In 2017, three British
volunteers spent seven months collecting their traffic data to form the SHL dataset.
Eight modes of transportation were tagged during daily traffic transfers. Each sample
contains ambient light, temperature, GPS, WiFi, and motion data. The samples were
taken with Huawei Mate 9 smartphones placed in various locations, such as bags,
and hands, strapped to the chest, or in pockets. In this paper, only lightweight sensor
data (i.e., accelerometers, gyroscopes, magnetometers, and barometers) are leveraged
to evaluate our proposed model to identify low-power transportation. In practical
application scenarios, sensor data collected in the hand or in the pocket are more
often employed, and, therefore, they were chosen for performance evaluation. We
chose approximately 272 h of sensor data to train and test our model. The data were
collected over four months by the same volunteer. All sensor data were sampled at
100 Hz. To take advantage of time dependence in our experiments, we rearranged the
SHL data in chronological order.

• HTC Dataset: To evaluate the scalability of the T2Trans model, a baro-free large-scale
dataset called the HTC dataset [8] is used. The HTC dataset has been collected since
2012. A total of 8311 h and 100 GB of data were collected by 150 volunteers using HTC
smartphones. Each sample contains accelerometer, gyroscope, and magnetometer
data. To maintain consistency among the three evaluation datasets, motorcycle and
high-speed rail data from the HTC dataset were discarded. In contrast, different sensor
data with timestamp differences of less than 0.1 s were defined. After preprocessing
the HTC dataset, we divided it into the training part (70%) and the test part (30%).

Sensors 2022, 22, 6712 10 of 20

4.2. Data Preprocessing

We use a fixed-length sliding window to split the raw data. We treat each window
as a “sequence”, which is the initial input to T2Trans. We have chosen eight windows
corresponding to each of the eight traffic modes. The raw data are then split into a series of
fixed-length sequences. Figure 6 shows the data on the x-axis of the linear acceleration for
the eight traffic modes in the SHL dataset and Figure 7 shows the data on the x-axis of the
linear acceleration for the eight traffic modes in the HTC dataset.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21

Eight modes of transportation were tagged during daily traffic transfers. Each sample
contains ambient light, temperature, GPS, WiFi, and motion data. The samples were
taken with Huawei Mate 9 smartphones placed in various locations, such as bags,
and hands, strapped to the chest, or in pockets. In this paper, only lightweight sensor
data (i.e., accelerometers, gyroscopes, magnetometers, and barometers) are
leveraged to evaluate our proposed model to identify low-power transportation. In
practical application scenarios, sensor data collected in the hand or in the pocket are
more often employed, and, therefore, they were chosen for performance evaluation.
We chose approximately 272 h of sensor data to train and test our model. The data
were collected over four months by the same volunteer. All sensor data were sampled
at 100 Hz. To take advantage of time dependence in our experiments, we rearranged
the SHL data in chronological order.

• HTC Dataset: To evaluate the scalability of the T2Trans model, a baro-free large-
scale dataset called the HTC dataset [8] is used. The HTC dataset has been collected
since 2012. A total of 8311 h and 100 GB of data were collected by 150 volunteers
using HTC smartphones. Each sample contains accelerometer, gyroscope, and
magnetometer data. To maintain consistency among the three evaluation datasets,
motorcycle and high-speed rail data from the HTC dataset were discarded. In
contrast, different sensor data with timestamp differences of less than 0.1 s were
defined. After preprocessing the HTC dataset, we divided it into the training part
(70%) and the test part (30%).

4.2. Data Preprocessing

We use a fixed-length sliding window to split the raw data. We treat each window
as a “sequence”, which is the initial input to T2Trans. We have chosen eight windows
corresponding to each of the eight traffic modes. The raw data are then split into a series
of fixed-length sequences. Figure 6 shows the data on the x-axis of the linear acceleration
for the eight traffic modes in the SHL dataset and Figure 7 shows the data on the x-axis of
the linear acceleration for the eight traffic modes in the HTC dataset.

Figure 6. Data on the x-axis of the linear acceleration in 8 traffic modes in the SHL dataset.
Figure 6. Data on the x-axis of the linear acceleration in 8 traffic modes in the SHL dataset.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 21

Figure 7. Data on the x-axis of the linear acceleration in 8 traffic modes in the HTC dataset.

The original sensor data contain various noises and errors, and the value range of
different sensor data is different. To provide clean and normalized data for the T2Trans
model, dirty data removal and data normalization operations are carried out before being
fed into the model, which can effectively improve the training and prediction accuracy.
1. Dirty data removal: Considering the large size of the public dataset, we adopted a

low-cost removal operation for the samples with incomplete sensor vector elements,
that is, three-dimensional sensor data without one or two elements. For small
datasets, interpolation may be more appropriate.

2. Normalization: To deal with the large difference in the value range of heterogeneous
sensor data, the z-fraction normalization operation [37] is applied to each element of
sensor vector data, and the formula is as follows: 𝑥ᇱ = 𝑥 − 𝜇𝜎 (5)

where 𝜇 is the average value of each element of sensor data and 𝜎 is the standard
deviation of each element of sensor data.

4.3. Baseline
To evaluate the performance of our proposed T2Trans, several algorithms were

utilized as baselines and benchmarks for comparative experiments, including classical
machine learning algorithms (i.e., DT and RF), and deep learning algorithms (i.e., CNN
and CNN + LSTM). Among these baselines, CNN is a part of our proposed model. DT and
RF are implemented using the MATLAB machine learning toolbox, and all classifiers use
default parameters set in library functions unless explicitly mentioned. In DT, the
researcher set the parameter “Min_leaf_Size = 1000”. In RF, the researcher set the number
of trees to 20 and set the parameter “min_leaf_size = 1000” in each tree. Table 1 lists the
detailed parameters of all baselines.
• DT: Decision Tree is a commonly used classification and regression method [38].
• RF: Random Forest is a relatively new machine learning model [39].

Figure 7. Data on the x-axis of the linear acceleration in 8 traffic modes in the HTC dataset.

Sensors 2022, 22, 6712 11 of 20

The original sensor data contain various noises and errors, and the value range of
different sensor data is different. To provide clean and normalized data for the T2Trans
model, dirty data removal and data normalization operations are carried out before being
fed into the model, which can effectively improve the training and prediction accuracy.

1. Dirty data removal: Considering the large size of the public dataset, we adopted a
low-cost removal operation for the samples with incomplete sensor vector elements,
that is, three-dimensional sensor data without one or two elements. For small datasets,
interpolation may be more appropriate.

2. Normalization: To deal with the large difference in the value range of heterogeneous
sensor data, the z-fraction normalization operation [37] is applied to each element of
sensor vector data, and the formula is as follows:

x′ =
x− µ

σ
(5)

where µ is the average value of each element of sensor data and σ is the standard deviation
of each element of sensor data.

4.3. Baseline

To evaluate the performance of our proposed T2Trans, several algorithms were utilized
as baselines and benchmarks for comparative experiments, including classical machine
learning algorithms (i.e., DT and RF), and deep learning algorithms (i.e., CNN and CNN
+ LSTM). Among these baselines, CNN is a part of our proposed model. DT and RF are
implemented using the MATLAB machine learning toolbox, and all classifiers use default
parameters set in library functions unless explicitly mentioned. In DT, the researcher set the
parameter “Min_leaf_Size = 1000”. In RF, the researcher set the number of trees to 20 and
set the parameter “min_leaf_size = 1000” in each tree. Table 1 lists the detailed parameters
of all baselines.

• DT: Decision Tree is a commonly used classification and regression method [38].
• RF: Random Forest is a relatively new machine learning model [39].
• XGBOOST: XGBOOST is an optimization to Boosting, which integrates weak classifiers

into a strong one. The XGBOOST algorithm generates a new tree to fit the residual of
the previous tree through continuous iteration. With the increase in iteration time, the
accuracy keeps improving [40].

• CNN: Convolutional networks learn what is actually a local pattern by convolutional
operations on the local area. In this way, increasingly complex and abstract visual
concepts can be learned through multiple convolutions.

• MLP: Adopt a set of multilayer perceptions. Each perceptron is trained with data from
different specific smartphone locations, including small datasets of hand-held phones.
An iterative reweighting scheme is proposed to combine classifiers, which considers
their consistency with specialized hand classifiers.

• LR + MLP [41]: The application of LR and MLP neural network models to enhance the
predictive power of the model. Logistic regression answers the “whether” question.
We add a Softmax to linear regression for multiple classifications and use a cross-
entropy loss function. LR is a linear model and MLP is a nonlinear model; MLP fits
are more complex.

• Bi-LSTM: The recursive neural network method is used. The two-way LSTM architec-
ture was proposed to address this challenge. The model was trained based on rotation
and translational invariance to ignore the orientation and position information of the
smartphone [19].

• CNN + LSTM: It combines CNN and LSTM [42]. In this method, CNN allows the
learning of feature representations suitable for recognition, and these feature repre-
sentations are robust for transportation mode detection. LSTM unit is applied to
the output of CNN, which plays a role in structural dimension reduction on feature
vectors.

Sensors 2022, 22, 6712 12 of 20

Table 1. The detailed parameters of the baselines.

Name Architecture

DT min_leaf_size = 1000
RF TreeBagger: NumTrees = 20, minleafsize = 1000

XGBOOST n_estimators = 900, max_depth = 7, min_child_weight = 1
CNN C(32)-C(32)-C(64)
MLP FC(128)-FC(256)-FC(512)-FC(1024)-Softmax

Bi-LSTM LSTM(128)-LSTM(128)-FC-Softmax
CNN + LSTM EACH ELEMENT[C(64)-C(128)]-C(32)-LSTM(128)-DNN(128)-DNN(256)-DNN(512)-DNN(1024)-Softmax

Note: FC is a fully connected layer; C is a convolutional 1D layer; P is a MaxPooling 1D layer.

4.4. Metrics

Accuracy, precision, recall, and F1-score were used to evaluate T2Trans, and F1-score
was defined as follows:

F1 = 2× Precision × Recall
Precision + Recall

(6)

4.5. Experimental Settings

We exploit the Keras deep learning framework to train T2Trans with the preprocessed
SHL dataset. We adopt the Adam [43] optimizer and cross-entropy loss function for
optimization with learning rate = 0.001, beta1 = 0.9, and beta2 = 0.999. The epoch parameter
is set to 150 and the batch size is set to 32. We conducted model training on PC with GPU
support. Table 2 shows the detailed configuration of the PC.

Table 2. The configuration of PC.

Name Detail

CPU Intel(R) Xeon(R) CPU @ 2.30 GHz
Memory 16GB

GPU Tesla P100-PCIE-16GB
Operating System Ubuntu 18.04.5 LTS

Python Environment 3.7.13
Development Framework Keras

4.6. Experimental Results of Different Baselines on SHL Dataset and HTC Dataset

As shown in Tables 3 and 4, we can observe that:

3. The results of CNN, CNN + LSTM, and T2Trans are generally superior to traditional
machine learning methods because CNN + LSTM and T2Trans make full use of the
advantages of CNN in feature extraction and give full play to the advantages of deep
learning. Classic machine learning hand-extracted features may not do a good job of
distinguishing between train and subway patterns. The precisions of MLP and LR +
MLP are also above 70%, but the performance is similar to that of machine learning
algorithms. High-level features or time dependencies may not be learned using these
baselines.

4. CNN + LSTM is better than other methods, indicating that CNN can learn appropriate
feature representations for identification, and these feature representations are robust
to transportation mode detection. LSTM unit is used on CNN output, which plays
a role in structural dimension reduction on the feature vector, thus significantly
improving the performance of transportation mode detection.

5. Our proposed T2Trans was significantly superior to other baselines. The F1 score
of the model on the SHL dataset is 86.42% and on the HTC dataset is 88.37%. The
accuracy of the algorithms based on DT, RF, XGBOOST, MLP, LR + MLP, Bi-LSTM, and
CNN + LSTM are all above 70%. Nevertheless, these baselines do not distinguish well

Sensors 2022, 22, 6712 13 of 20

between train and subway modes with high precision. T2Trans not only uses the time
convolution layer to construct the entire network, but also includes convolution and
pooling operations, and the construction of remaining cells in the complete connection
layer not only speeds up the training and prediction process but also improves the
overall performance of transportation mode detection. As illustrated in Table 4,
classical machine learning algorithms can accurately recognize most transportation
modes, i.e., still, walk, run, bike, car, and bus. However, the accuracy for train
and subway is lower. Instead, a reasonable representation of all eight modes of
transportation was obtained using T2Trans and better accuracy was achieved in all
the above baselines.

Table 3. The precisions of different transportation mode detection methods using different algorithms
on the SHL dataset.

DT RF XGBOOST CNN MLP CNN + LSTM T2Trans

Still 72.87% 74.75% 75.60% 90.97% 75.45% 82.14% 89.18%
Walk 76.01% 86.77% 89.98% 95.97% 87.43% 92.82% 93.31%
Run 87.58% 97.68% 99.34% 98.02% 96.30% 98.50% 98.02%
Bike 72.32% 83.56% 85.10% 95.05% 67.37% 93.81% 96.49%
Car 68.93% 65.42% 72.76% 85.81% 65.49% 79.67% 87.53%
Bus 60.30% 57.73% 61.11% 77.27% 62.17% 68.83% 84.81%

Train 66.57% 59.78% 64.46% 62.21% 56.64% 68.78% 73.54%
Subway 61.97% 54.51% 52.63% 63.16% 62.24% 60.49% 69.70%

Table 4. The precisions of different transportation mode detection methods using different algorithms
on the HTC dataset.

DT RF XGBOOST CNN MLP CNN + LSTM T2Trans

Still 76.74% 93.22% 81.91% 91.76% 82.47% 86.31% 90.74%
Walk 54.12% 68.04% 79.41% 89.66% 62.54% 81.03% 91.79%
Run 77.98% 94.83% 93.62% 97.34% 86.22% 94.76% 97.35%
Bike 52.06% 75.42% 79.74% 90.79% 65.54% 83.89% 95.61%
Car 66.23% 74.50% 69.36% 84.85% 80.94% 82.99% 91.13%
Bus 36.07% 84.48% 74.71% 62.50% 73.01% 71.22% 85.81%

Train 58.38% 78.53% 74.50% 69.44% 69.88% 76.60% 84.94%
Subway 50.42% 75.22% 68.36% 71.88% 64.35% 78.99% 76.65%

The SHL dataset and the HTC dataset were each divided into two datasets, namely
the training dataset (70%) and the testing dataset (30%). Table 5 shows the accuracy
performance of the models built on the two datasets. When using the SHL dataset, the
average accuracy of the T2Trans model on the training dataset was 95.56% and on the test
dataset was 86.37%. When using the HTC dataset, the average accuracy of the T2Trans
model was 96.66% on the training dataset and 89.13% on the test dataset. From the above
results, it can be seen that when using the T2Trans algorithm, the average accuracy on the
HTC training and test datasets is approximately 1.1% and 2.8% higher than that on the
training and test datasets of the SHL dataset, respectively. Meanwhile, the accuracy of the
test dataset is usually lower than that of the training set, but the average accuracy of the
test dataset is above 86%, and the T2Trans algorithm has good performance.

Sensors 2022, 22, 6712 14 of 20

Table 5. Accuracy performances for training datasets and test datasets.

SHL DATASET HTC DATASET

Training Test Training Test

Still 97.62% 86.16% 95.87% 92.99%
Walk 98.72% 95.03% 97.59% 92.48%
Run 99.93% 98.86% 99.56% 97.87%
Bike 99.26% 90.42% 98.60% 92.79%
Car 99.48% 93.90% 97.73% 91.72%
Bus 99.53% 86.80% 84.67% 70.74%

Train 95.10% 75.00% 91.99% 78.01%
Subway 83.65% 64.65% 98.50% 85.53%

In addition, Figure 8 illustrates the confusion matrix for the model on the SHL
dataset. Figure 9 illustrates the confusion matrix for the model on the HTC dataset.
Figures 10 and 11 show the precision, recall, and F1-score of T2Trans on the SHL dataset
and HTC dataset, respectively. The precision and recall metrics are commonly used for
evaluating multiple classification problems. F1 score is a harmonic average of precision
and recall.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21

Train 95.10% 75.00% 91.99% 78.01%
Subway 83.65% 64.65% 98.50% 85.53%

Table 6. Performance comparison between the algorithms of the best teams and the T2Trans
algorithm on the SHL dataset for the third SHL recognition challenge.

 RF XGBOOST CNN MLP LR + MLP Bi-LSTM CNN + LSTM T2Trans
Still 75.95% 85.40% 81.46% 84.74% 86.18% 72.45% 80.16% 86.16%

Walk 89.96% 84.65% 96.34% 60.15% 79.70% 93.62% 94.76% 95.03%
Run 89.56% 89.43% 98.29% 87.77% 85.64% 98.91% 98.29% 98.86%
Bike 83.63% 64.90% 94.31% 57.38% 80.33% 91.40% 88.92% 90.42%
Car 58.18% 90.09% 90.38% 83.31% 76.33% 76.82% 81.92% 93.90%
Bus 60.59% 38.28% 76.83% 59.57% 48.93% 60.67% 69.21% 86.80%

Train 58.60% 69.95% 66.59% 80.85% 60.99% 52.49% 54.20% 75.00%
Subway 63.37% 68.83% 65.26% 46.84% 65.53% 55.34% 57.10% 64.65%

Table 7. Performance comparison between the algorithms of the best teams and the T2Trans
algorithm on the HTC dataset for the third SHL recognition challenge.

 RF XGBOOST CNN MLP LR + MLP Bi-LSTM CNN + LSTM T2Trans
Still 93.90% 89.14% 89.69% 87.22% 84.33% 84.94% 89.07% 92.99%

Walk 68.27% 75.44% 91.23% 67.42% 75.69% 78.47% 86.72% 92.48%
Run 94.74% 92.05% 97.87% 92.55% 92.55% 88.88% 94.15% 97.87%
Bike 73.02% 69.77% 89.84% 67.21% 82.95% 82.13% 87.87% 92.79%
Car 75.04% 81.56% 88.23% 81.50% 78.00% 75.31% 83.83% 91.72%
Bus 92.59% 52.68% 70.74% 62.23% 42.02% 62.50% 58.51% 70.74%

Train 78.88% 73.99% 76.95% 77.31% 47.16% 67.01% 75.18% 78.01%
Subway 73.50% 71.88% 78.42% 61.05% 67.37% 56.78% 71.05% 85.53%

Figure 8. The confusion matrix of T2Trans on the SHL dataset.

Still 330 9 0 2 5 0 23 14

Walk 4 363 6 4 0 2 1 2

Run 1 2 347 1 0 0 0 0

Bike 5 9 1 302 2 10 2 3

Car 1 0 0 0 400 20 2 3

Bus 0 0 0 2 20 296 16 7

Train 17 1 0 1 19 11 339 64

Subway 12 5 0 1 11 10 78 214

Figure 8. The confusion matrix of T2Trans on the SHL dataset.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 9. The confusion matrix of T2Trans on the HTC dataset.

Figure 10. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
SHL dataset.

Figure 11. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
HTC dataset.

4.7. Hyperparameter Fine-Tuning
Hyperparameter fine-tuning is important to improve the performance of T2Trans.

T2Trans has a total of eight convolutional layers. The different hyperparameter
configurations are grouped into the eight groups a-h. F and K represent filters and kernel
size of all eight convolutional layers, respectively, on the SHL dataset. For Group a, F =
[64, 64, 32, 32, 32, 32, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group b, F = [32, 32, 32, 32,

Still 451 2 1 1 8 0 23 15

Walk 8 369 4 7 4 0 1 7

Run 0 4 184 1 0 0 0 0

Bike 1 9 0 283 3 1 2 7

Car 8 11 0 3 709 10 2 24

Bus 4 2 0 1 24 133 16 14

Train 10 0 0 1 15 4 339 32

Subway 15 5 1 0 15 7 78 325

Figure 9. The confusion matrix of T2Trans on the HTC dataset.

Sensors 2022, 22, 6712 15 of 20

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 9. The confusion matrix of T2Trans on the HTC dataset.

Figure 10. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
SHL dataset.

Figure 11. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
HTC dataset.

4.7. Hyperparameter Fine-Tuning
Hyperparameter fine-tuning is important to improve the performance of T2Trans.

T2Trans has a total of eight convolutional layers. The different hyperparameter
configurations are grouped into the eight groups a-h. F and K represent filters and kernel
size of all eight convolutional layers, respectively, on the SHL dataset. For Group a, F =
[64, 64, 32, 32, 32, 32, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group b, F = [32, 32, 32, 32,

Still 451 2 1 1 8 0 23 15

Walk 8 369 4 7 4 0 1 7

Run 0 4 184 1 0 0 0 0

Bike 1 9 0 283 3 1 2 7

Car 8 11 0 3 709 10 2 24

Bus 4 2 0 1 24 133 16 14

Train 10 0 0 1 15 4 339 32

Subway 15 5 1 0 15 7 78 325

Figure 10. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the SHL
dataset.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Figure 9. The confusion matrix of T2Trans on the HTC dataset.

Figure 10. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
SHL dataset.

Figure 11. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
HTC dataset.

4.7. Hyperparameter Fine-Tuning
Hyperparameter fine-tuning is important to improve the performance of T2Trans.

T2Trans has a total of eight convolutional layers. The different hyperparameter
configurations are grouped into the eight groups a-h. F and K represent filters and kernel
size of all eight convolutional layers, respectively, on the SHL dataset. For Group a, F =
[64, 64, 32, 32, 32, 32, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group b, F = [32, 32, 32, 32,

Still 451 2 1 1 8 0 23 15

Walk 8 369 4 7 4 0 1 7

Run 0 4 184 1 0 0 0 0

Bike 1 9 0 283 3 1 2 7

Car 8 11 0 3 709 10 2 24

Bus 4 2 0 1 24 133 16 14

Train 10 0 0 1 15 4 339 32

Subway 15 5 1 0 15 7 78 325

Figure 11. Precision, recall, and F1-scores of the eight classifications of the T2Trans model on the
HTC dataset.

To better demonstrate the performance of T2Trans, we have cited several papers on
transportation mode detection that have worked well in recent years. Tables 6 and 7
compare the accuracy of the T2Trans algorithm and these algorithms on the SHL dataset
and the HTC dataset, respectively. DL involves four classifiers: Bi-LSTM [19], CNN +
LSTM [22], convolutional neural network [23] and LR + MLP [41]. It can be seen from
the performance on both datasets that although ML has a lower upper bound than DL,
the lower bound is higher as ML has better robustness as it utilizes hand-crafted features
that can cope with user and location variations. In contrast, features learned by DL do
not always guarantee good generalization. ML involves three classifiers: the researchers
mainly used the RF [9], MLP algorithms [20], and XGBOOST [40]. Of these algorithms for
transportation mode detection, CNN showed the highest average accuracy, followed by
CNN + LSTM. On the SHL dataset and the HTC dataset, our T2Trans model produced
results that improved accuracy by 2.67% and 2.4% over the best CNN algorithm of these
algorithms.

Sensors 2022, 22, 6712 16 of 20

Table 6. Performance comparison between the algorithms of the best teams and the T2Trans algorithm
on the SHL dataset for the third SHL recognition challenge.

RF XGBOOST CNN MLP LR + MLP Bi-LSTM CNN + LSTM T2Trans

Still 75.95% 85.40% 81.46% 84.74% 86.18% 72.45% 80.16% 86.16%
Walk 89.96% 84.65% 96.34% 60.15% 79.70% 93.62% 94.76% 95.03%
Run 89.56% 89.43% 98.29% 87.77% 85.64% 98.91% 98.29% 98.86%
Bike 83.63% 64.90% 94.31% 57.38% 80.33% 91.40% 88.92% 90.42%
Car 58.18% 90.09% 90.38% 83.31% 76.33% 76.82% 81.92% 93.90%
Bus 60.59% 38.28% 76.83% 59.57% 48.93% 60.67% 69.21% 86.80%

Train 58.60% 69.95% 66.59% 80.85% 60.99% 52.49% 54.20% 75.00%
Subway 63.37% 68.83% 65.26% 46.84% 65.53% 55.34% 57.10% 64.65%

Table 7. Performance comparison between the algorithms of the best teams and the T2Trans algorithm
on the HTC dataset for the third SHL recognition challenge.

RF XGBOOST CNN MLP LR + MLP Bi-LSTM CNN + LSTM T2Trans

Still 93.90% 89.14% 89.69% 87.22% 84.33% 84.94% 89.07% 92.99%
Walk 68.27% 75.44% 91.23% 67.42% 75.69% 78.47% 86.72% 92.48%
Run 94.74% 92.05% 97.87% 92.55% 92.55% 88.88% 94.15% 97.87%
Bike 73.02% 69.77% 89.84% 67.21% 82.95% 82.13% 87.87% 92.79%
Car 75.04% 81.56% 88.23% 81.50% 78.00% 75.31% 83.83% 91.72%
Bus 92.59% 52.68% 70.74% 62.23% 42.02% 62.50% 58.51% 70.74%

Train 78.88% 73.99% 76.95% 77.31% 47.16% 67.01% 75.18% 78.01%
Subway 73.50% 71.88% 78.42% 61.05% 67.37% 56.78% 71.05% 85.53%

4.7. Hyperparameter Fine-Tuning

Hyperparameter fine-tuning is important to improve the performance of T2Trans.
T2Trans has a total of eight convolutional layers. The different hyperparameter configura-
tions are grouped into the eight groups a-h. F and K represent filters and kernel size of all
eight convolutional layers, respectively, on the SHL dataset. For Group a, F = [64, 64, 32, 32,
32, 32, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group b, F = [32, 32, 32, 32, 32, 32, 32, 32]
and K = [2, 2, 3, 3, 3, 3, 3, 3]. For Group c, F = [32, 32, 32, 32, 32, 32, 32, 32] and K = [2, 2,
2, 2, 3, 3, 3, 3]. For Group d, F = [32, 32, 32, 32, 64, 64, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3].
For Group e, F = [32, 32, 32, 32, 32, 32, 64, 64] and K = [3, 3, 3, 3, 3, 3, 2, 2]. For Group f, F =
[32, 32, 32, 32, 128, 128, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group g, F = [64, 64, 32, 32,
64, 64, 64, 64] and K = [3, 3, 3, 3, 2, 2, 3, 3]. For Group h, F = [32, 32, 32, 32, 64, 64, 64, 64]
and K = [2, 2, 2, 2, 3, 3, 3, 3].

Figure 12 depicts the F1 scores for different hyperparameter configurations, and Group
“e” obtains the best result. The train and subway modes are the most challenging of the
eight modes of transportation. This is caused by similar transportation mode detection,
namely smooth running on railway tracks.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

32, 32, 32, 32] and K = [2, 2, 3, 3, 3, 3, 3, 3]. For Group c, F = [32, 32, 32, 32, 32, 32, 32, 32] and
K = [2, 2, 2, 2, 3, 3, 3, 3]. For Group d, F = [32, 32, 32, 32, 64, 64, 32, 32] and K = [3, 3, 3, 3, 3,
3, 3, 3]. For Group e, F = [32, 32, 32, 32, 32, 32, 64, 64] and K = [3, 3, 3, 3, 3, 3, 2, 2]. For Group
f, F = [32, 32, 32, 32, 128, 128, 32, 32] and K = [3, 3, 3, 3, 3, 3, 3, 3]. For Group g, F = [64, 64,
32, 32, 64, 64, 64, 64] and K = [3, 3, 3, 3, 2, 2, 3, 3]. For Group h, F = [32, 32, 32, 32, 64, 64, 64,
64] and K = [2, 2, 2, 2, 3, 3, 3, 3].

Figure 12 depicts the F1 scores for different hyperparameter configurations, and
Group “e” obtains the best result. The train and subway modes are the most challenging
of the eight modes of transportation. This is caused by similar transportation mode
detection, namely smooth running on railway tracks.

Figure 12. F1-Scores obtained on the SHL dataset using eight different sets of hyperparameters, a-
h, for transportation mode detection.

4.8. Impact of Different Sensor Components
To explore the scalability of T2Trans, we added different sensor variables to achieve

the effect of research identification. As shown in Figure 13, for the SHL dataset, the
average transportation mode detection accuracies of LA, LAG, LAGM, and LAGMP were
76.68%, 79.23%, 81.93%, and 86.42%, respectively. By adding sensors, the accuracy of
models was improved by about 2.6 to 4.5%. As shown in Figure 14, for the HTC dataset,
the average transportation mode detection accuracies of LA, LAG, LAGM, and LAGMP
are 82.29%, 83.21%, 86.07%, and 89.13%, respectively. By adding sensors, the accuracy of
models was improved by about 0.9 to 3.0%. As more sensor variables are used, T2Trans
may learn more about features, especially the barometer sensor for trains and the subway.

Figure 12. F1-Scores obtained on the SHL dataset using eight different sets of hyperparameters, a–h,
for transportation mode detection.

Sensors 2022, 22, 6712 17 of 20

4.8. Impact of Different Sensor Components

To explore the scalability of T2Trans, we added different sensor variables to achieve
the effect of research identification. As shown in Figure 13, for the SHL dataset, the average
transportation mode detection accuracies of LA, LAG, LAGM, and LAGMP were 76.68%,
79.23%, 81.93%, and 86.42%, respectively. By adding sensors, the accuracy of models was
improved by about 2.6 to 4.5%. As shown in Figure 14, for the HTC dataset, the average
transportation mode detection accuracies of LA, LAG, LAGM, and LAGMP are 82.29%,
83.21%, 86.07%, and 89.13%, respectively. By adding sensors, the accuracy of models was
improved by about 0.9 to 3.0%. As more sensor variables are used, T2Trans may learn more
about features, especially the barometer sensor for trains and the subway.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 13. The precisions of T2Trans using different sensors on the SHL dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

Figure 14. The precisions of T2Trans using different sensors on the HTC dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

4.9. Calculation Complexity
The computer we used is equipped with an Intel(R) Xeon(R) CPU @ 2.30ghz and a

Tesla P100-PCI-16GB GPU. The code is written in Python 3.7. Table 8 compares the results
of various classifiers in terms of processing time and parameter size. The training time for
MLP, CNN, CNN + LSTM, and T2Trans is calculated for one hundred and forty epochs.

As shown in Table 8, although the training time of the T2Trans algorithm is longer
than that of DT, RF, and XGBOOST classical machine learning, because T2Trans uses deep
learning, it needs a lot of time to learn data features. However, T2Trans has significantly
improved performance by automatically learning data features. Although the training
parameters of the T2Trans algorithm are larger than those of LSTM and other standard
cyclic networks, the training time is smaller than LSTM. The reason why the T2Trans

Figure 13. The precisions of T2Trans using different sensors on the SHL dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 13. The precisions of T2Trans using different sensors on the SHL dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

Figure 14. The precisions of T2Trans using different sensors on the HTC dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

4.9. Calculation Complexity
The computer we used is equipped with an Intel(R) Xeon(R) CPU @ 2.30ghz and a

Tesla P100-PCI-16GB GPU. The code is written in Python 3.7. Table 8 compares the results
of various classifiers in terms of processing time and parameter size. The training time for
MLP, CNN, CNN + LSTM, and T2Trans is calculated for one hundred and forty epochs.

As shown in Table 8, although the training time of the T2Trans algorithm is longer
than that of DT, RF, and XGBOOST classical machine learning, because T2Trans uses deep
learning, it needs a lot of time to learn data features. However, T2Trans has significantly
improved performance by automatically learning data features. Although the training
parameters of the T2Trans algorithm are larger than those of LSTM and other standard
cyclic networks, the training time is smaller than LSTM. The reason why the T2Trans

Figure 14. The precisions of T2Trans using different sensors on the HTC dataset. Note that LA is
short for linear accelerometer, LAG is short for linear accelerometer + gyroscope, LAGM is short for
linear accelerometer + gyroscope + magnetometer, and LAGMP is short for linear accelerometer +
gyroscope + magnetometer + barometric pressure.

4.9. Calculation Complexity

The computer we used is equipped with an Intel(R) Xeon(R) CPU @ 2.30ghz and a
Tesla P100-PCI-16GB GPU. The code is written in Python 3.7. Table 8 compares the results

Sensors 2022, 22, 6712 18 of 20

of various classifiers in terms of processing time and parameter size. The training time for
MLP, CNN, CNN + LSTM, and T2Trans is calculated for one hundred and forty epochs.

Table 8. The training and predicting time of different algorithms.

Algorithm Platform Type Training Time Parameter Size

DT GPU 90 s -
RF GPU 90 s -

XGBOOST GPU 6653.52 s -
MLP GPU 140.44 s 1,338,248
CNN GPU 1200 s 70,348

CNN + LSTM GPU 64,080 s 125,568
T2Trans GPU 786.09 s 796,880

As shown in Table 8, although the training time of the T2Trans algorithm is longer
than that of DT, RF, and XGBOOST classical machine learning, because T2Trans uses deep
learning, it needs a lot of time to learn data features. However, T2Trans has significantly
improved performance by automatically learning data features. Although the training
parameters of the T2Trans algorithm are larger than those of LSTM and other standard
cyclic networks, the training time is smaller than LSTM. The reason why the T2Trans
algorithm is faster than LSTM is that the forward transmission process of input information
of all time steps of TCN is carried out simultaneously and can be completed in parallel.
However, the RNN network needs to wait for the end of the forward transmission of the
previous time step before the forward transmission of the next time step. T2Trans is more
accurate and concise than LSTM and other standard circulation networks because T2Trans
introduces dilated convolution and residual connections.

4.10. The Future Work

Overall, T2Trans is a variant of a convolutional neural network. Although the use
of extended convolution can expand the perceptual field, it is still limited and inferior to
the Transformer, which can capture relevant information of arbitrary length. In our future
work, We will draw on the Transformer’s ability to grab relevant information of arbitrary
length to improve T2Trans and make T2Trans shine in other areas as well.

5. Conclusions

In this paper, we propose a novel deep learning model for transportation mode
detection. A TCN is exploited to automatically learn the features of multiple lightweight
sensors integrated into smartphones to detect transportation modes, which can achieve
an energy-saving effect. T2Trans also exhibits very good recognition performance, as it
achieves an average precision of 86.57% on the SHL dataset and 89.25% on the HTC dataset.
This is an improvement of 3.01% and 6.97% over the performance of the best baseline,
respectively. By learning the features from different sensors in different channel TCNs,
more heterogeneous sensors can be supported. Moreover, TCN can be processed in parallel
on a large scale, with more flexibility in the length of historical information and less memory
for training, especially for long sequences. As a result, T2Trans will be faster and more
practical for real-world transportation mode detection. As part of our future work, we plan
to port T2Trans to mobile phones to evaluate the generalization capabilities of our model
in real applications.

Author Contributions: P.W. and Y.J. designed the study and performed the research. P.W. analyzed
the data and wrote the paper. Y.J. reviewed and edited the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, accessed on April
2018 (Grant No.2017YFC1405200).

Sensors 2022, 22, 6712 19 of 20

Institutional Review Board Statement: This study was conducted in an open database and did not
require ethical approval.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The SHL dataset for this article is publicly available on the website
http://www.shl-dataset.org/dataset (accessed on 1 May 2022) and the HTC dataset for this article is
required to see reference [8].

Acknowledgments: The authors would like to thank the North China Sea Data & Information Service
of SOA for their careful interpretation.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Engelbrecht, J.; Booysen, M.J.; van Rooyen, G.J.; Bruwer, F.J. Survey of smartphone-based sensing in vehicles for intelligent

transportation system applications. IET Intell. Transp. Syst. 2015, 9, 924–935.
2. Vaizman, Y.; Ellis, K.; Lanckriet, G. Recognizing detailed human context in the wild from smartphones and smartwatches. IEEE

Pervas. Comput. 2017, 16, 62–74.
3. Anagnostopoulou, E.; Urbančič, J.; Bothos, E.; Magoutas, B.; Bradesko, L.; Schrammel, J.; Mentzas, G. From mobility patterns to

behavioural change: Leveraging travel behaviour and personality profiles to nudge for sustainable transportation. J. Intell. Inf.
Syst. 2020, 54, 157–178.

4. Lorintiu, O.; Vassilev, A. Transportation mode recognition based on smartphone embedded sensors for carbon footprint estimation.
In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016; pp. 1976–1981.

5. Feng, T.; Timmermans, H.J. Transportation mode recognition using GPS and accelerometer data. Transp. Res. Part C Emerg.
Technol. 2013, 37, 118–130. [CrossRef]

6. Han, M.; Bang, J.H.; Nugent, C.; McClean, S.; Lee, S. A lightweight hierarchical activity recognition framework using smartphone
sensors. Sensors 2014, 14, 16181–16195. [CrossRef]

7. Gjoreski, H.; Ciliberto, M.; Wang, L.; Morales, F.J.O.; Mekki, S.; Valentin, S.; Roggen, D. The university of sussex-huawei
locomotion and transportation dataset for multimodal analytics with mobile devices. IEEE Access 2018, 6, 42592–42604.

8. Yu, M.C.; Yu, T.; Wang, S.C.; Lin, C.J.; Chang, E.Y. Big data small footprint: The design of a low-power classifier for detecting
transportation modes. Proc. VLDB Endow. 2014, 7, 1429–1440. [CrossRef]

9. Ashqar, H.I.; Almannaa, M.H.; Elhenawy, M.; Rakha, H.A.; House, L. Smartphone transportation mode recognition using a
hierarchical machine learning classifier and pooled features from time and frequency domains. IEEE Trans. Intell. Transp. Syst.
2018, 20, 244–252.

10. Randhawa, P.; Shanthagiri, V.; Kumar, A.; Yadav, V. Human activity detection using machine learning methods from wearable
sensors. Sens. Rev. 2020, 40, 591–603.

11. Badawi, A.A.; Al-Kabbany, A.; Shaban, H. Multimodal human activity recognition from wearable inertial sensors using machine
learning. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak,
Malaysia, 3–6 December 2018; pp. 402–407.

12. Hemminki, S.; Nurmi, P.; Tarkoma, S. Accelerometer-based transportation mode detection on smartphones. In Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, Roma, Italy, 11–15 November 2013; pp. 1–14.

13. Jahangiri, A.; Rakha, H.A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor
data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406–2417.

14. Stenneth, L.; Wolfson, O.; Yu, P.S.; Xu, B. Transportation mode detection using mobile phones and GIS information. In Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1–4
November 2011; pp. 54–63.

15. Roy, A.; Fuller, D.; Nelson, T. Assessing the role of geographic context in transportation mode detection from GPS data. J. Transp.
Geogr. 2022, 100, 103330. [CrossRef]

16. Chandrasiri, G.; Kumarasinghe, K.; Nandalal, H.K. Application of GPS/GIS Based Travel Mode Detection Method for Energy
Efficient Transportation Sector. In Proceedings of the 2018 International Conference on Sustainable Built Environment (ICSBE),
Singapore, 7 August 2019; pp. 11–21.

17. Vu, T.H.; Dung, L.; Wang, J.C. Transportation mode detection on mobile devices using recurrent nets. In Proceedings of the 24th
ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 392–396.

18. Dabiri, S.; Heaslip, K. Inferring transportation modes from GPS trajectories using a convolutional neural network. Transp. Res.
Part C Emerg. Technol. 2018, 86, 360–371. [CrossRef]

http://www.shl-dataset.org/dataset
http://doi.org/10.1016/j.trc.2013.09.014
http://doi.org/10.3390/s140916181
http://doi.org/10.14778/2733004.2733015
http://doi.org/10.1016/j.jtrangeo.2022.103330
http://doi.org/10.1016/j.trc.2017.11.021

Sensors 2022, 22, 6712 20 of 20

19. Liu, H.B.; Lee, I. End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network. In Proceedings
of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26
November 2017; pp. 1–5.

20. Drosouli, I.; Voulodimos, A.S.; Miaoulis, G. Transportation mode detection using machine learning techniques on mobile
phone sensor data. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive
Environments, New York, NY, USA, 30 June 2020; pp. 1–8.

21. Majeed, U.; Hassan, S.S.; Hong, C.S. Vanilla Split Learning for Transportation Mode Detection using Diverse Smartphone Sensors.
In Proceedings of the KIISE Korea Computer Congress, Jeju, Korea, 23–25 June 2021; pp. 867–869.

22. Wang, C.; Luo, H.; Zhao, F. Combining Residual and LSTM Recurrent Networks for Transportation Mode Detection Using
Multimodal Sensors Integrated in Smartphones. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5473–5485. [CrossRef]

23. Liang, X.Y.; Wang, G.L. A convolutional neural network for transportation mode detection based on smartphone platform. In
Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA,
22–25 October 2017; pp. 338–342.

24. Wang, L.; Gjoreski, H.; Ciliberto, M.; Mekki, S.; Valentin, S.; Roggen, D. Benchmarking the SHL recognition challenge with
classical and deep-learning pipelines. In Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; pp. 1626–1635.

25. Bastani, F.; Huang, Y.; Xie, X.; Powell, J.W. A greener transportation mode: Flexible routes discovery from GPS trajectory data. In
Proceedings of the 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, Chicago,
IL, USA, 1–4 November 2011.

26. Ito, C.; Shuzo, M.; Maeda, E. CNN for human activity recognition on small datasets of acceleration and gyro sensors using
transfer learning. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 724–729.

27. Friedrich, B.; Cauchi, B.; Hein, A.; Fudickar, S. Transportation mode classification from smartphone sensors via a long-short-term-
memory network. In Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 709–713.

28. Qin, Y.J.; Luo, H.Y.; Zhao, F.; Wang, C.X.; Wang, J.Q.; Zhang, Y.X. Toward transportation mode recognition using deep convolu-
tional and long short-term memory recurrent neural networks. IEEE Access 2019, 7, 142353–142367. [CrossRef]

29. Chen, Z.H.; Zhang, L.; Jiang, C.Y.; Cao, Z.G.; Cui, W. WiFi CSI based passive human activity recognition using attention based
BLSTM. IEEE Trans. Mob. Comput. 2018, 18, 2714–2724. [CrossRef]

30. Bai, S.J.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271. Available online: https://arxiv.org/abs/1803.01271 (accessed on 1 September 2022).

31. Sesti, N.; Garau-Luis, J.J.; Crawley, E.; Cameron, B. Integrating LSTMS and GNNS for covid-19 forecasting. arXiv 2021,
arXiv:2108.10052. Available online: https://arxiv.org/abs/2108.10052 (accessed on 1 September 2022).

32. Cao, Y.D.; Ding, Y.F.; Jia, M.P.; Tian, R.S. A novel temporal convolutional network with residual self-attention mechanism for
remaining useful life prediction of rolling bearings. Reliab. Eng. Syst. Saf. 2021, 215, 107813. [CrossRef]

33. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

34. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323.

35. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

36. Lawrence, S.; Giles, C.L. Overfitting and neural networks: Conjugate gradient and backpropagation. In Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, Como, Italy, 27–27 July 2000; pp. 114–119.

37. Saranya, C.; Manikandan, G. A study on normalization techniques for privacy preserving data mining. Int. J. Eng. Technol. 2013,
5, 2701–2704.

38. Olanow, C.W.; Koller, W.C. An algorithm (decision tree) for the management of Parkinson’s disease: Treatment guidelines.
American Academy of Neurology. Neurology 1998, 50, S1–S57. [CrossRef] [PubMed]

39. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
40. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
41. Pour, N.M.; Oja, T. Prediction power of logistic regression (LR) and Multi-Layer perceptron (MLP) models in exploring driving

forces of urban expansion to be sustainable in estonia. Sustainability 2022, 14, 160. [CrossRef]
42. Qin, Y.; Wang, C.; Luo, H. Transportation recognition with the Sussex-Huawei Locomotion challenge. In Proceedings of the

Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2019 ACM International Symposium on Wearable Computers, London, UK, 9–13 September 2019; pp. 798–802.

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning
Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–13.

http://doi.org/10.1109/TITS.2020.2987598
http://doi.org/10.1109/ACCESS.2019.2944686
http://doi.org/10.1109/TMC.2018.2878233
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/2108.10052
http://doi.org/10.1016/j.ress.2021.107813
http://doi.org/10.1212/WNL.50.3_Suppl_3.S1
http://www.ncbi.nlm.nih.gov/pubmed/9524552
http://doi.org/10.3390/su14010160

	Introduction
	Related Work
	Algorithm
	Overview
	T2Trans Model

	Experimental Evaluation
	Datasets
	Data Preprocessing
	Baseline
	Metrics
	Experimental Settings
	Experimental Results of Different Baselines on SHL Dataset and HTC Dataset
	Hyperparameter Fine-Tuning
	Impact of Different Sensor Components
	Calculation Complexity
	The Future Work

	Conclusions
	References

