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Abstract: We propose a novel approach for drone detection and classification based on RF communi-
cation link analysis. Our approach analyses large signal record including several packets and can
be decomposed of two successive steps: signal detection and drone classification. On one hand, the
signal detection step is based on Power Spectral Entropy (PSE), a measure of the energy distribution
uniformity in the frequency domain. It consists of detecting a structured signal such as a communica-
tion signal with a lower PSE than a noise one. On the other hand, the classification step is based on a
so-called physical-layer protocol statistical fingerprint (PLSPF). This method extracts the packets at
the physical layer using hysteresis thresholding, then computes statistical features for classification
based on extracted packets. It consists of performing traffic analysis of communication link between
the drone and its controller. Conversely to classic drone traffic analysis working at data link layer
(or at upper layers), it performs traffic analysis directly from the corresponding I/Q signal, i.e., at
the physical layer. The approach shows interesting properties such as scale invariance, frequency
invariance, and noise robustness. Furthermore, the classification method allows us to distinguish
WiFi drones from other WiFi devices due to underlying requirement of drone communications such
as good reactivity in control. Finally, we propose different experiments to highlight theses properties
and performances. The physical-layer protocol statistical fingerprint exploiting communication
specificities could also be used in addition of RF fingerprinting method to perform authentication of
devices at the physical-layer.

Keywords: drone detection; drone classification; RF sensing; physical-layer authentication

1. Introduction

Nowadays, drones have found tremendous usages such as food delivery, building
inspections and hobbyist interests. However, unregulated use of amateur-UAV cause
important security concerns. Over the past few years several incidents happened implying
micro-UAVs such as commercial drones. Besides privacy concern due to drones, it also
causes other security problems of intrusion in sensitive facilities such as airports and
nuclear power plants. Particulary, in 2017 during a presentation at MobySys’17 [1], Pr.
Nguyen shows how a collision with a drone can be destructive for an airplane during flight.
Other examples are widely discussed in the literature [1–3].

Drone detection and classification is increasingly becoming an important field of
scientific publications. Several techniques exists for drone detection and classification using
different media such as video, sound, radar and RF [2,3]. Furthermore, drone neutralization
is also an important topic. Several techniques can be used for drone neutralization [4],
some are non-destructive such as those using RF jammer or GPS spoofer and others are
destructive such as high power microwave devices or cinetic weapons. However, drone
neutralization techniques will not be addressed in this paper.

This article proposes several innovative ideas: signal detection using Power Spectral
Entropy (PSE), drone classification using physical-layer protocol statistical fingerprint
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(PLPSF). We also use data augmentation by noise injection method allowing us to evaluate
the mentioned methods with variable Signal-to-Noise Ratio (SNR). Finally, we propose
a statistical analysis method to evaluate robustness of our packets extraction method to
the environmental conditions. The Section 2 expose the state of the art in drone detec-
tion/classification including video, sound, radar, RF and WiFi-based. The Section 3 presents
the methodology including noise injection, detection and classification. The Section 4 re-
ports our different experiments with different UAVs allowing to highlight the performances
of the presented methods. The Section 5 is divided in two part: the first part is a discussion
about using PLPSF as a physical-layer authentication method and the second part presents
the perspectives of our work. We finally conclude with Section 6 which synthesizes the
work done.

2. State of the Art

Drone detection and classification is a difficult problem due to furtive aspect of drones
such as small dimensions. This section compares different detection and classification
methods and presents the pros/cons.

2.1. Video-Based

Video-based methods are passive and depend on optical sensors, particularly camera,
to detect and classify the drone by visual aspects. However, these techniques are limited
by distance range, luminosity conditions and line of sight. Furthermore, there is strong
problems of false alarm due to birds presence. Temperature can also be used to detect using
optical sensors sensitive to infrared signatures [5]. However, these techniques are generally
different from classic video-based techniques and are dealt separately in the literature
because they classically concern turbo-jet drones.

2.2. Sound-Based

Sound-based methods try to detect and classify drones using acoustic signatures. As
video-based techniques, sound-based detection/classification techniques are also passive
methods involving a microphone or microphone array. Indeed, drones have specific acous-
tic signatures due to propellers creating high-pitch sounds [5]. Sound-based techniques are
sensitive to environmental noises and the distance range.

2.3. Radar-Based

Radar-based methods includes detecting and classifying drones using emitted elec-
tromagnetic wave. Contrary to previously introduced methods, radar-based methods are
active, i.e., they require emission of electromagnetic wave to work. Generally, radar used
the backscattering of the emitted wave to detect the target (position, speed, . . . ). Moreover,
drone detection/classification using radar-based techniques can also exploit micro-Doppler
effect [6,7], including effect on electromagnetic waves due to propellers vibrations. Radar-
based techniques are sensitive to small radar cross surface (RCS) and can be perturbated by
birds presence just as video-based techniques.

2.4. RF-Based

Radio frequency methods consist of detecting and classifying drones using different
communication links: controller link, video link and telemetry link [8–10]. Furthermore, it
can be used in conjunction with goniometry method to estimate drone position [11]. These
techniques are passive and require at least the presence of one of the drone links. Despite
this major drawback, RF sensing does not suffer from line-of-sight problematic and works
with relatively long distance range. Active RF-sensing techniques also exist in the literature
such as [12–14].
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2.5. WiFi-Based

Wifi-based methods are subcases of radio frequency based techniques focusing on
detecting and classifying WiFi drones [5,15,16]. WiFi drones are shown to have a different
statistical signatures at the data link layer (second layer of OSI model) than other WiFi
devices. Indeed, WiFi drones need to communicate often with controllers to ensure accurate
control [12]. In addition to previously introduced disadvantages, WiFi-based methods are
also protocol specific.

2.6. Fusion-Based

Several industrial products for drone detection/classification use a fusion of previously
introduced methods such as Thales EagleSHIELD [17]. Despite increasing products cost due
to more complex integration, it allows to sum up the different advantages and compensate
different disadvantages. These systems can also include drones neutralization technologies.

For interested readers, several articles provide much complete review of drone detec-
tion and classification techniques [2,3].

3. Methodology

The methods presented in this paper are RF-based approaches; they allow us to
detect and classify drones exploiting the baseband signals of RF links using a low-cost RF
recorder. Furthermore, the proposed classification method is inspired from WiFi-based
method exploiting protocol statistical fingerprint [5,15]. However, compared to those
methods exploiting statistical fingerprint at data link layer which are protocol specific
(WiFi), our method exploits the same protocol statistical fingerprint but at physical layer,
thus becoming protocol agnostic.

3.1. Global Architecture

The global architecture of proposed signal detection and drone classification method
is presented in Figure 1. One advantage of our methodology is to analyses a signal window
without knowledge about signal presence. The window extraction is based on a low-cost
signal recorder extracting baseband signal from a specific frequency band during a certain
amount of time, called signal window. After recording, the signal window is analysed
to determine the presence of structured signals and classification is applied if a signal is
detected. Thus, this methodology can be used to scan several bands for drone detection
and classification.

I/Q recorder Signal detection

Drone
classification

Drone
Class

Yes / No

Figure 1. Global architecture.

3.2. Dataset

The dataset used for this study is composed of several drones but also includes WiFi
records coming from classic communications (smartphone, . . . ). The baseband signals are
recorded using SignalHound BB60C (low-cost I/Q signal recorder) with VERT2450 antenna
at 20 Msamples/s in 2.4 and 5 GHz ISM bands. The BB60C has a 27 MHz instantaneous
bandwidth due to an analog filter. The baseband signal is sampled at 40 MSamples/s, then
filtered by 20 MHz numerical low-pass filter and decimate by a factor 2. To do so, the
central frequency is manually centered on communication signal (preferably on the video
link) using spectrogram and the corresponding I/Q signal is recorded. Then, the radio
recordings are divided in 100 ms non-overlapping segments of baseband signal ready for
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processing. The segment size was chosen accordingly to include several drone packets
but also sufficient to capture at least one WiFi beacon. Indeed, WiFi beacons between
access point and mobile devices are usually exchanged every 100 ms [12]. Furthermore, the
segment size does not exceed 100 ms to avoid problems when extracting packets under a
variable Received Signal Strength Indication (RSSI). The drones which compose the dataset
are described in Table 1. For each drone class described in this table, we performed two
independent 10 seconds recordings. WiFi records are composed of two independent 5 s
recordings. The first recordings of each class are reserved for training (called training
recording) while the second recordings of each class are reserved for testing (called testing
recording). This methodology allows us to evaluate drone detection/classification close to
real implementation conditions. A signal record contain the communication link between
the drone and its controller (in the same band), i.e., this link could be composed of the
controller link, the video link and even the telemetry link.

Table 1. Drone models.

Drone Model Protocol

(a) Parrot Bebop Wifi
(b) Phantom 4 Pro LightBridge

(c) Mavic 2 Pro Ocusync 2
(d) Parrot Anafi Wifi

(e) Syma X5C Enhanced Shock Burst
(f) Smartphone and AP Wifi

Figure 2 show the spectrograms of the different drones composing the dataset with a
SNR of 3 dB. We can observe that some drones have really repetitive temporal behaviours
such as Phantom 4 Pro, Mavic 2 Pro and Syma X5C. Conversely, the WiFi drones (Parrot
Bebop, Parrot Anafi) have less structured temporal behaviours that other drones but emit
more frequently than other WiFi devices [12]. Thus, this figure shows the advantage of
extracting the temporal behaviour over a signal window to perform drone classification.

Figure 2. Spectrogram of drones signals.
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3.3. Noise Injection

This step is necessary to perform data augmentation as presented by Soltani et al.
in [18], allowing us to test the noise robustness of our algorithms. This pre-processing
allows to inject noise at a specific power to obtain a desired signal-to-noise ratio (SNRd)
compared to experimental approaches where SNR is less controlled. The noise injection
pre-processing step requires to estimate the noise power Pn and the signal+noise power
Psn as described in [19]. For this step, we use a low-pass filter with 10 kHz bandwidth
to filter the signal envelope (absolute value of the signal) then we extract packets using
classic thresholding to determine the both parts. The threshold correspond to the mean
between the lowest value of the signal envelope filtered and of the highest value of the
signal envelope filtered. Once the different parts are extracted, Pn and Psn are computed
and the signal power Ps is estimated by Ps = Psn − Pn. Using Ps and Pn, the SNR is then
computed and the power of noise to inject is obtained as following Pn′ =

Ps
SNRd

− Pn. Finally,
the noise to inject is generated as a additive gaussian complex white noise with power
equal to Pn′ and it is added to the signal to obtain the desired SNR.

3.4. Signal Detection: Power Spectral Entropy (PSE)

Signal detection is the second step before drone classification. Classical signal detection
techniques are the following [8]: energy detection, matched filter, cyclostationarity and
eigenvalue methods. More specific methods have been proposed for drone detection
such as Markov chain detector [20] based on energy transition. In our case, we want to
detect signal presence in relatively large signal window with low computation complexity,
independently of temporal signal location and without knowledge about signal of interest.
Thus, our detection method is based on power spectral entropy (PSE) of baseband signal
x̃[n], a measure of energy distribution uniformity in frequency domain. It consists in
considering power spectral density (PSD) as a probability density and to compute the
entropy on this empirical distribution. Theoretically, the PSE is maximized by white noise
because it has uniform frequency distribution and then maximizes entropy. Therefore,
PSE can be used to differentiate white noise from more structured signals such as drone
communications signals. However, this detection approach could also be applied to more
realistic noise such as background noise.

For this purpose, we directly process the baseband signal x̃[i] with i ∈ J0; L− 1K (with
L the signal length). The different steps for detecting signal using spectral entropy are:

1. The first step estimate PSD P(i) with i ∈ J0; N − 1K, we choose Bartlett estimator [21]

(N = 2048, K =
⌊

L
N

⌋
) instead of periodogram due to its consistency properties.

P(i) =
1
K

K−1

∑
k=0

(
1
N
|

N−1

∑
n=0

x̃(n + kN)e−2jπ ni
N |2)

2. Then normalize the PSD to obtain the so-called frequency probability density function
(FPDF) pi.

pi =
P(i)

∑i P(i)

3. After estimating the FPDF, we compute the entropy to obtain the PSE.

PSE =
N−1

∑
i=0

pilog2(1/pi)

4. Finally, we compare the PSE to a specific threshold η (computed for a specific false
alarm rate) to determine if it correspond to a noise or a signal.

PSE R η
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The computation complexity of signal detection step is O(L logN). Indeed, a peri-
odogram can be obtained using a fast fourier transform with a computation complexity of
O(N logN). Furthermore, the Bartlett estimator is composed of K periodograms and the
resulting complexity is O(K N logN): O(L logN).

3.5. Drone Classification: Physical-Layer Protocol Statistical Fingerprint (PLPSF)

This classification method is based on WiFi detection/classification algorithms using
statistical fingerprint of communication packets/inter-packets duration. In [5,15], the
authors compute statistical features at data link layer. For our part, we extract packets at
the physical layer avoiding to be protocol specific by working directly on baseband signal
x̃[n]. Our methodology is described in Figure 3. The first step compute the signal envelope
|x̃[n]|. Then, we perform filtering using a low-pass filter h[i] (Fpass = 10 kHz) allowing
to only extract the low-frequency signal behaviour z[n] corresponding to the protocol
information. We then perform hysteresis thresholding to extract packets as described by
Algorithm 1. The hysteresis thresholding in inspired by works in computer vision such
as Canny filtering [22] and require two thresholds: low threshold µlow = 0.5− ε, high
threshold µhigh = 0.5 + ε where ε is an hyperparameter. This thresholding technique
avoid that a single packet is considered as several packets due to the energy drops during
packets transmission. Statistical features are then computed on thresholded signal t[n] and
classification is performed using Cubic Support Vector Machine classifier [23].

The statistical features θ are the following:

• Mean of packets duration (m̄pck)
• Standard deviation of packets duration (σpck)
• Mean of inter-packets duration (m̄ipck)
• Standard of inter-packets duration (σipck)
• Number of packets (Npck)

Algorithm 1: Hysteresis thresholding

Data: Filtered signal z[i], low threshold µlow, high threshold µhigh
Result: Thresholded signal t[n]
minz ← mini z[i]
maxz ← maxi z[i]
z̄← minz+maxz

2
t[0]← 0
for i in J1; L− 1K do

if t[i-1] == 0 and z[i] ≤ minz + µhigh z̄ then
t[i]← 0

end
if t[i-1] == 0 and z[i] > minz + µhigh z̄ then

t[i]← 1
end
if t[i-1] == 1 and z[i] < minz + µlow z̄ then

t[i]← 0
end
if t[i-1] == 1 and z[i] ≥ minz + µlow z̄ then

t[i]← 1
end

end
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Processing 
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filtering
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Features
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Figure 3. Structure of classification method.

3.6. Invariances to Environmental Conditions

This subsection presents the invariances of the signal detection and drone classification
methods that we presented. Invariances are important for the algorithms, because they
prove the built-in robustness against different conditions (scale, rotation . . . ) that detection
and classification should not depend. For example, an image recognition algorithm must
classify a cat picture regardless to its scale or its orientation. Particularly, the presented
classification algorithm can be considered as a software-based approach contrary to RF
Fingerprint approach [24]. Software-based approach corresponds to higher granularity
level than RF Fingerprinting techniques. Indeed, as explained in [25], the software-based
tries to differentiate devices from different make while ensuring devices from same make are
classified in a same class. Therefore, the proposed classification method must be invariant
to environmental conditions (Doppler shift, . . . ) and impairments of same make devices
(frequency offset, . . . ) that does not contain information for drone classification. Concerning
classification algorithm on signal s(t) there are several invariances (see Appendix A):

• Scale invariance ỹ(t) = ax̃(t): The algorithm is not sensitive to the complex coefficient
a ∈ C and so makes the result invariant to homothety and phase rotation due to propa-
gation and amplification. This can be performed thanks to the absolute value function
allowing to remove any phase effect including phase rotation. Furthermore, covariant
properties of filtering, minimum minz, maximum maxz and mean z̄ computation allow
homothety invariance.

• Frequency invariance ỹ(t) = x̃(t)e2jπ∆ f t: The algorithm is not sensitive to the fre-
quency offset ∆ f due to frequency difference in oscillators (even in same make devices)
and/or Doppler shifting. This is handled by absolute value allowing to remove any
phase effect including frequency offset.

Furthermore, classification method have some robustness against impulsive noises.
Indeed, low pass filter and hysteresis filtering avoid false alarms due to impulsive noises.

Detection algorithm has the same intrinsic invariances (see Appendix B): scale and
frequency offset. Indeed, PSD normalization step allows scale invariance and entropy
computation give invariance to frequency offset because entropy is not sensitive to central
tendency of statistical distribution.

4. Experimentations

This section presents different results for the previously introduced detection and
classification methods. All these results depend on the dataset presented in Section 3.2 and
also rely on noise injection technique presented in Section 3.3.

4.1. Detection

The first step for the detection method is to compute the threshold η presented in
Section 3.4. This consists of generating noise segments and computing the corresponding
power spectral entropy. Then we sort the obtained spectral entropy measures of noise
and select the threshold using a specific percentile (here 1%). As white noise maximize
spectral entropy, we perform left unilateral hypothesis test, i.e., the reject region is [0; µ].
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Once threshold µ is computed and the reject region is fixed, we use dataset signals, inject
noise for a specific SNR, compute power spectral entropy, then perform hypothesis testing.
The histogram of PSE and the correspond Cumulative Distribution Function (CDF) for
hypothesis H0 is show in Figure 4 and the threshold value µ is 10.9992. The results of the
detection method in Figure 5 show good robustness against noise.

Empirical Histogram
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Figure 4. Histogram for PSE.
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Figure 5. Results for detection.

4.2. Statistical Robustness of Packets Extraction Method

To show good robustness to environmental conditions of our classification method,
particularly of our packets extraction method, we perform statistical test under different
conditions. The goal is to compare a reference sample (packet or inter-packet duration) of
a specific class with a sample of the same class but dependent on specific environmental
condition and conclude about the influence of the condition on the second sample. For that,
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we compute the empirical Cumulative Distribution Function F(x) of packet duration and
inter-packet duration on the first record for each class. To achieve this, we split the signal
record of specific class in 100 ms non-overlapping segments and inject noise to obtain a
specific SNR (here 5 dB). Then, for each segments, we extract the different packet and inter-
packet duration and aggregate it to obtain the packet duration and inter-packet duration
samples of the whole signal. Finally, we compute the empirical Cumulative Distribution
Function F(x) on packet duration sample and inter-packet duration sample. At the same
time, for each class and for each different conditions, we split the first signal record in
100 ms non-overlapping segments, apply environmental conditions and inject noise to
obtain specific SNR (dependent of environmental conditions). We reproduce the same steps
(for each class) then previously to obtain the empirical Cumulative Distribution Function
G(x) of packets duration and inter-packets duration for each environmental conditions.
To show the impact of environmental conditions we perform a Kolmogorov–Smirnov test
using this statistic supx|F(x)− G(x)| (α = 5%). The different conditions for the statistical
test are the following: (1) amplitude (5 dB), (2) different SNR (0 dB), (3) temporal shift
(τ = 50 ms, 5 dB), (4) frequency offset (20 ppm, 5 dB).

We can observe in Tables 2 and 3 the statistical robustness of our analysis for previously
introduced invariances (amplitude and frequency offset) but also for temporal shifting.
Although all p-values are not superior to 0.05, we can observe a certain robustness for
lower SNR (0 dB) value of different records. Particularly for drones that does not present
really structured and predictive packets and inter-packets duration, i.e., WiFi drones ((a)
and (f)). Furthermore, a rejection of null hypothesis does not imply bad classification
performance. This subsection shows statistical robustness to different condition for same
class (intra-class variability) but classification differentiates devices from different makes
(inter-class variability).

Table 2. Statistical test: Packet length (p-value).

Conditions (1) (2) (3) (4)

(a) 1 0.82 0.99 1
(b) 0.99 0 0.66 0.93
(c) 0.99 0 0.59 0.99
(d) 0.99 0.87 0.90 0.98
(e) 0.35 0 0.22 0

Table 3. Statistical test: Inter-packet length (p-value).

Conditions (1) (2) (3) (4)

(a) 1 0.99 0.99 1
(b) 0.88 0 0.91 0.91
(c) 0.86 0 0.35 0.58
(d) 0.99 0.99 0.90 0.99
(e) 0.44 0 0.96 0.28

4.3. Classification

This section presents different performances of the drone classification method pre-
sented in Figure 3. Particularly, Figure 6 shows evolution of the classifier accuracy
against different SNR values and Figure 7 presents a confusion matrix for a specific SNR
value (SNR = 0 dB). The hyperparameters for hysteresis thresholding are the following:
µlow = 0.44 and µhigh = 0.56. As already explained in Section 3.2, the classifier is trained on
training records and evaluate on testing records which are independently recorded signals.
Furthermore, the SNR of training records is fixed to 5 dB while evaluation is performed
depending of variable SNR. We can observe the performances stability to noise injection
(SNR) which is a good property for long-range drone classification. We can also observe
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on Figure 7 that the majority of errors are made from ANAFI class to Bebop one, which
makes sense because Bebop and ANAFI are both Parrot WiFi drones. Furthermore, some
misclassifications are made from WiFi class due to the high variability of communications
(access point, smartphone).
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4.4. Parametric Analysis

For the statistical analysis and the drone classification performances evaluation, we
considered that hyperparameters were fixed. In this subsection, we are interested in
studying the influence of the hyperparameters on the accuracy but also to discuss about
the potential advantages/disadvantages that change could produce. The packet extraction
method depend of the following hyperparameters:

• Window size: The window size correspond to the segment size and is equal to 100 ms.
• Processing: The first step of packet extraction extract packet using signal envelope

( f (s(t)) = |s(t)|).
• Threshold: The hysteresis thresholding depend of two thresholds: µlow = 0.44 and

µhigh = 0.56 (ε = 0.06).

The hyperparameters values chosen to evaluate the classification method allow rela-
tively good accuracy as shown in the previous section but also present a certain robustness
to variable RSSI as explained in the Section 3.2.

4.4.1. Window Size

The window size creates a compromise between performance and robustness to
variable RSSI. Increasing the size of the window allows a better estimation of the different
statistics (mean, standard deviation) but the packet extraction become more sensitive to
variable RSSI, i.e., the signal power varying in time due to movement for example (see
Appendix A). We can observe in Figure 8 that increasing window size improves accuracy
performance for segment with constant RSSI. Furthermore, increasing the window size
also increase the computation complexity because the packet extraction is performed on
bigger signal segment.
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Window size influence
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Figure 8. Influence of window size on accuracy.

4.4.2. Processing

The processing technique create a compromises between the robustness to co-channel
interference and robustness to variable RSSI. Using energy allows to better separate
signals but makes the packet extraction method more sensitive to variable RSSI (see
Appendix A). The Figure 9 shows the performance of both methods are similar. Fur-
thermore, the energy extraction is simpler to compute compare to absolute value in term of
computation complexity.
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Figure 9. Influence of processing on accuracy.

4.4.3. Threshold

The threshold values create a compromise between noise robustness and robustness
to variable RSSI. Increasing ε (with µlow = 0.5− ε and µhigh = 0.5 + ε) allows better noise
robustness as explained in Section 3.5 but makes the algorithm more sensitive to variable
RSSI (see Appendix A). The Figure 10 shows that greater ε allows better noise robustness
for segment where RSSI is constant. Furthermore, the threshold values does not influence
the computation complexity except for ε = 0. This subcase can be reduce to simple
thresholding technique instead of hysteresis technique. Thus, the hysteresis thresholding
technique shows better robustness to noise than simpler thresholding techniques based on
single threshold.
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Figure 10. Influence of threshold values on accuracy.

5. Discussion and Perspectives
5.1. Discussion

The classification method presented in this paper distinguishes drones by their commu-
nication specificities depending of communication requirements and protocol implementa-
tion. Particularly, we showed that method based on PLPSF can classify different devices
even if they use the same protocol. For example in Section 4.3, we were able to distinguish a
Wifi drone link (Bebop) from a smartphone communicating with an AP in WiFi. As already
explained, this type of authentication method is a software-based approach being part
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of non-cryptographic authentication methods [24]. However, the classic software-based
approaches work at data link layer such as the methods presented in Section 2.5 using
tools such as tcpdump or wireshark. Thus, these methods are protocol-specific and require to
know many information about received signal (modulation, frame format, . . . ). Conversely,
PLPSF extracts these communication specificities at the physical-layer without knowing
information about received signal.

Thus, PSLPF could be used as a second authentication factor in addition to an other
physical-layer authentication method. Particularly, RF Fingerprinting could be interesting
as principal physical-layer authentication. These methods consists in authentifying a device
using its own hardware impairments such as I/Q imbalance, amplitude clipping and
carrier frequency offset among others [26–28]. It would allow to combine communication
specificities and physical impairments of a specific devices to perform authentication at
the physical-layer. An attacker should thus perform features impersonation and protocol
impersonation to spoof a specific device, increasing the attack complexity [24]. The main
advantage of this combination is that the methods works at different levels of granularity,
i.e., the communication level for PLPSF and the impairments level for RF Fingerprinting.
Furthermore, PLPSF and RF fingerprinting approaches are complementary in terms of
invariance. On one hand, PLPSF exploits communication specificity regardless of device
impairments for classification. On the other hand, RF fingerprinting exploits devices
impairments regardless of data transmitted for classification.

5.2. Perspectives

Even if the algorithms shown noise robustness and invariances to some environmental
conditions such as scale invariance and frequency offset, several points can be improved:

• Dataset: Currently, our dataset is limited in terms of classes and recordings. Adding
more drones classes and more recordings per drone and thus showing that perfor-
mances are stable is paramount to prove scalability and generalization of our approach.

• Robust statistics: The features we used for classification algorithm are mean and
standard deviation. However, use of robust statistics such as median and interquartile
can be interesting because they are less sensitive to outliers.

• Power spectral entropy: We presented a detection approach using PSE, a measure of
energy distribution uniformity in the frequency-domain. PSE in time domain could
also be used to detect presence of signal to extract packets instead of using hysteresis
thresholding and allow better robustness against variable RSSI.

• Other features: The feature used in this approach are principally focusing on temporal
aspect. Other types of features can be added to increase accuracy such as frequency or
cyclostationary features [8,13].

• Clustering: Packets clustering could be used using packet RSSI, frequency aspects
or goniometry. Thus, it could be beneficial to separate control link, video link and
telemetry link.

• Real-world implementation: In this study, the central frequencies of communication
signals were defined manually. For future implementation, it is necessary to study the
use of band scanning techniques compatible with our approach but also to study its
hardware implementability.

6. Conclusions

We present in this paper a novel signal detection algorithm based on Power Spectral
Entropy (PSE) with good detection rate under low SNR. We also present a classification
algorithm based on Physical-Layer Protocol Statistical Fingerprint (PLPSF). Besides the fact
this classification method exploits the protocol statistical fingerprint at physical-layer in-
stead of data link layer as previously done in other research papers, it also shows interesting
invariances to scale (amplitude, phase rotation), frequency offset and good robustness to
temporal shift and noise. We also provide statistical analysis and experiments to highlight
performances under different environmental conditions. Our method is trained at fixed
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SNR (5 dB) and evaluate for different SNR values from −5 dB to 5 dB. The records used
to train the classifier are different than those used for the test the classifier performances.
Furthermore, our dataset included WiFi communications (AP, smartphone, . . . ) in addition
to drones communications. This configuration is close to real implementation conditions
where SNR is difficult to estimate and others communications signals can be present in
analysis band. We also discuss about the interests of using PLPSF as second authentication
factor in addition to RF fingerprinting to perform authentication at the physical-layer. Par-
ticularly, we present the complementarity between PLPSF and RF fingerprinting methods
in terms of granularity level and invariances. Finally, although the methods presented in
this article are interesting, several ideas have been proposed to increase performances and
robustness such as using packets clustering or perform packets extraction using PSE. More-
over, adding more drone and more recordings could show the scalability and generalization
of our approach.
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Appendix A. Classification Invariance

The signal consider is the received signal x̃(t) = s̃(t) + ñ(t) where s̃(t) is the signal
of interest and ñ(t) is an additive white gaussian noise. It can be noted that ∀ a ∈ C, añ(t)
is an additive white gaussian noise. Moreover, ∀∆ f ∈ R, ñ(t)ej2π∆ f t is an additive white
gaussian noise.

Appendix A.1. Scale Invariance

Considering that signal received is the following:

ỹ(t) = ax̃(t) with a = |a|ejφa (A1)

The phase rotation is removed thanks to absolute value because |ỹ|(t) = |a||x̃(t)|. Then,
the filtering is covariant to multiplication constant because zy(t) = |a|z(t)(= |ỹ(t)| ∗ h(t)).

The obtained low threshold tlow is the following:

minzy + µlow z̄y = |a|(minz + µlow z̄y) (A2)

And the high threshold thigh is the following:

maxzy + µhigh z̄y = |a|(maxz + µhigh z̄y) (A3)
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We can observe that the result of comparisons zy(t) ≶ tlow and zy(t) ≶ thigh does not
depend of the value of |a|. Therefore, the packet extraction process is invariant to scale
(homothety and phase rotation).

Appendix A.2. Frequency Invariance

Considering that signal received is the following:

ỹ(t) = x̃(t)ej2π∆ f t (A4)

The phase rotation is removed thanks to absolute value because |ỹ(t)| = |x̃(t)|, involv-
ing that the packet extraction process is invariant to frequency offset.

Appendix A.3. Variable RSSI

This subsection deals with RSSI variations robustness of our approach. Particularly, we
introduce the notion of Exclusion Circle (EC) include in the Area Under Surveillance (AUS)
monitored by our system. This EC is a perimeter where the RSSI variations could effect the
system performances. Indeed, considering a drone with speed v flying toward our system,
if the drone enter in the EC, some packets could be not detected due to RSSI variations.
The EC also depends on window length Tw and high threshold µhigh. In this subsection, we
will consider a line-of-sight propagation and speed three cases: the high-speed drones case:
vmax = 80 m/s, the normal-speed drones case: vnorm = 20 m/s (72 km/h, Phantom 4 Pro)
and the low-speed drones case: vmin = 5 m/s (18 km/h: X5C).

Drone

Exclusion Circle

Area Under Suveillance

Figure A1. Exclusion circle of monitoring system.
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Appendix A.3.1. Processing: Envelope

For the processing based on absolute value (signal envelope) and based on Friis
equation, the EC radius where the method does not perform is equal to:

Dmin =
Twvmaxµhigh

1− µhigh
⇔

µhigh

Dmin
=

1
Dmin + Twvmax

(A5)

Using Tw = 0.1 and µhigh = 0.56, the different EC radius are:

• vhigh: 10.2 m
• vnorm: 2.5 m
• vmin: 0.6 m

Appendix A.3.2. Processing: Energy

For the processing based on energy and based on Friis equation, the EC radius where
the method does not perform is equal to:

Dmin =
Twvmax(µhigh +

√
µhigh)

1− µhigh
⇔

µhigh

D2
min

=
1

(Dmin + Twvmax)2 (A6)

Using Tw = 0.1 and µhigh = 0.56, the different EC radius are:

• vhigh: 23.7 m
• vnorm: 5.9 m
• vmin: 1.5 m

The EC radius for energy processing are bigger than EC radius for signal envelope.
Thus, the signal envelope processing is less sensitive to RSSI variations due to drone
movement rather than instantaneous energy processing.

Appendix B. Detection Invariance

Appendix B.1. Scale Invariance

Considering that signal received is the following:

ỹ(t) = ax̃(t) with a = |a|ejφa (A7)

The estimate PSD is the following Py(n) = |a|2P(n). Then the normalisation allow

to obtain py(n) =
Py(n)

∑n Py(n)
(= p(n)). Therefore, the detection algorithm is invariant to

scale (homothety).

Appendix B.2. Frequency Invariance

Considering that signal received is the following:

ỹ(t) = x̃(t)ej2π∆ f t (A8)

The estimated PSD Py(n) will be a shifted version of P(n) by the number of bins corre-
sponding to frequency offset ∆ f and similarly for py(n) and pn. Finally, PSEy = H(py(n))
and PSE = H(pn) where H is the entropy, will be similar because entropy computation
is not dependant of central tendency. Therefore, the detection algorithm is invariant to
frequency offset.
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