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Abstract: Machine learning approaches are employed to analyze differences in real-time reverse
transcription polymerase chain reaction scans to differentiate between COVID-19 and pneumonia.
However, these methods suffer from large training data requirements, unreliable images, and un-
certain clinical diagnosis. Thus, in this paper, we used a machine learning model to differentiate
between COVID-19 and pneumonia via radiomic features using a bias-minimized dataset of chest
X-ray scans. We used logistic regression (LR), naive Bayes (NB), support vector machine (SVM),
k-nearest neighbor (KNN), bagging, random forest (RF), extreme gradient boosting (XGB), and light
gradient boosting machine (LGBM) to differentiate between COVID-19 and pneumonia based on
training data. Further, we used a grid search to determine optimal hyperparameters for each machine
learning model and 5-fold cross-validation to prevent overfitting. The identification performances of
COVID-19 and pneumonia were compared with separately constructed test data for four machine
learning models trained using the maximum probability, contrast, and difference variance of the gray
level co-occurrence matrix (GLCM), and the skewness as input variables. The LGBM and bagging
model showed the highest and lowest performances; the GLCM difference variance showed a high
overall effect in all models. Thus, we confirmed that the radiomic features in chest X-rays can be used
as indicators to differentiate between COVID-19 and pneumonia using machine learning.
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1. Introduction

Currently, for the diagnosis of COVID-19, real-time reverse transcription polymerase
chain reaction (RT-PCR) is used as the standard diagnostic test [1]. However, it is time-
consuming and requires expensive dedicated equipment [2]. Hence, imaging procedures
can be a viable alternative to RT-PCR [3,4]. In particular, chest X-rays can significantly
speed up screening for COVID-19 as they are inexpensive and can rapidly evaluate the
condition of the lungs. However, diagnosis is dependent on the skill of the doctor, and
differentiating it from pneumonia, which has similar symptoms, is difficult [5,6].

Machine learning can help differentiate between COVID-19 and pneumonia by ana-
lyzing differences in the scans that are difficult to detect with the naked eye [7]. Recently,
many studies have reported the application of machine learning for COVID-19 diagnosis.
Its objective analysis can help the medical staff screen for COVID-19 rapidly. In 2021,
Hasoon et al. implemented machine learning using six models (LBP-KNN, HOG-KNN,
Haralick-KNN, LBP-SVM, HOG-SVM, and Haralick-SVM) on 5000 X-ray images of normal
and COVID-19-infected lungs, and published it on GitHub. The LBP-KNN model reported
an average accuracy of 98.66% when performing classification of the normal and infected
scans [8]. In 2021, Kassania et al. collected X-ray images of 137 COVID-19 patients and
137 normal individuals published on Github and Kaggle, respectively, and extracted fea-
tures using eight convolutional neural network (CNN)-based architectures (MobileNet,
DenseNet, Xception, ResNet, InceptionV3, InceptionResNetV2, VGGNet, and NASNet).
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Then, the normal and COVID-19 scans were classified using six machine learning models
(LightGBM, bagging tree, Adaboost, random forest, XGBoost, and decision tree). Conse-
quently, the bagging tree model using the features extracted by DenseNet121 showed the
best performance, with 99% classification accuracy [9]. In 2021, Jain et al. collected 6432
chest X-ray images (normal, n = 1583; COVID-19, n = 576; pneumonia, n = 4273), published
on Kaggle, to classify normal, COVID-19, and pneumonia scans using three deep learning
architectures (Inception V3, Xception, and ResNet). Consequently, the Xception model
showed the best performance, with 97.97% classification accuracy [10]. In 2021, Sitaula
et al. proposed a model combining the attention module and VGG-16 to classify normal,
COVID-19, and pneumonia on X-rays for three public datasets. Consequently, the proposed
model showed 79.58%, 85.43%, and 87.49% accuracy in three types of public open data,
respectively, and the best performance compared to other models reported on the same
data [11].

Most of the previous studies aimed to differentiate between normal and COVID-19
scans. Additionally, most of the previous studies that differentiated between COVID-19
and pneumonia scans applied deep learning. Since the lungs of normal patients are clean,
it is not difficult to distinguish them from COVID-19 with the naked eye. However, it is
difficult to distinguish the lungs of pneumonia patients from COVID-19 visually. Therefore,
there is a need for a method to help distinguish between COVID-19 and pneumonia. Deep
learning requires a large amount of data for training. However, since the collection of scans
is limited, explaining the results of the model is difficult due to the black box feature [12].
In addition, most of the preceding studies used public datasets that often used data from
various sources. If a public dataset is used, reliability of the images decreases. The image
quality and shooting conditions are often different and COVID-19 diagnosis verification
via RT-PCR or clinical diagnosis is uncertain. In particular, the pneumonia scans in most
studies used images from collected sources different than the COVID-19 scans. Since the
difference in patterns between COVID-19 and pneumonia is not large, a risk of generating
bias due to datasets from different sources exists.

In this paper, the X-ray scans of patients whose COVID-19 diagnosis has been verified
by RT-PCR diagnosis and of patients who tested positive for pneumonia were collected from
a single institution. Using a reliable, bias-minimized dataset, we aimed to find radiomic
features that can help differentiate between COVID-19 and pneumonia. In addition, by
training and validating various machine learning models based on radiomic features, we
have attempted to confirm the applicability of radiomic features and machine learning for
COVID-19 screening.

2. Materials and Methods
2.1. Ethics Statement

This retrospective study was approved by the Institutional Review Board (IRB) of Gil
Medical Center with a waiver of the requirement for patients’ informed consent (approval
number: GBIRB2020-370).

2.2. Data Collection

In this study, chest X-ray images of 250 patients diagnosed with COVID-19 and of
250 patients diagnosed with pneumonia at the Gachon University Gil Medical Center were
collected over the period of January 2020 to December 2021. The collected anteroposterior
(AP) X-rays were saved in the DICOM format. The COVID-19 scans were collected from
109 males and 141 females with a mean age of 61.58 ± 18.93 years for males (range:
13–100 years) and 64.32 ± 20.06 years for females (range: 6–97 years). Similarly, the
pneumonia scans were collected from 142 males and 108 females with a mean age of
68.40 ± 16.80 years for males (range: 23–98 years) and 74.67 ± 16.51 years for females
(range: 23–97 years). Table 1 shows the clinical characteristics of the COVID-19 and
pneumonia patients.
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Table 1. Clinical characteristics of COVID-19 and pneumonia patient cohorts.

Characteristic
Number of Patients (%)

p ValueCOVID-19
(n = 250)

Pneumonia
(n = 250)

Age (years) 63.12 ± 19.59 71.11 ± 16.93 p < 0.001
Sex

- Males 109 (43.6%) 142 (56.8%) p = 0.004
- Females 141 (56.4%) 108 (43.2%) p = 0.004

Height (cm) 162.30 ± 10.26 161.65 ± 9.96 p = 0.497
Weight (kg) 63.59 ± 14.43 58.53 ± 13.49 p < 0.001
BMI (kg/m2) 23.95 ± 3.81 22.49 ± 4.25 p < 0.001
HTN 115 (46.0%) 133 (53.2%) p = 0.128
DM 63 (25.2%) 82 (32.8%) p = 0.076
Smoking status

- None 177 (70.8%) 182 (72.8%) p = 0.691
- Former smoker 15 (6.0%) 7 (2.8%) p = 0.127
- Current smoker 10 (4.0%) 31 (12.4%) p = 0.001

Symptom
- Fever 80 (32.1%) 65 (26.0%) p = 0.159
- Cough 85 (34.0%) 34 (13.6%) p < 0.001
- Sputum 45 (18.0%) 43 (17.2%) p = 0.907
- Dyspnea 28 (11.2%) 85 (34.0%) p < 0.001
- Myalgia 33 (13.2%) 0 (0.0%) p < 0.001
- Sore throat 37 (14.8%) 1 (0.4%) p < 0.001

Values are the mean ± standard deviation or counts (proportions). p-value: Student t-test. BMI, body mass index;
HTN, hypertension; DM, diabetes mellitus.

The collected data were divided into the training and test data for the training and
validation of the machine learning model, respectively. For both COVID-19 and pneumonia,
80% of the data were randomly selected as the training data (COVID-19, n = 200; pneumonia,
n = 200), and the remaining 20% were used as the test data (COVID-19, n = 50; pneumonia,
n = 50). Figure 1 shows the flow chart of the collected data and the machine learning
process.

2.3. Region of Interest

To limit the analysis to the lungs, we defined a region of interest (ROI) for each X-ray
image. ImageJ (version 1.53e, National Institutes of Health, Bethesda, MD, USA), an open-
source software developed by the National Institute of Health (NIH), was used to define
the ROI. The boundaries of the left and right lung regions were drawn, excluding the aorta
and heart. The drawn ROI was collected by filling the inside and converting it into a binary
mask image. Figure 2 shows an example of the ROI for the collected lung region.
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Figure 1. Flowchart showing the data and machine learning process used to differentiate between
COVID-19 and pneumonia using chest X-ray images. GLCM, gray level co-occurrence matrix;
GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; NGTDM, neighboring
gray-tone difference matrix; GLDM, gray level dependence matrix; LR, logistic regression; NB, naive
Bayes; SVM, support vector machine; KNN, k-nearest neighbor; RF, random forest; XGB, extreme
gradient boosting; LGBM, light gradient boosting machine.
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age from pneumonia image. ROI, region of interest. 
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image, (B) ROI mask image from COVID-19 image, (C) pneumonia image, and (D) ROI mask image
from pneumonia image. ROI, region of interest.
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2.4. Extraction of Radiomic Features

Radiomic features were extracted from the ROI of each image using the Pyradiomics
library (version 3.6.2, https://github.com/Radiomics/pyradiomics.git, accessed on 11 July
2022) [13]. To extract the radiomic features, first-order and texture analyses to explain the
distribution of the pixel values and pattern of the image surface were used, respectively [14].
First-order analysis extracts statistical features from a histogram of pixel values, and
texture analysis extracts features by composing the relationship between the pixels into a
matrix [15–17]. Five matrix construction methods (gray level co-occurrence matrix (GLCM),
gray level size zone matrix (GLSZM), gray level run length matrix (GLRLM), neighboring
gray-tone difference matrix (NGTDM), and gray level dependence matrix (GLDM)) were
used. GLCM quantifies the spatial relationship of the pixels as a matrix by combining two
adjacent pixels [18]. GLSZM quantifies the size of adjacent pixels with the same gray level
intensity value as a matrix [19]. GLRLM quantifies the length of consecutive pixels with
the same gray level intensity as a matrix for a defined direction [20]. NGTDM quantifies
the difference between a specific gray level intensity value and an average intensity value
of adjacent pixels in a matrix [21]. GLDM quantifies the relative frequency of gray level
intensity values between pixels separated by a defined distance in a matrix [22].

In this study, 19, 24, 16, 16, 5, and 14 features were extracted using first-order analysis,
GLCM, GLSZM, GLRLM, NGTDM, and GLDM, respectively. Accordingly, a total of 94
radiomic features were used.

2.5. Feature Selection

All the features used in this paper were calculated for different purposes with different
formulae. However, if some variables have a high degree of correlation with other variables,
data analysis may be negatively affected. To minimize this effect, we eliminated features
with variance inflation factors (VIF) greater than 10 via multicollinearity analysis [23].

When input variables larger than the capacity of the capacity are used, the risk of
overfitting increases due to the high complexity of the model. Hence, to reduce the number
of input variables, after calculating the importance of each feature using the permutation
feature importance method, four final input variables were selected among the features
with high importance. Permutation feature importance is a method of calculating the
importance of components by calculating the change in a specific score when the indices of
each feature are randomly shuffled during initial model training [24,25]. The four input
variables selected are skewness, GLCM maximum probability, GLCM contrast, and GLCM
difference variance, as shown in Figure 3.
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2.6. Machine Learning Models to differentiate between COVID-19 and Pneumonia

In this study, logistic regression (LR), naive Bayes (NB), support vector machine (SVM),
k-nearest neighbor (KNN), bagging, random forest (RF), extreme gradient boosting (XGB),
and light gradient boosting machine (LGBM) were used to differentiate between COVID-19
and pneumonia based on the training data. Four previously selected features (skewness,
GLCM maximum probability, GLCM contrast, and GLCM difference variance) were used
as input variables for each machine learning model.

LR is an architecture that predicts the probability of the data belonging to a certain
category as a value between 0 and 1 using regression. A higher value indicates a higher
probability of belonging to that category [26]. NB is a supervised learning method that is
simple, fast, and provides high accuracy as a statistical classification technique based on the
Bayes theorem [27]. SVM is an architecture that learns how to classify data into two data
groups by measuring the distance of individual data in two categories, locating the center
point between the two data groups, and reporting the optimal hyperplane [28]. KNN is a
non-parametric delayed learning architecture that uses Euclidean distance to classify by
referring to K other data that are close to each other [29]. Bagging is an ensemble learning
model that bootstraps data, makes each independent model with the extracted data, and
then aggregates and classifies the learning results of each model [30]. RF is an ensemble
learning model architecture that constructs multiple decision trees, passes new data points
through each tree simultaneously, and votes on the results classified by each tree to obtain
the most voted result [31]. XGB is a tree-based ensemble learning model, based on the
gradient boost machine (GBM) that addresses the disadvantages of GBM, such as slow
execution time and overfitting regularization [32]. LGBM is a tree-based gradient boosting
architecture that uses leaf-wise methods to classify with high speed and high accuracy [33].

We used the grid search method to determine the optimal hyperparameters for each
machine learning model. Grid search is a search method that finds the most optimal
hyperparameter combination among the combinations of candidate groups of potential pa-
rameters while sequentially assigning possible values to the hyperparameters [34]. Table 2
shows the hyperparameters for each machine learning model determined using the grid
search.

Table 2. Hyperparameters used for training each machine learning model.

Model Hyperparameters

LR C: 997.265, penalty: L2, random state: 50
NB var smoothing: 1 × 10−9

SVM C: 998.196, kernel: linear, probability: true, random state: 50
KNN leaf size: 20, n neighbors: 2, weights: distance

Bagging max features: 3, max samples: 5, n estimators: 100, random state: 50
RF max depth: 190, n estimators: 709, random state: 50

XGB learning rate: 0.068, max depth: 11, n estimators: 100, random state: 50
LGBM learning rate: 0.05, max depth: 12, min child samples: 10, num leaves: 40, random state: 50

LR, logistic regression; NB, naive Bayes; SVM, support vector machine; KNN, k-nearest neighbor; RF, random
forest; XGB, extreme gradient boosting; LGBM, light gradient boosting machine.

2.7. Validation and Statistical Analysis

In this study, 5-fold cross-validation was performed to prevent the overfitting of
each trained machine learning model and secure sufficient test data [35]. Learning and
verification were performed five times, and all data were used for verification once. For
the verification of discrimination performance, accuracy, sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) were used as indicators. Each
performance index was calculated based on true positive (TP), false positive (FP), false
negative (FN), and true negative (TN). Accordingly, TP is when COVID-19 is correctly
identified, FP is when COVID-19 is misidentified as pneumonia, FN is when pneumonia
is misidentified as COVID-19, and TN is when pneumonia is correctly identified. In
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addition, the area under the receiver operating characteristic (ROC) curve (area under the
curve (AUC)) was used to evaluate the predictive performance of each machine learning
model [36]. The statistical significance was set as p < 0.05.

The software and libraries used for statistical analysis and performance verification
were Python (version 3.7.0, Python Software Foundation, Wilmington, DE, USA), sci-kit-
learn library (version 0.23.2), MedCalc (version 14.0, MedCalc Software Ltd., Mariakerke,
Belgium), and SPSS (version 20, IBM Corp., Armonk, NY, USA).

3. Results

In this study, the identification performance of COVID-19 and pneumonia was com-
pared with separately constructed test data for four types of machine learning models
trained using skewness, GLCM maximum probability, GLCM contrast, and GLCM differ-
ence variance as input variables. Table 3 and Figure 4 show the identification performance
of each machine learning model with and without feature selection. When the feature
selection step was not performed, all features were used as input data, and when the feature
selection step was performed, four selected features were used as input data.
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As a result of performance verification for identification between COVID-19 and
pneumonia, it showed higher performance in all models except the bagging model when
the feature selection step was performed than when the feature selection step was not
performed. The bagging model showed AUC = 0.836 (CI: 0.801–0.868) and AUC = 824 (CI:
0.787–0.856) performance with and without feature selection, respectively, and there was
no statistically significant difference (p = 0.335).

When the feature selection step was performed, the LGBM model showed the highest
performance, with AUC = 0.900 (CI: 0.870–0.925), and the bagging model showed the lowest
performance, with AUC = 0.824 (CI: 0.787–0.856). The AUCs of each machine learning
model had a significant difference (p < 0.001).

The results of accuracy performance verification for differentiation between COVID-
19 and pneumonia are as follows: The RF model had accuracy = 0.808 (CI: 0.771–0.842),
sensitivity = 0.816 (CI: 0.762–0.862), specificity = 0.800 (CI: 0.745–0.848), showing the highest
accuracy and balanced performance. The LGBM model showed the second highest accuracy
of 0.796 (CI: 0.758–0.831), but showed unbalanced performance with high sensitivity of
0.916 (CI: 0.875–0.947) and low specificity of 0.677 (CI: 0.614–0.734). This implies that LGBM
often misidentified pneumonia as COVID-19.

Figure 5 shows the heatmap of the influence of the four features used for differentiating
between COVID-19 and pneumonia for each machine learning model. In LR, SVM, and
KNN, the GLCM maximum probability (LR: 0.284, SVM: 0.274, KNN: 0.210) appeared as



Sensors 2022, 22, 6709 8 of 12

the feature having the greatest influence on differentiation performance, but in NB, RF,
XGB, and LGBM, the GLCM difference variance (NB: 0.230, RF: 0.229, XGB: 0.251, LGBM:
0.239) was found to be the most influential feature. In particular, the GLCM difference
variance (LR: 0.243, NB: 0.230, SVM: 0.237, KNN: 0.175, bagging: 0.101, RF: 0.229, XGB:
0.251, LGBM: 0.239) showed a high overall effect in all models.

Table 3. Each machine learning model’s AUC, sensitivity, specificity, PPV, and NPV for differentiating
between COVID-19 and pneumonia with and without feature selection.

AUC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

(Without Feature Selection)

LR 0.859
(0.825–0.888)

0.746
(0.706–0.784)

0.980
(0.954–0.994)

0.512
(0.448–0.576)

0.668
(0.639–0.695)

0.962
(0.914–0.984)

NB 0.743
(0.703–0.781)

0.560
(0.515–0.604)

0.960
(0.928–0.981)

0.160
(0.117–0.211)

0.533
(0.518–0.548)

0.800
(0.672–0.887)

SVM 0.831
(0.795–0.863)

0.532
(0.487–0.576)

0.996
(0.978–0.999)

0.068
(0.040–0.107)

0.517
(0.508–0.525)

0.944
(0.695–0.992)

KNN 0.745
(0.704–0.782)

0.682
(0.639–0.723)

0.912
(0.870–0.944)

0.452
(0.389–0.516)

0.625
(0.596–0.652)

0.837
(0.771–0.887)

Bagging 0.836
(0.801–0.868)

0.716
(0.674–0.755)

0.984
(0.960–0.996)

0.448
(0.385–0.512)

0.641
(0.614–0.666)

0.966
(0.913–0.987)

RF 0.863
(0.830–0.892)

0.720
(0.678–0.759)

0.948
(0.913–0.972)

0.492
(0.428–0.556)

0.651
(0.622–0.679)

0.904
(0.846–0.942)

XGB 0.876
(0.843–0.903)

0.792
(0.754–0.827)

0.880
(0.833–0.918)

0.704
(0.643–0.760)

0.748
(0.710–0.784)

0.854
(0.806–0.892)

LGBM 0.878
(0.846–0.906)

0.784
(0.745–0.819)

0.900
(0.856–0.934)

0.668
(0.606–0.726)

0.731
(0.694–0.765)

0.870
(0.820–0.907)

(With Feature Selection)

LR 0.870
(0.837–0.898)

0.796
(0.758–0.831)

0.860
(0.811–0.901)

0.732
(0.673–0.786)

0.762
(0.722–0.799)

0.839
(0.792–0.877)

NB 0.854
(0.820–0.883)

0.696
(0.654–0.736)

0.952
(0.918–0.975)

0.440
(0.378–0.504)

0.630
(0.603–0.656)

0.902
(0.838–0.942)

SVM 0.869
(0.836–0.897)

0.790
(0.752–0.825)

0.876
(0.829–0.914)

0.704
(0.643–0.760)

0.747
(0.709–0.783)

0.850
(0.802–0.889)

KNN 0.837
(0.802–0.869)

0.682
(0.639–0.723)

0.912
(0.870–0.944)

0.452
(0.389–0.516)

0.625
(0.596–0.652)

0.837
(0.771–0.887)

Bagging 0.824
(0.787–0.856)

0.742
(0.701–0.780)

0.924
(0.884–0.954)

0.560
(0.496–0.623)

0.677
(0.645–0.708)

0.881
(0.825–0.920)

RF 0.885
(0.854–0.912)

0.808
(0.771–0.842)

0.816
(0.762–0.862)

0.800
(0.745–0.848)

0.803
(0.760–0.840)

0.813
(0.769–0.850)

XGB 0.879
(0.848–0.907)

0.790
(0.752–0.825)

0.804
(0.749–0.851)

0.776
(0.719–0.826)

0.782
(0.739–0.820)

0.798
(0.753–0.837)

LGBM 0.900
(0.870–0.925)

0.796
(0.758–0.831)

0.916
(0.875–0.947)

0.676
(0.614–0.734)

0.739
(0.702–0.773)

0.890
(0.841–0.924)

LR, logistic regression; NB, naive Bayes; SVM, support vector machine; KNN, k-nearest neighbor; RF, random
forest; XGB, extreme gradient boosting; LGBM, light gradient boosting machine; AUC, area under the curve; PPV,
positive predictive value; NPV, negative predictive value; CI, confidence interval.
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LR, logistic regression; NB, naive Bayes; SVM, support vector machine; KNN, k-nearest neighbor; RF,
random forest; XGB, extreme gradient boosting; LGBM, light gradient boosting machine.

4. Discussion

In this study, 4 features significant for identification between COVID-19 and pneu-
monia were selected out of a total of 94 radiomic features extracted from chest X-ray
images. Next, using the selected features as input variables, a machine learning model
to differentiate between COVID-19 and pneumonia was trained and its performance was
verified. Consequently, all machine learning models showed high identification perfor-
mance with an AUC > 0.8. In particular, the LGBM model showed the highest performance
with AUC = 0.900. These results imply that the four significant features, namely skewness,
GLCM maximum probability, GLCM contrast, and GLCM difference variance, used as
input variables, can be used to differentiate between COVID-19 and pneumonia.

Unlike deep learning, machine learning uses features extracted from the images.
Hence, interpreting the results is easy. Essentially, interpreting the effect of each feature in
the learned model on the differentiating performance is easy. A small and large value of
skewness, a first-order type feature, results in a histogram that is skewed to the right and
left, respectively. When the histogram is skewed to the right, the image is generally brighter,
and when the histogram is skewed to the left, the image is darker. GLCM contrast, GLCM
maximum probability, and GLCM difference variance are the texture features of all the
image surfaces and are calculated from the GLCM matrix analyzed from the image. GLCM
contrast is a feature for viewing the difference between adjacent gray level intensities.
The greater the contrast, the greater the difference between adjacent gray level intensities.
GLCM maximum probability is defined as a pair of neighboring gray level intensity values
that occur maximally in the GLCM matrix. A greater value indicates more identical patterns
in the image. GLCM difference variance is used to measure heterogeneity by assigning
more weight as the gray level intensity pairs deviate more from the mean in the GLCM
matrix. Therefore, a larger value implies a higher number of texture patterns on the image
surface.
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The size of the four selected features was determined for each of the COVID-19 and
pneumonia groups. Skewness was 0.2948 ± 0.2464 and 0.3224 ± 0.3092 (p = 0.272), GLCM
contrast was 0.04371 ± 0.01242 and 0.03745 ± 0.02234 (p = 0.0001), GLCM maximum proba-
bility was 0.005176 ± 0.001932 and 0.007158 ± 0.003697 (p = 0.0001), and GLCM difference
variance was 1.5758 ± 0.4185 and 1.9410 ± 1.3985 (p = 0.0001). GLCM contrast tended to
be larger in the COVID-19 group than in the pneumonia group, but the GLCM maximum
probability and GLCM difference variance tended to be smaller. With regards to skewness,
although the COVID-19 group showed a smaller trend compared to the pneumonia group,
it showed no statistically significant difference. Combining these characteristics, we inter-
preted them as follows: COVID-19 has a rougher surface texture than pneumonia, and
pneumonia has a slightly more uniform surface texture compared to COVID-19 but shows
various texture patterns. Since pneumonia shows significant consolidation throughout
the lungs, various texture patterns appear, and many textures of the same pattern occur
simultaneously. For COVID-19, the central part of the lung is black and transparent, but
the pattern of clear contrast between the central part of the lung and the lesion increased
due to the GGO and consolidation towards the outer part.

In this study, we compared the identification performance with and without feature
selection. As a result, feature selection improved the performance in all models except
the bagging model. When all features were used as input data without feature selection,
too many features seemed to cause overfitting to the training data. Although the bagging
model showed the opposite result, there was no significant difference between AUCs, so it
was somewhat difficult to interpret whether feature selection affected the performance.

The LGBM model showed the highest AUC but displayed unbalanced performance
between sensitivity and specificity. However, sensitivity is very important in clinical
practice because the lesion should not be missed. The LGBM model’s performance is
disproportionate, but its high sensitivity can be helpful in COVID-19 screening.

In this study, we confirmed that the radiomic features in chest X-rays can be used
as indicators to differentiate between COVID-19 and pneumonia using machine learning.
However, this study poses a limit for sufficient verification of diagnosis. Since the data
used are directly collected from a single institution, the reliability of the data is sufficient.
However, for sufficient verification, more data are required, and additional verification
of multi-national and multi-institutional data is required. In addition, verifying details
according to the severity is necessary because differences in the symptoms and aspects
shown in the image depending on the severity of COVID-19 and pneumonia may exist.
From an engineering point of view, it is necessary to apply and compare machine learning
and deep learning models that are more appropriate for COVID-19 screening through com-
parison with the various latest models. In the future, if sufficient verification is conducted
through various additional experiments, the radiomic features and machine learning in the
clinical screening test for COVID-19 using chest X-rays will provide more information to
the medical staff when differentiating between COVID-19 and pneumonia.

5. Conclusions

In this study, machine learning used radiomic features as a useful indicator to quantify
and differentiate between COVID-19 and pneumonia using chest x-rays. If sufficient anal-
ysis and validation are conducted through additional studies in the future, the radiomic
features could be usefully utilized as non-invasive biomarkers that provide more informa-
tion in the identification between COVID-19 and pneumonia. In addition, the combination
of radiomic features and machine learning is expected to be helpful for the screening and
diagnosis of COVID-19.
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