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Abstract: Aiming at the problems of nonlinearity and inaccuracy in the model of the pneumatic
control valve position in the industrial control process, a valve position control method based on a
fractional-order PID controller is proposed. The working principle of the pneumatic control valve is
analyzed, and its mathematical model is established. In order to improve the accuracy of the model,
an improved biogeography-based optimization algorithm is proposed to tune the parameters of the
fractional-order PID controller in view of the wide range and high complexity of the fractional-order
PID controller. The initialization of the chaotic graph, the adjustment of the migration model, and the
improvement of the migration operator and the mutation operator are introduced to improve the
algorithm optimization ability, which is used for the model identification of the control valve control
system. The simulation and experimental results clearly show that, compared with the integer-order
PID controller, the designed fractional-order PID controller has faster response speed and control
accuracy, which can better meet the requirements of pneumatic control valve position control.

Keywords: pneumatic control valve; fractional-order PID controller; improved biogeography-based
optimization algorithm

1. Introduction

As the key terminal equipment in the automation system, the pneumatic control valve
is widely used in industrial control fields such as metal smelting, petrochemical, nuclear
power, and sewage treatment [1,2]. Due to its inherent properties such as sealing perfor-
mance, friction force, and flow characteristic curve, the pneumatic control valve inevitably
has nonlinear characteristics such as hysteresis and dead zone [3]. In the industrial produc-
tion process, if the valve position is not properly controlled and the vibration is too large, it
will increase the wear of the valve stem, and, in severe cases, it will cause surge and reduce
the life of the regulating valve. If the adjustment time is too long, it is not conducive to
production efficiency. Pneumatic control valves not only need to reach the specified valve
position quickly and smoothly, but also need to have high accuracy.

For the modeling of the pneumatic actuator of the pneumatic control valve, different
objects have been investigated, including the modeling and analysis of soft pneumatic
actuator based on a soft robot gripper [4], dynamic modeling of bidirectional pneumatic
actuator based on the dynamic balance equation [5], and modeling of soft pneumatic
actuators with different orientation angles using echo state networks for irregular time
series data [6], which are of great help in modeling pneumatic control valves.

Many scholars have also conducted studies on the valve position control of pneumatic
control valves. Plestan et al. [7] designed a new adaptive sliding mode controller that
ensures that the gain is not overestimated and reduces chattering during valve position
control. Haslinda et al. [8] applied predictive control to the pneumatic control valve.
Although the nonlinear factor interference of the control valve was solved in a certain sense,
the problems of poor robustness and low stability still existed. Guo et al. [9] designed an
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active disturbance rejection controller according to the characteristics of the valve cylinder
servo system. The co-simulation of AMESim and MATLAB verified that the controller has
the advantages of strong anti-disturbance and high precision. In addition, fuzzy neural
network-PID [10], PID-IMC (internal model control) [11], Expert-PID [12], etc. have been
proposed for regulating valve position control, thus improving the control accuracy and
response speed of the pneumatic control valve, control accuracy, and responsiveness. At
present, most of the control strategies in engineering are still mainly integer-order PID or
other control strategies based on integer-order PID, while traditional integer-order PID
struggles to meet the increasing control demand.

In the existing literature, few researchers have applied the fractional-order control the-
ory to the valve position control of pneumatic control valves. Because the fractional calculus
operation has memory characteristics, compared with the integer-order PID, the differential
order and the integral order are introduced. Second, the flexibility of controller design is
increased, and the combination of fractional-order calculation and controller parameter
tuning is one of the current research hotspots [13,14]. The main methods of fractional-order
PID controller parameter tuning include intelligent optimization method [15], phase an-
gle margin and amplitude margin method [16], dominant pole method [17], and transfer
function design method based on ideal bode [18]. Some scholars have introduced intel-
ligent optimization algorithms to adjust fractional-order PID parameters, showing good
results [19–21]. For example, the biogeography-based optimization algorithm, as an intelli-
gent optimization algorithm, has been proven to have fast convergence and high accuracy.

For some current optimization algorithms applied to valve positioner opening control,
there are still too many iterations, and the problem of jumping out of the local optimal abil-
ity is poor. In order to effectively realize the valve position control of the regulating valve,
this paper proposes an improved biogeography-based optimization algorithm, which im-
proves the optimization ability by introducing chaotic mapping initialization, adjusting the
migration model, and improving the migration operator and mutation operator. The model
is not accurate enough because it does not consider the air pressure fluctuation, system
viscosity, and dead zone. Although previous researchers have conducted some forward-
looking work on the pneumatic control valve, the current pneumatic control valve still
has the problems of inaccurate valve position control, a considerable amount of overshoot,
and long adjustment time. Therefore, this paper adopts an improved biogeography-based
optimization algorithm to fit the open-loop response curve of the control system, as well as
derives a new pneumatic control valve model. In addition, the fractional-order PID control
method is applied to the valve position control of the pneumatic control valve, and the
parameters of the fractional-order PID controller are adjusted using the proposed improved
algorithm. Lastly, the effectiveness of the proposed control valve position control method
is proven by simulation and experiment.

2. Establishment of Mathematical Model of Pneumatic Control Valve
2.1. Pneumatic Control Valve Structure and Working Principle

The pneumatic control valve is mainly composed of three parts: valve positioner, valve
actuator, and valve body. Schematic diagrams of its structure are shown in Figures 1–4.
The valve positioner is the “brain” of the regulating valve, which calculates the control
signal and sends the air pressure signal to the actuator to correct the valve position. As an
actuator, the valve actuator adjusts the valve position under the signal of air pressure until
the air chamber reaches a balanced state. The valve body is composed of a throttling part
through the valve core and the valve seat, so as to realize the corresponding relationship
between the flow rate and the valve position.
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Figure 4. Structural diagram of the control valve body.

The working principle of the pneumatic control valve is that the valve positioner
receives the valve position setting signal, and the controller processes the valve position
setting signal and the collected valve position feedback signal in real time. The output signal
of the valve positioner cannot directly drive the valve actuator. The electric/pneumatic
conversion unit in the positioner converts the air pressure signal into the air pressure
signal, and the converted air pressure signal is amplified by the pneumatic amplifier and
then enters the chamber through the control air pressure air path, changes the chamber
air pressure, pushes the film to generate thrust, and pushes the valve stem in the valve
actuator. Ideally, when the valve position feedback signal and the preset signal are equal,
the diaphragm in the actuator chamber is in a balanced state, and the valve position reaches
the specified position at this time.
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2.2. Model Establishment of Pneumatic Control Valve

The pneumatic membrane actuator is divided into a valve actuator mechanism and a
regulating mechanism. The working process of the valve actuator mechanism is divided
into three stages; the input air pressure is converted into the air pressure in the air chamber,
the air chamber air pressure is converted into thrust, and the thrust is converted into
valve stem displacement. The last two links can be treated as linear links. The differential
equation of the valve actuator mathematical model is approximated as

RC
Kr

Ae

dP2

dt
+ P2 = P1, (1)

where P1 is the input air pressure, P2 is the chamber air pressure, Kr is the spring stiffness,
Ae is the effective area of the diaphragm in the chamber, R is the air resistance of the air
path (R = β1 · l

s , where β1 is the gas resistance coefficient of the gas path, l is the length
of the gas path, and s is the cross-sectional area of the gas path), and C is the air capacity
of the air path (C = β2V, where β2 is the gas capacity coefficient of the gas path, and V
is the volume of the gas cavity). The stress analysis diagram of the valve stem is shown
in Figure 5.
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The rod of the adjustment mechanism is driven by the spring structure, and a force
analysis of the valve rod is carried out. When the sum of the pressure of the chamber gas
on the chamber film and the gravity of the valve rod is greater than the sum of the friction
force and the spring force of the valve rod, the valve rod will slide down. According to
Newton’s second law, we have

ma = Fm + Fp − Ff − Fd − Fs − Fvc, (2)

where Fm is the gravity of the valve stem, i.e., the gas chamber membrane above the valve
stem, the pressure Fp is generated by the gas in the gas chamber acting on the membrane,
the static friction Ff is generated between the valve stem and the packing, the preload Fd of
the spring is generated on the valve stem when it leaves the factory, the reaction force Fs of
the spring is generated on the valve stem when it is compressed, the reaction force Fvc of
the medium flowing through the valve body is generated on the valve stem, ignoring the
spring preload and the reaction force. Unfolding Equation (2) yields

m
..
x = mg + pAe − Kb

.
x− K f x, (3)

where m is the mass of the valve stem, g is the acceleration due to gravity, p is the chamber
pressure, Kb is the Coulomb friction coefficient of the valve stem, and K f is the spring
stiffness coefficient.

The valve positioner is mainly composed of a torque motor, nozzle baffle, and pneu-
matic amplifier. The torque motor includes a coil circuit and a magnetic unit, and the
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relationship between its output torque and the deflection angle of the baffle is simplified
as follows:

Td = Kt∆i + Kmθ, (4)

Kt = 2Ncφg

(
a
g

)
ξ, (5)

Km = 4φ2Rg

(
a
g

)2
ξ, (6)

where Kt is the electromagnetic torque coefficient of the torque motor, Km is the magnetic
spring stiffness of the torque motor, ∆i is the input current, Nc is the number of turns of
the coil, φg is the initial zero magnetic flux, a is the length of the moment arm, g is the air
gap width of the iron piece in the middle position, and ξ is the influence coefficient of the
reluctance in the magnetic circuit on the torque motor.

The distance between the orifice of the nozzle baffle and the baffle is determined by the
output angle of the torque motor. The flow characteristics of the nozzle baffle are simplified
as follows:

QL =

√
1
ρ

Ps

(
ßCqD0

2

4
− ßCqD f x f

)
, (7)

where ρ is the fluid density, Ps is the gas source air pressure, QL is the flow rate of the
nozzle baffle, Cq is the flow coefficient (generally 0.6–0.8), D0 is the diameter of the orifice,
D f is the nozzle diameter, and x f is the offset of baffle to equilibrium state.

The pneumatic amplifier amplifies the output air pressure of the nozzle baffle, such
that the gas enters the film air chamber to drive the valve stem to move. The working
process of charging and exhausting can be equivalent to the flow characteristics of small
holes. The flow equation at the valve opening is as follows:

qm
∗ = 0.04 Ps√

Ts

P
Ps
< b

qm = qm
∗

√
1−

(
P
Ps −b
1−b

)2
b ≤ P

Ps
≤ 1

, (8)

where qm
∗ and qm represent the gas mass flow in the case of sonic flow and subsonic flow,

respectively, Ts is the air temperature upstream of the orifice, b is the critical pressure ratio,
and P is the downstream pressure of the orifice.

3. Biogeography-Based Optimization Algorithms and Improvements
3.1. Overview of Standard Biogeography-Based Optimization Algorithms

Since the genetic algorithm was proposed in 1963, more than half a century later,
people are continuously proposing various meta-heuristic algorithms through biological
behavior, natural principles, and even social phenomena and applying them to solve
various problems in social life.

Professor Dan Simon formally proposed the biogeography-based optimization al-
gorithm in IEEE Transsctions on Evolutionary Computition in 2008 [22]. Because the
biogeography-based optimization algorithm is simple, is easy to implement, and has few
parameters, it has attracted extensive attention from scholars all over the world. The
method uses biogeographic principles for mathematical modeling and simulates species
movement and information exchange between island habitats, resulting in a biogeographic
optimization process.

3.2. Description of Biogeography-Based Optimization Algorithm Operators

The standard biogeography-based optimization algorithm mainly includes three kinds
of operators: migration operator, mutation operator, and clearing operator.
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The role of the migration operator is mainly to exchange information between the se-
lected island habitats and the island habitats selected by the roulette wheel in the remaining
island habitats.

The role of the mutation operator is to perform random mutation within the upper
and lower bounds of a dimension on the selected island habitat.

The role of the removal operator is to remove the duplicate species in the island habitat
after a series of operations on the species in the island habitat (retaining one of the duplicate
species, while the others are randomly mutated within the upper and lower bounds).

3.3. Improvement of Biogeography-Based Optimization Algorithm
3.3.1. Chaos Initialization

The chaotic system is random and ergodic, and it can initialize all points in the target
area through iterative coverage, making the species in the island habitat more random and
uncertain. To this end, a chaotic map sequence is introduced. The chaotic system mapping
equation is as follows:

Z(1, :) = rand(1, OPTIONS.numVar), (9)

Z(i, :) = µZ(i− 1, :). × (1 − Z(i− 1, :)), i = 2, 3, . . . , OPTIONS.popsize, (10)

where OPTIONS.numVar is the number of genes in each population member,
OPTIONS.popsize is the total population size, and µ is the chaotic variable. When µ = 4,
the model is in a completely chaotic state.

The chaotic vector is inversely transformed to the original space by Equation (11).

chrom = MinParValue + (MaxParValue−MinParValue + 1)× (Z(popindex, :))
popindex = 1, 2, . . . , OPTIONS.numVar

(11)

where chrom is the component matrix of the popindex-th island habitat.

3.3.2. Improvements to the Migration Model

Simon adopted the standard biogeography-based optimization algorithm’s migration
model as a linear model, suggesting that, with the increase in the number of species, the
in-migration rate would show a linear decreasing trend, while the in-migration rate would
show a linear migration trend. However, this model is relatively simple, as it can only
briefly describe the migration law of species between island habitats, but cannot fully
and effectively describe the real migration law. In this paper, a hyperbolic tangent model
is used.

λn = I
2 (−

αn− p
2 −α−n+ p

2

αn− p
2 +α−n+ p

2
+ 1)

µn = E
2 (

αn− p
2 −α−n+ p

2

αn− p
2 +α−n+ p

2
+ 1)

(12)

where λn and µn are the in-migration rate and the out-migration rate, respectively; when
the number of species in the island habitat is n, I and E are the highest in- and out-
migration rates in island habitats, respectively. n = Population.SpeciesCount is the number
of species in the current island habitat, and P = OPTIONS.popsize is the maximum
number of species.

In this hyperbolic tangent mobility model (α was taken as 1.1 in this paper), the trend
of mobility changing with the number of species is similar to that of the cosine model,
but the amplitude is weaker than that of the cosine model when the number of species is
small. The amplitude is stronger in the middle, which better describes the actual law of
species migration between island habitats. Several transfer models are shown in Figure 6
(I = E = 50).
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3.3.3. Improvement of Migration Operator

In Simon’s BBO algorithm, when the random number generated by a certain dimen-
sion is smaller than the emigration rate, the migration operator will directly replace the
corresponding features of the immigration island habitat with the characteristics of the
immigration island habitat; when the random number is greater than the emigration island
habitat rate, no change is made. This may allow the characteristics of poor individuals to be
replicated in better individuals. This paper proposes the following improved algorithms:

• Weight transfer operator. When the random number of a certain dimension is less
than the emigration rate, 10% of the original island habitat disturbance is added, and
the weight of the emigrated island habitat is reduced to 90%, i.e.,

Island(k, j) = 0.1× Populatin(k).chrom(j)+
0.9× Population(SelectIndex).chrom(j)

(13)

where Island(k, j) is the j-th dimension vector in the k-th island habitat after the
migration operation is completed, Populatin(k).chrom(j) is the j-component of the
original island habitat k, and Population(SelectIndex).chrom(j) is the j-component of
the SelectIndex-th island habitat selected to provide exchange information.

• Mixed optimal migration operator. When the random number of a certain dimension
is greater than the migration rate, the variable of this dimension is still migrated, and
the migration method is the convex combination of the migrated individual and the
current optimal individual p1, i.e.,

Island(k, j) = (1− ε)× Population(k).chrom(j)+
ε× Population(1).chrom(j)

(14)

where ε ∈ [0, 1], and Population(1).chrom(j) is the j-th dimension vector of the current
best individual.
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The reasons for using mixed transfer are that good individuals are less likely to
degenerate due to transfer, because some of their original characteristics will be retained
during the transfer process; poor individuals will receive at least part of the solution from
good individuals during transfer. Features such as migration ensure that species evolve
towards the optimal value of each generation, no longer blindly searching, and they can
quickly converge toward the optimal direction.

The mixing parameter ε can be random, deterministic, or dynamically changed. In
this paper, a strategy of dynamically adjusting q according to the change of the number of
iterations is proposed through a large number of experiments. In order to for the island
habitat to be mainly affected by the characteristics of the immigrant island habitat in the
early stage of evolution, the mixing parameter ε1 = 0.1 is taken. In the middle stage
of evolution, in order to prevent the algorithm from prematurely falling into the local
optimum, while ensuring that individuals with low fitness have the ability to survive
and develop, the mixed migration parameter ε2 = 0.5 is taken to reduce the migration
pressure. In the later stage of evolution, in order to reduce the random disturbance of
migrating island habitats and destroy the better individuals, the mixing parameter ε3 = 0.9
is taken to make the better solution have stronger survivability, which helps to improve the
convergence accuracy. The entire migration equation is as follows:

for each individual
for each dimension

if rand < lambdaScale
Island(k, j) = 0.1× Population(k).chrom(j) + 0.9× Population(SelectIndex).chrom(j)

else
if GenIndex < OPTION.Maxgen/3
Island(k, j) = (1− ε1)× Population(k).chrom(j) + ε1 × Population(1).chrom(j) ε1 = 0.1

else
if OPTION.Maxgen/3 < GenIndex <= 2×OPTION.Maxgen/3
Island(k, j) = (1− ε2)× Population(k).chrom(j) + ε2 × Population(1).chrom(j) ε2 = 0.5

else
Island(k, j) = (1− ε3)× Population(k).chrom(j) + ε3 × Population(1).chrom(j) ε3 = 0.9

end if
end if

end if
next dimension

next individual

(15)

where lambdaScale (normalized immigration rate) is the standard immigration rate, GenIndex
is the current number of iterations, and OPTIONS.Maxgen is the maximum number of
iterations.

3.3.4. Improvement of Mutation Operator

The standard BBO adopts a random mutation strategy, which facilitates destroying
individuals with high fitness, resulting in the mutation potentially bringing about worse
individuals and reducing diversity. This paper proposes an optimal hybrid mutation
operator to avoid the drawbacks caused by random mutation. The specific algorithm
implementation is divided into two parts, optimization and mixing, with weights of 0.618
and 0.382, respectively, after many tests.

The specific operation is to multiply the optimal value component Population(1).
chrom(parnum) obtained in the current island habitat (the parnum-th dimension compo-
nent in the first island habitat) by the weight 0.628 as the optimal component; the p-th
dimensional component of the k-th island habitat is multiplied by 0.328 and then multiplied
by the random number of variation as a mixed component, which is embodied in the
student distribution (t distribution) trand(1, 1, 1) in the early stage of the iteration to obtain
the large-scale variable asynchronous length. In the later stage of the iteration, the main
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purpose of the Gaussian variation normrand(0, 1) is to strengthen the local exploration
ability in the later stage and jump out of the limitation of local optimization. The entire
mutation algorithm is as follows:

Island(k, parnum) = 0.618× Population(1).chrom(parnum)+
0.328× Populatin(k).chrom(parnum)×
(GenIndex/OPTION.Maxgen× (1 + normrnd(0, 1))+
(1− GenIndex/OPTIONS.Maxgen)× (1 + trand(1, 1, 1)))

(16)

3.4. Simulation Experiment and Result Analysis

In order to verify and test the practicability and advancement of the improved BBO
algorithm in this paper, a series of comparative experiments are carried out in this section,
mainly to compare the improved BBO algorithm with the original BBO algorithm and
various excellent intelligent optimization algorithms in recent years, including ACO, DE,
ES, GA, PBIL, PSO, and SGA. This article uses 13 standard benchmark functions as shown
in Table 1.

Table 1. The 13 standard benchmark functions.

Function Name Number of Dimensions Scope

Ackley 30 [−30, 30]30

Flethcher 30 [−ß, ß]30

Griewank 30 [−600, 600]30

Penalty1 30 [−50, 50]30

Penalty2 30 [−50, 50]30

Quartic 30 [−1.28, 1.28]30

Rastrigin 30 [−5.15, 5.12]30

Rosenbrock 30 [−2.048, 2.048]
30

Schwefel1 30 [−65.536, 65.536]30

Schwefel2 30 [−20, 20]30

Schwefel3 30 [−200, 200]30

Sphere 30 [−5.12, 5.12]30

Step 30 [−200, 200]30

Nine algorithms were tested on these 13 test functions, with the species scale OPTION.
popsize = 50 and the maximum number of iterations OPTION.Maxgen = 200. The
maximum immigrant rate I and the maximum immigrant rate E were both 1, the maxi-
mum number of species Smax = P = OPTION.popsize, and the maximum mutation rate
mmax = OPTION.pmutate = 0.005. In order to avoid chance and maintain the scientificity
and rigor of the experiment, the nine algorithms were independently run 50 times on each
test function, and the mean and standard deviation of the 50 results were compared. The
comparison results of the nine algorithms are shown in Table 2.

In addition, the convergence of the nine algorithms to the 13 test functions is shown in
Figure 7.

It can be seen from Table 2 and Figure 7 that, compared with the other eight algo-
rithms, IBBO had a good performance in the selected 13 test functions. Specifically, the
minimum value, the mean value, and the standard deviation were relatively smaller, and
the convergence speed and accuracy were also relatively better. This shows that the IBBO
algorithm had better global search ability and the ability to jump out of the local optimum,
representing an improved algorithm worthy of adoption and promotion.
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Table 2. Comparison results of nine algorithms for 13 test functions.

Function ACO BBO DE ES GA PBIL PSO SGA IBBO

Ackley
min 10.6628 4.1256 3.2636 18.3172 13.7105 19.2149 15.8786 3.9221 1.9716

mean 13.5510 4.8965 3.6056 19.3152 16.7410 19.8378 16.3563 4.6009 2.4420
std 2.3223 0.5765 0.2466 0.3891 1.4076 0.246 0.3399 0.5236 0.2927

Flenthcher
min 1,245,598 111,062 356,329 1,597,417 214,239 1,109,620 1,403,971 125,131 105,709

mean 1.8 × 106 1.3 × 105 4.8 × 105 1.9 × 106 4.2 × 105 1.4 × 106 1.6 × 106 1.6 × 105 1.3 × 105

std 4.0 × 105 2.2 × 104 6.6 × 104 2.4 × 105 1.5 × 105 2.0× 105 1.5 × 105 2.3 × 104 1.1 × 104

Griewank
min 4.7090 2.4367 1.4684 165.044 20.2711 427.8509 108.994 1.8198 1.0679

mean 7.2543 2.9381 1.6811 221.703 37.9814 448.9497 140.198 2.2808 1.2268
std 1.6275 0.3260 0.2198 33.3833 10.8546 24.1245 19.3807 0.5274 0.0677

Penalty1
min 1,671,844 3.9859 8.6215 1.2 × 108 9.4521 1.8 × 108 13,750,807 1.0272 0.1321

mean 3.4 × 108 4.5284 14.1119 1.8 × 108 864.382 2.7 × 108 2.0 × 107 1.4334 0.4603
std 2.7 × 108 0.5636 3.7758 5.1 × 107 864.380 8.0 × 107 7.0 × 106 0.5340 0.1815

Penalty2
min 113,520 11.4652 105.1962 2.6 × 108 6259.28 3.3 × 108 3.3 × 107 3.0526 0.5626

mean 3.0 × 108 17.8096 739.8444 3.7 × 108 3.0 × 105 5.9 × 108 7.3 × 107 4.6854 2.5750
std 3.5 × 108 5.9365 686.6578 6.1 × 107 4.0 × 105 1.0 × 108 3.2 × 107 1.2751 1.0279

Quartic
min 3.0487 0.0013 0.0031 46.1170 0.1269 54.7615 6.2594 0.0002 2.8 × 10−5

mean 5.8396 0.0053 0.0067 58.5713 0.6576 65.9201 8.6888 3.9 × 10−4 5.7 × 10−5

std 3.6090 0.0040 0.0033 7.3838 0.3701 5.9463 2.5195 1.2 × 10−4 2.4 × 10−5

Rastrigin
min 217.8773 24.3133 169.2863 323.992 152.970 315.287 226.959 28.6717 15.1721

mean 251.5205 27.9260 186.6605 366.190 203.196 364.956 260.566 34.9787 19.6687
std 20.4680 3.1046 7.7485 23.5157 36.4538 18.6455 17.4848 3.8464 1.9322

Rosenbrock
min 3594.80 111.203 94.562 3816.12 288.426 3349.00 763.314 94.9775 29.5112

mean 4.4 × 103 132.272 108.888 5.1 × 103 405.606 4.4 × 103 1.2 × 103 115.377 33.7508
std 451.691 22.5807 11.1501 926.611 91.3460 571.998 237.121 17.9313 2.7769

Schwefel1
min 9162.77 5002.61 18,129.05 21,679.1 8277.50 19,694.6 10,323.2 6388.35 1074.32

mean 1.4 × 104 7.0 × 103 2.1 × 104 2.9 × 104 1.5 × 104 2.4 × 104 1.7 × 104 9.4 × 103 1.2 × 103

std 2.8 × 103 902.9220 2.4 × 103 4.1 × 103 3.8 × 103 2.7 × 103 3.2 × 103 2.2 × 103 108.255

Schwefel2
min 74.8000 4.1000 4.1630 111.900 35.6000 86.7000 54.9496 4.5000 1.2521

mean 84.3500 4.8800 4.6133 125.570 46.9900 100.110 102.771 6.5200 2.1421
std 6.4977 0.6431 0.4821 10.6046 6.9542 5.9831 31.3971 1.3578 0.3756

Schwefel3
min 32.2000 40.7000 37.9842 54.9440 47.4000 73.1000 51.0582 28.9000 11.4676

mean 38.5400 49.4200 45.4736 61.9637 55.4400 77.3600 60.8716 39.7100 14.6438
std 5.4244 6.8949 5.1956 5.1824 6.8050 2.2962 8.5732 6.8140 1.2038

Sphere
min 40.9896 0.5241 0.1052 108.830 20.6913 100.080 30.23603 0.2923 0.0137

mean 50.8767 0.6823 0.1689 132.356 31.2184 128.365 38.4796 0.4767 0.0374
std 6.7235 0.0974 0.0439 13.5977 6.7534 13.1963 4.2327 0.1093 0.0164

Step
min 1036.00 127.000 53.0000 30,114.0 2126.00 34,324.0 13,524.0 80.0000 1.0000

mean 1.5 × 103 206.900 69.0000 34,528.0 3.5 × 103 46,144.0 15,917.0 122.600 10.8000
std 360.716 53.2531 9.5812 4.0 × 103 1.3 × 103 6.2 × 103 1.5 × 103 52.8076 4.6648
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Figure 7. (a) Convergence of nine algorithms under Ackley function; (b) convergence of nine
algorithms under Flethcher function; (c) convergence of nine algorithms under Griewank function;
(d) convergence of nine algorithms under Penalty1 function; (e) convergence of nine algorithms
under Penalty2 function; (f) convergence of nine algorithms under Quartic function; (g) convergence
of nine algorithms under Rastrigin function; (h) convergence of nine algorithms under Rosenbrock
function; (i) convergence of nine algorithms under Schwefel1 function; (j) convergence of nine
algorithms under Schwefel2 function; (k) convergence of nine algorithms under Schwefel3 function;
(l) convergence of nine algorithms under Sphere function; (m) convergence of nine algorithms under
Step function.

4. Parameter Identification of Pneumatic Control Valve Model

The pneumatic control valve integrates the air circuit, circuit, and magnetic circuit,
and the control system is complex. The white box model often does not take into account
the viscosity and wear of the control valve, and it requires a large number of accurate
parameters; when the model deviates from the actual process, the actual process data also
need to be compensated. An open-loop step experiment was performed on the pneumatic
control valve, and the results were normalized. The experimental results are shown
in Figure 8.
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Figure 8. Open-loop step normalization results of pneumatic control valve.

The pneumatic control valve model is often expressed in the form of a third-order
transfer function [23]. In order to establish an effective model, the transfer function was
identified through the improved biogeography-based optimization algorithm in this paper,
and the step response of the model was compared with the experimental data at each
iteration. The difference was used as the algorithm adaptation value. The flow chart is
shown in Figure 9.
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After many iterations, the pneumatic control valve model was obtained as follows:

G(s) =
5.588

12.370S3 + 620.851S2 + 164.916S + 5.568
e−0.32. (17)

Its identification fitting diagram is shown in Figure 10.
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It can be seen from Figure 10 that the proposed improved biogeography optimization
algorithm had a high degree of fitting, which shows the effectiveness and superiority of the
improved algorithm.

5. Fractional-Order PID Controller Design
5.1. Fractional-Order PID Controller

There are three commonly used definitions of fractional calculus: Riemann− Liouville,
Grunwald − Letnikov, and Caputo definitions. Under certain conditions, the first two
definitions are basically equivalent, where Grunwald− Letnikov is defined as

t0
Dα

t f (t) = lim
h→0

1
hα

[
t−t0

h ]

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (18)

where
(

α
j

)
= Γ(α+1)

Γ(j+1)Γ(α−j+1) , [·] is the nearest integer, α is the calculus order, t0 and t

are the upper and lower limits of the integral, respectively, and h is the sampling period.
The discrete and approximate fractional operators are realized using the Oustaloup filter.
If the frequency band of the approximate model to be obtained is [wb, wh], the linear
characteristics of fractional calculus can be approximated according to a group of broken
lines, as shown in the Figure 11.

Thus, the transfer function is

G = K
N

∏
k=−N

1 + s
w′k

1 + s
wk

, (19)

where K is the gain, N is the order, and w′k and wk represent the zero and pole respectively.

K = (wh, wb)
δ, (20)
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w′k = wb

(
wh
wb

) k+N+0.5(1−µ)
2N+1

, (21)

wk = wb

(
wh
wb

) k+N+0.5(1+µ)
2N+1

, (22)

where δ is the fractional order, wb = 0.001, wh = 10000, and N = 5. Compared with
integer-order PID, FOPID has more integral order λ and differential order µ, which can
control the controlled object more flexibly, so as to meet the performance index of complex
system. Figure 12 is the FOPID control plane diagram.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 25 
 

 

5. Fractional-Order PID Controller Design 
5.1. Fractional-Order PID Controller 

There are three commonly used definitions of fractional calculus: Riemann Liouville−
, Grunwald Letnikov− , and Caputo  definitions. Under certain conditions, the first two 

definitions are basically equivalent, where Grunwald Letnikov−  is defined as 

( ) ( ) ( )
0

0 0
0

1lim 1

t t
h

j
t t h

j

D f t f t jh
jh

α
α

α
− 

  

→
=

 
= − − 

 
 , (18) 

where ( )
( ) ( )

1
1 1j j j

αα
α

Γ + 
=  Γ + Γ − + 

, [ ]  is the nearest integer, α  is the calculus order, 0t  

and t  are the upper and lower limits of the integral, respectively, and h  is the sampling 
period. The discrete and approximate fractional operators are realized using the 
Oustaloup  filter. If the frequency band of the approximate model to be obtained is 
[ , ]b hw w , the linear characteristics of fractional calculus can be approximated according to 
a group of broken lines, as shown in the Figure 11. 

A
m

pl
itu

de
(d

B
)

( )rad/sω1ω 1ω′ 2ω 2ω′ 1Nω − 1Nω −′ Nω Nω′

 
Figure 11. Piecewise polyline approximation of filters. 

Thus, the transfer function is 

1

1

N

k N
k

k

s

G
w

K s
w

=−

+

+

′
= ∏ , (19) 

where K  is the gain, N  is the order, and kw′  and kw  represent the zero and pole re-
spectively. 

( ),h bK w w δ= , (20) 

( )0.5 1
2 1

k

k N
Nh

b
b

w
w

w
w

μ+ + −
+ 

=  ′
 

, (21) 

( )0.5 1
2 1

k N
Nh

k b
b

w
w w

w

μ+ + +
+ 

=  
 

, (22) 

Figure 11. Piecewise polyline approximation of filters.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 25 
 

 

where δ  is the fractional order, 0.001bw = , 10000hw = , and 5N = . Compared with in-
teger-order PID, FOPID has more integral order λ  and differential order μ , which can 
control the controlled object more flexibly, so as to meet the performance index of complex 
system. Figure 12 is the FOPID control plane diagram. 

2

2

1

0 1

μ

λ

PI Dλ μ

PID

 
Figure 12. Fractional-order PID control plane diagram. 

Figure 13 is the FOPID control system model. ( )r t , ( )u t , and ( )y t  are the expected 
input, controller output, and system output, respectively, and ( )G s  is the controlled ob-
ject. 

PK

IK
sλ

DK sμ∗

−
( )G s( )r t ( )u t ( )y t

 
Figure 13. Fractional-order PID control system model. 

The transfer function of the fractional-order PID controller is as follows: 

( ) I
P D

KG s K K s
s

μ
λ= + + . (23) 

5.2. Parameter Tuning of Fractional-Order PID Controller 
In this paper, according to the design performance index of the valve opening output 

signal of the valve control system, pK , iK , dK , λ , and μ  are regarded as five com-
ponents of a single particle, and the optimization calculation is carried out in the five-
dimensional space. 

The value of the fitness function is used to judge the quality of the parameter optimi-
zation result, and the ITAE  performance index (the absolute value error of the system 
and the integral of time) can be selected to reflect the accuracy and rapidity of the system, 
while taking into account the small overshoot. The square term of the controller output is 
added to the fitness function to avoid excessive output. The fitness function is 

Figure 12. Fractional-order PID control plane diagram.

Figure 13 is the FOPID control system model. r(t), u(t), and y(t) are the expected
input, controller output, and system output, respectively, and G(s) is the controlled object.

The transfer function of the fractional-order PID controller is as follows:

G(s) = KP +
KI

sλ
+ KDsµ. (23)
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5.2. Parameter Tuning of Fractional-Order PID Controller

In this paper, according to the design performance index of the valve opening output
signal of the valve control system, Kp, Ki, Kd, λ, and µ are regarded as five components of a
single particle, and the optimization calculation is carried out in the five-dimensional space.

The value of the fitness function is used to judge the quality of the parameter opti-
mization result, and the ITAE performance index (the absolute value error of the system
and the integral of time) can be selected to reflect the accuracy and rapidity of the system,
while taking into account the small overshoot. The square term of the controller output is
added to the fitness function to avoid excessive output. The fitness function is

J =
T∫

0

(
λ1t|e(t)|+ λ2u2(t)

)
dt, (24)

where e(t) is the control error, u(t) is the output of the controller, and λ1 and λ2 are the
weight coefficients (λ1 and λ2 are 0.999 and 0.001, respectively). The steps of improv-
ing the biogeographic optimization algorithm to optimize fractional PID parameters are
described below.

Step 1: Initialize the island habitat scale OPTIONS.popsize, the optimization dimen-
sion OPTIONS.numVar, the maximum number of iterations OPTIONS.Maxgen, the chaos
variable µ, the elite retention rate Keep, the initial mutation rate OPTIONS.pmutate, etc.,
and define the upper and lower limits of each dimension.

Step 2: Evaluate the HSI of each island habitat and rank the species according to the
HSI from good to bad.

Step 3: Calculate the in-, out-, and mutation rates for each island habitat, preserving
elite island habitats.

Step 4: Execute the weight transfer operator and the hybrid convergence transfer
operator.

Step 5: Execute the optimal hybrid mutation operator.
Step 6: Make out-of-bounds restrictions for each island habitat.
Step 7: Evaluate HSI for each island habitat, rank species according to HSI from good

to bad, and replace poor island habitat with elite island habitat.
Step 8: Sort species according to HSI from good to bad.
Step 9: Judge whether the maximum number of iterations or the search accuracy

requirement is met; if neither is satisfied, the number of iterations is increased by one, and
the process returns to Step 3 until the termination condition is reached.

5.3. Simulation

In order to test the effect of IBBO optimizing FOPID parameters, the transfer function
of Equation (17) was used, and the control model was built with Simulink. The standard
BBO, IBBO, and SGA algorithms (the SGA algorithm has certain advantages in comparison
of test functions compared to BBO-related algorithms) were set with species scale A = 50,
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maximum number of iterations M = 100, FOPID parameter value range Kp ∈ [0.001, 300],
Ki ∈ [0.001, 300], Kd ∈ [0.001, 300], λ ∈ [0.001, 2], and µ ∈ [0.001, 2]; the given system input
was a unit step signal. The standard BBO algorithm, IPPO algorithm, and SGA algorithm
were each carried out for 20 experiments, and the optimal value was taken as the parameter
comparison. The fitness value curve is shown below.

As shown in Figure 14, compared with the standard BBO and SGA algorithms, the
optimal fitness value of the IBBO algorithm has a faster convergence speed and can better
jump out of the local optimal value, i.e., the found parameters are better; hence, the IBBO
has a higher search rate, accuracy, and convergence speed.
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The parameter values optimized by the three methods were used for the simulation
experiment of valve opening control, the control parameters under the optimal fitness
value after optimization were taken, and the simulation experiment was carried out under
the unit step input. The results are shown in Figure 15.
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The three performance indicators of overshoot, adjustment time (calculated by 5%),
and steady-state error of the five algorithms were compared, and the results are shown in
Table 3.
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Table 3. Comparison of performance indicators of five algorithms.

Performance
Indicators IBBO-FOPID BBO-FOPID SGA-FOPID IBBO-PID ZN-PID

Overshoot (%) 0.6760 2.0967 1.2869 1.2440 25.4546
Adjustment time (s) 3.5343 3.3502 4.1814 4.0370 8.4253
Steady-state error 0.0008 0.0014 0.0018 0.0025 0.0142

As can be seen from Figure 15 and Table 3, compared with the other four optimized
algorithms, the IBBO optimization algorithm had the advantages of small overshoot, short
adjustment time, and low steady-state error. In addition, it can be seen from Table 3 that,
under the parameter optimization of the same algorithm, compared with the integer-order
PID, the FOPID had a smaller steady-state error, reduced overshoot, and a better dynamic
performance.

In order to further verify the performance of the control algorithm, a set of sinusoidal
signals y = sin

(
7ß
60 t
)

were set as the desired valve position opening signal of the simulation
system. Figure 16 shows the tracking of the target valve position by the valve position
opening control system under the action of five different algorithms. From the control
system effect, it can be concluded that the IBBO optimized algorithm had a better effect on
the tracking control of the valve position of the regulating valve.
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6. Experimental Verification

In order to test the effectiveness of the fractional-order PID controller, an experimental
platform for pneumatic control valves was established, and two different controller algo-
rithms were written through the LabVIEW graphical programming software on the upper
computer. The equipment of the experimental platform is shown in Figure 17.

The working pressure of the pneumatic control valve was set to 0.6 MPa, the feedback
voltage signal of the valve positioner was collected by USB5633, and the voltage signal in
the range of 0–5 V was output to drive the movement of the control valve stem.

The step, sine wave, and square wave signals were used as the output expected valve
position, and the integer-order PID controller and the fractional-order PID controller were
used to track the set expected valve position value.
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• The output experiment of a given step signal mainly tests the transient performance
of the system. The desired signal of the valve position opening with a given output of
50% and the experimental results of air pressure are shown below.

According to Figure 18 and Table 4, in terms of transient response, the overshoot of
PID and FOPID was almost 0, whereby FOPID was slightly better than integer-order PID.
In terms of rise time and adjustment time, FOPID was better. It can also be seen that the
transient performance of the FOPID controller was better than that of the PID controller.
In terms of steady state, compared with PID, the FOPID controller reduced the system
steady-state error and increased the control accuracy.

• The output experiment of a given sine wave mainly tests the dynamic performance
of the controller. In the experiment, the desired valve position signal was selected as
y = 30∗ sin

(
ß

10 t
)
+50. The experimental results are shown below in Figure 19.
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Table 4. The corresponding performance indicators of the two algorithms at 50% opening.

Performance Indicators Overshoot (%) Rise Time (s) Adjustment Time (s)

PID 0.010207 6.45 10.35
FOPID 0.009575 2.55 4.50
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It can be clearly seen from the sinusoidal tracking curve and error curve that FOPID
could track the expected input more quickly and had a smaller oscillation curve (smaller
tracking error), indicating greater advantages of FOPID in dynamic performance than PID.

• Given the square wave output experiment, the main purpose is to test the controller’s
fast performance and its ability to track mutation signals. The valve position ex-
pected value output was set to 80%–20%–80%, i.e., y = 30∗square

(
ß

10 t
)
+50, and the

experiment repeated four to five times. The results are shown below.

It can be seen from Figure 20 that, when the given signal was abruptly changed in the
forward or reverse direction, the system under FOPID control could track the given signal
more quickly and almost without overshoot, and the tracking error was smaller. Obviously,
the FOPID controller had better dynamic performance.
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At the same time, in order to further evaluate the performance of the two methods,
the root-mean-square error (RMSE) and the mean absolute percentage error (MAPE) were
introduced for further comparison and explanation, which are defined as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (25)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
ŷi

∣∣∣∣, (26)

where n is the number of sampling points, and
_
y i and yi are the predicted value and actual

value of the i-th point, respectively.
According to the comparison of the indicators in Table 5, the FOPID controller had a

smaller root-mean-square error and average absolute percentage error for control of the
pneumatic control valve position, and the control accuracy of the control valve was better
than that of the PID controller.

Table 5. Comparison of performance indicators between PID and FOPID.

Performance Indicators
RMSE MAPE (%)

Sin Signal Square Signal Sin Signal Square Signal

PID 6.8681 20.7357 3.4602 32.2391
FOPID 3.6245 14.0825 1.7184 16.2357

The experimental and simulation data are shown in Table 6. It can be seen from the
table that the control effect of the FOPID algorithm was better than that of the corresponding
PID algorithm in the comparison of overshoot and adjustment time.
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Table 6. Comparison of PID algorithm and FOPID algorithm in 50% opening step input simulation
and experiment.

Performance Indicators
PID FOPID

Simulation Experiment Simulation Experiment

Overshoot (%) 1.2440 0.0102 0.6760 0.0095
Adjustment time (s) 4.0370 10.3500 3.5343 4.5000

7. Conclusions

In this paper, we first proposed an IBBO algorithm, which can improve the optimiza-
tion ability by introducing chaotic map initialization, adjusting the migration model, and
improving the migration and mutation operators. This algorithm is not reflected in the
current literature. In the simulation comparison of 13 test functions, the minimum value,
mean value, and standard deviation of the IBBO algorithm were relatively smaller, and
the convergence speed and accuracy were also relatively better. Taking the sphere test
function as an example, its minimum value, mean value, and standard deviation were
increased by 87.0%, 77.9%, and 62.6%, respectively. Then, on the basis of the proposed
IBBO algorithm, the open-loop response curve of the control system was fitted, and the
model parameters of the pneumatic control valve were identified. Then, the FOPID control
algorithm was introduced, and the parameters of the FOPID controller were adjusted by
the IBBO algorithm to realize the control of the pneumatic control valve position. This
control method is not reflected in the current literature. Lastly, through simulation, the
overshoot and steady-state error of the IBBO-FOPID control algorithm were only 0.6760
and 0.0008, increasing by 45.6% and 42.8%, respectively. According to the experimental
verification, FOPID was better than PID, proving the effectiveness of the proposed control
method for regulating valve position.
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