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Abstract: Tactile sensing has attracted significant attention as a tactile quantitative evaluation method
because the tactile sensation is an important factor while evaluating consumer products. Although
the human tactile perception mechanism has nonlinearity, previous studies have often developed
linear regression models. In contrast, this study proposes a nonlinear tactile estimation model that
can estimate sensory evaluation scores from physical measurements. We extracted features from
the vibration data obtained by a tactile sensor based on the perceptibility of mechanoreceptors. In
parallel, a sensory evaluation test was conducted using 10 evaluation words. Then, the relationship
between the extracted features and the tactile evaluation results was modeled using linear/nonlinear
regressions. The best model was concluded by comparing the mean squared error between the model
predictions and the actual values. The results imply that there are multiple evaluation words suitable
for adopting nonlinear regression models, and the average error was 43.8% smaller than that of
building only linear regression models.

Keywords: tactile estimation; nonlinear regression; sensory evaluation; mechanoreceptors; tactile
sensor

1. Introduction

Since tactile sensation is one of the most important factors when evaluating a consumer
product [1–4], quantitative evaluation methods for tactile sensation are in high demand
in product development. In general, a sensory evaluation test is employed to quantify
tactile sensations; however, it requires many subjects to participate in a survey, which is
costly and time-consuming. Another issue is that even with the same subject, the results
may vary depending on differences in the evaluation environment and physical condition.
As an alternative to sensory evaluation tests, tactile estimation using physically acquired
quantitative data, or tactile sensing, has attracted significant attention.

There are two main purposes for using sensory evaluation. The first is the quality
control of the product. Since the surface of products should always have a similar texture
as it is desired, a classification model may be used to classify the surface textures from the
data acquired by the sensor. The other is to understand what kind of tactile sensation the
surface of the manufactured product evokes in people at the product design phase, which is
a more upstream process. To evaluate the tactile sensation of products, sensory evaluation
by a large number of subjects is necessary for generalization, and the cost is prohibitive.
The realization of a regression model that accurately estimates tactile evaluation scores
by humans from sensor information contributes to the design of low-cost, high-quality
products. The classification is a simple task compared to a regression task and has already
been addressed in previous studies. On the other hand, few accurate models for estimating
human tactile evaluation scores have been reported.

Some previous studies about tactile sensing have focused on developing tactile sen-
sors [5–15]. Fishel et al. [5] developed a tactile sensing finger, BioTac, which can detect force,
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vibration, and heat transfer. Lin et al. [6] developed a human skin-inspired, piezoelectric,
flexible, multifunctional tactile sensor that can detect and distinguish the magnitudes, posi-
tions, and modes of diverse external stimuli, including by slipping, touching, and bending
the tactile sensor. Zheng et al. [7] developed a magnetostrictive tactile sensor based on a
Galfenol cantilever. The surface properties, including roughness and slipperiness of an
object, can be obtained when the sensor slides on an object’s surface. Most tactile sensor
development approaches are based on a robotic strategy, which pays little attention to
human perceptibility.

Another approach is to extract meaningful information from vibration data obtained by
tracing a simple vibration sensor on an object [16–30]. Because the four types of mechanore-
ceptors in our body have different frequency characteristics [31–33], they work as filters for
vibration stimulations on the skin. This means that the meaningful information for humans
is not the entire vibration data, but is hidden in the vibration data. Previous research [22–30]
focused on extracting this meaningful information; we believe that this method is quite
promising because it uses features focused on the characteristics of mechanoreceptors and
can contribute to the elucidation of the human tactile perception mechanisms through
an engineering approach. These methods include the use of the neuromorphic encod-
ing [22–25] and hand-made features [26–30]. As an example of the former method, Gupta
et al. [22] converted the analog vibration data acquired by the fabricated sensor into a
spike train using a neural model and encoded the spatiotemporal activation patterns of
mechanoreceptors through a gray-level co-occurrence matrix. They showed that the feature
is effective in texture classification and robust to changes in tactile velocity. Yi et al. [23]
showed that spike train similarity comparisons using the multi-neuron spike train distance
calculated from the vibration data through the neural model were effective in roughness
discrimination. These studies suggest the effectiveness of features that take into account the
receptive characteristics of mechanoreceptors in texture classification. However, although
these studies show high classification accuracy, they use machine leaning models; thus, it is
not clear which features contribute to the results and how. Furthermore, we believe that it
is necessary to go beyond texture classification and estimate tactile sensation in order to
make it useful for product development.

In contrast, as an example of calculating hand-made features from vibration data,
Okuyama et al. [26] found a high correlation between the power spectral density of the
receptive frequency band of the mechanoreceptor calculated from the vibration data and
the evaluation of hair touch feeling. Asaga et al. [27] calculated features from vibration data
using a vibration detection threshold of mechanoreceptors and showed that they correlated
with tactile factors obtained from sensory evaluation. Although these studies are clear and
straightforward about which explanatory variables contribute to tactile sensation, they only
employed linear models. In other words, they do not take into account the nonlinearity
of the human perceptive mechanism [34–36] in the process of tactile estimation. Another
previous study has shown that humans perform nonlinear information conversions in
two parts of the tactile perception process: one is at the physical interaction between
an object and the skin, which has tactile receptors just underneath, and the other is in
the brain’s perceptual system where the receptors fire information that is converted into
tactile recognition [34]. In particular, neurophysiological studies have revealed that there
is no linear relationship between the neural firing from the receptors and the subjective
sensation [36], suggesting the importance in performing a nonlinear transformation that
takes into account not only the receptive characteristics of mechanoreceptors, but also
the brain’s nonlinear perceptual nature. To push the tactile sensing approach forward
with the mere basic knowledge to extract feature quantities to a practical level, it is
important to show how features can be used in the tactile estimation process, taking into
account nonlinearities.

This study aims to show how features based on the characteristics of mechanoreceptors,
together with an extension of the feature extraction method, contribute to tactile sensation
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while introducing nonlinearity into the model by taking into account the nonlinearity of
the human tactile perception mechanism.

2. Materials and Methods
2.1. Strategy of Tactile Estimation Modeling

The structure of this study is shown in Figure 1 to demonstrate the effectiveness of
the nonlinear modeling of tactile estimation. First, we conducted a sensory evaluation test.
In parallel, a tactile sensing system was developed, including a newly designed tactile
sensor. The vibration data are acquired when a sensor traces a sample, which is followed
by feature extraction based on the perceptibility of mechanoreceptors. Then, we developed
several model candidates with or without nonlinearities, whose inputs and outputs are
the extracted features and sensory evaluation scores, respectively. The mean squared error
between the model predictions and the actual values is compared to determine the most
effective model.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 14 
 

 

This study aims to show how features based on the characteristics of mechanorecep-

tors, together with an extension of the feature extraction method, contribute to tactile sen-

sation while introducing nonlinearity into the model by taking into account the nonline-

arity of the human tactile perception mechanism. 

2. Materials and Methods 

2.1. Strategy of Tactile Estimation Modeling 

The structure of this study is shown in Figure 1 to demonstrate the effectiveness of 

the nonlinear modeling of tactile estimation. First, we conducted a sensory evaluation test. 

In parallel, a tactile sensing system was developed, including a newly designed tactile 

sensor. The vibration data are acquired when a sensor traces a sample, which is followed 

by feature extraction based on the perceptibility of mechanoreceptors. Then, we devel-

oped several model candidates with or without nonlinearities, whose inputs and outputs 

are the extracted features and sensory evaluation scores, respectively. The mean squared 

error between the model predictions and the actual values is compared to determine the 

most effective model. 

 

Figure 1. Structure of this study. 

2.2. Target Samples 

As shown in Figure 2a, eight plastic plates were selected for target samples as a rep-

resentative of objects that are widely used in consumer products with textured surfaces. 

The plates had different surface patterns, which fall within the range of surface roughness 

of common plastic products. The differences are shown in Table S1 as the arithmetic av-

erage roughness of the samples, Ra, and the arithmetic average swell, Wa, measured using 

the DektakXT (Bruker Corporation, Billerica, MA, USA). The dynamic friction coefficient, 

μ’, was measured using the KES-SE with a 10 mm2 piano-wire sensor (Kato Tech Co. Ltd., 

Kyoto, Japan), as shown in Figure 2b. The total number of samples was determined to be 

eight so that the subjects could concentrate on evaluating all the samples in an appropriate 

amount of time. 

Figure 1. Structure of this study.

2.2. Target Samples

As shown in Figure 2a, eight plastic plates were selected for target samples as a
representative of objects that are widely used in consumer products with textured surfaces.
The plates had different surface patterns, which fall within the range of surface roughness
of common plastic products. The differences are shown in Table S1 as the arithmetic average
roughness of the samples, Ra, and the arithmetic average swell, Wa, measured using the
DektakXT (Bruker Corporation, Billerica, MA, USA). The dynamic friction coefficient, µ’,
was measured using the KES-SE with a 10 mm2 piano-wire sensor (Kato Tech Co., Ltd.,
Kyoto, Japan), as shown in Figure 2b. The total number of samples was determined to be
eight so that the subjects could concentrate on evaluating all the samples in an appropriate
amount of time.



Sensors 2022, 22, 6697 4 of 14Sensors 2022, 22, x FOR PEER REVIEW 4 of 14 
 

 

  
(a) (b) 

Figure 2. Information of plastic plates. The plates were as follows: #1, polystyrene; #2, unknown; #3, 

polypropylene; #4, polyethylene; #5, polycarbonate; #6, polymethylmethacrylate; #7, unknown; #8, 

polyethylene. (a) The enlarged views of test samples (scale bar: 5 mm). (b) Dynamic friction coeffi-

cient, μ’ (mean ± SD, n = 10). 

2.3. Sensory Evaluation Test 

To quantify the tactile sensations, a sensory evaluation test was conducted with hu-

man subjects, performed at a temperature of 24.6 ± 1.0 °C and 41.3 ± 4.5% relative humidity 

with the participation of 35 healthy adults (21 males and 14 females), with an age of 22.2 

± 1.1 (between 21 and 25) years old. We employed a semantic differential method which 

is widely used to evaluate the tactile sensation. A seven-step unipolar scale for the Japa-

nese adjectives listed in Table S2 was used as the rating scale. These words were selected 

by the following procedure. First, we collected 43 Japanese adjectives used for tactile eval-

uation, referring to previous studies, and narrowed them down to 17 words through 

brainstorming by the experimenter. Then, to ensure objectivity, a preliminary experiment 

was conducted in which seven subjects were asked to touch the sample and answer 

whether or not the words were appropriate for evaluation. As a result, 10 words that more 

than 70% of the subjects answered as evaluable were used as evaluation words for sensory 

evaluation. Before the evaluation, the subjects were free to touch all the samples to under-

stand the variety of the samples. During the test, each sample was placed in a box to ex-

clude visual information. The subjects were instructed to touch the sample freely, except 

for the tracing direction. They were requested to trace the samples only in the horizontal 

direction with their finger pad. Additionally, in order to avoid the possible order effect, 

the subjects were allowed to evaluate the samples in a random order, and they were al-

lowed to touch the samples as many times as they wished while scoring an evaluation 

word. In addition, the evaluation words were given to each participant in a random order 

to prevent a possible order effect from occurring. The test protocol was approved by the 

Bioethics Board of the Faculty of Science and Technology, Keio University. The subjects 

received a thorough explanation of the test methods in advance and then signed an in-

formed consent form before participating in the study. To identify trends in the subjects’ 

responses, the subjects were classified via cluster analysis using the Python library, SciPy. 

The scores for all evaluated words were considered in the cluster analysis. The Euclidean 

distance was used as the distance function, and the Ward method was employed. 

For the analysis of tactile sensation, the evaluation words were analyzed by principal 

component analysis (PCA) for each cluster of subjects based on the evaluation scores us-

ing SPSS (Version 22, International Business Machines Corp., Armonk, NY, USA). The 

conditions for extracting the principal components (PCs) include the criteria that the ei-

genvalue of each PC should be greater than the unity. 

2.4. Vibration Measurement System and Procedure 

We developed a tactile sensing system capable of detecting vibrations while a tactile 

sensor runs over a sample. Vibrations covered here are those caused by a dynamic touch 

motion, including the stick-slip phenomenon. Figure 3 shows the images of the tactile 

sensor and an overview of the tactile sensing system. The purpose of this sensor was not 

Figure 2. Information of plastic plates. The plates were as follows: #1, polystyrene; #2, unknown;
#3, polypropylene; #4, polyethylene; #5, polycarbonate; #6, polymethylmethacrylate; #7, unknown;
#8, polyethylene. (a) The enlarged views of test samples (scale bar: 5 mm). (b) Dynamic friction
coefficient, µ’ (mean ± SD, n = 10).

2.3. Sensory Evaluation Test

To quantify the tactile sensations, a sensory evaluation test was conducted with human
subjects, performed at a temperature of 24.6 ± 1.0 ◦C and 41.3 ± 4.5% relative humidity
with the participation of 35 healthy adults (21 males and 14 females), with an age of
22.2 ± 1.1 (between 21 and 25) years old. We employed a semantic differential method
which is widely used to evaluate the tactile sensation. A seven-step unipolar scale for
the Japanese adjectives listed in Table S2 was used as the rating scale. These words were
selected by the following procedure. First, we collected 43 Japanese adjectives used for
tactile evaluation, referring to previous studies, and narrowed them down to 17 words
through brainstorming by the experimenter. Then, to ensure objectivity, a preliminary
experiment was conducted in which seven subjects were asked to touch the sample and
answer whether or not the words were appropriate for evaluation. As a result, 10 words
that more than 70% of the subjects answered as evaluable were used as evaluation words for
sensory evaluation. Before the evaluation, the subjects were free to touch all the samples to
understand the variety of the samples. During the test, each sample was placed in a box to
exclude visual information. The subjects were instructed to touch the sample freely, except
for the tracing direction. They were requested to trace the samples only in the horizontal
direction with their finger pad. Additionally, in order to avoid the possible order effect, the
subjects were allowed to evaluate the samples in a random order, and they were allowed
to touch the samples as many times as they wished while scoring an evaluation word. In
addition, the evaluation words were given to each participant in a random order to prevent
a possible order effect from occurring. The test protocol was approved by the Bioethics
Board of the Faculty of Science and Technology, Keio University. The subjects received a
thorough explanation of the test methods in advance and then signed an informed consent
form before participating in the study. To identify trends in the subjects’ responses, the
subjects were classified via cluster analysis using the Python library, SciPy. The scores for
all evaluated words were considered in the cluster analysis. The Euclidean distance was
used as the distance function, and the Ward method was employed.

For the analysis of tactile sensation, the evaluation words were analyzed by principal
component analysis (PCA) for each cluster of subjects based on the evaluation scores
using SPSS (Version 22, International Business Machines Corp., Armonk, NY, USA). The
conditions for extracting the principal components (PCs) include the criteria that the
eigenvalue of each PC should be greater than the unity.

2.4. Vibration Measurement System and Procedure

We developed a tactile sensing system capable of detecting vibrations while a tactile
sensor runs over a sample. Vibrations covered here are those caused by a dynamic touch
motion, including the stick-slip phenomenon. Figure 3 shows the images of the tactile
sensor and an overview of the tactile sensing system. The purpose of this sensor was
not to imitate the complex structure of a finger, but to capture the vibrations that occur
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when the sensor runs over a sample. A cylindrical shaft converts the vertical displacement
into the strain of a leaf spring with two strain gauges (KFGS-03-120-C1-23-N30C2, Kyowa
Electronic Instruments Co., Ltd., Tokyo, Japan) glued on both sides to detect vibrations
when a silicone rubber pad traces a sample surface. The silicone rubber pad was cured by
mixing the main compound (SYLGARDTM 184 Silicone Elastomer Base, The Dow Chemical
Company, Midland, TX, USA) with the hardener (SYLGARDTM 184 Silicone Elastomer
Curing Agent, The Dow Chemical Company, Midland, TX, USA) at 2.5% of the blended
amount and a polymerization reaction at 80 ◦C occurred in air for more than 30 min using
a high-temperature dryer. The hardness of the silicone rubber pad was designed to be
equivalent to that of a human finger. Young’s modulus of the silicone is reported to be
6.7 MPa, according to the manufacturer. Figure S1 shows a comparison of the hardness
between the forefinger pad and the developed sensor measured using a durometer TYPE
OO (GS-754G, Teclock Co., Ltd., Nagano, Japan). The results of the Student t-test showed
no significant differences between the two. A coating material (X-93-1755-1, Shin-Etsu
Chemical Co., Ltd., Tokyo, Japan) was adhered to the surface of the silicone rubber pad.
The outputs from the strain gauges were acquired using a dynamic strain amplifier (DPM-
913B, Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan). The relationship between
the output of the strain gauge, V, and the vertical deformation of the tactile sensor, d, is
shown in Figure S2. From the figure, we can obtain the transformation equation with a
linear regression as:

d = −1409.4V + 710.35. (1)
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Figure 3. Tactile sensing system with developed tactile sensor. (a) Actual image of the tactile sensor.
(b) Schematic diagram of the tactile sensor structure. (c) Overall view of the sensing system.

As shown in Figure 3c, the tactile sensor was fixed to a traction arm of the static and
dynamic friction measuring instruments (TL201Ts, Trinity-Lab. Inc., Tokyo, Japan). Upon
testing, the normal force N between the tactile sensor and the sample can be adjusted by
placing weights on the traction arm. As the sample table of the TL201Ts moves horizontally,
the tactile sensor runs over a sample. In addition, a force sensor connected to the traction
arm detects the tangential force F.

The vibration information measurement conditions were as follows: the tracing speed
and distance of the tactile sensor were 10 mm/s and 30 mm, respectively. The normal
force, N, applied between the tactile sensor and sample was 0.49 N. The tracing speed and
contact force were determined to be consistent with the general touch conditions reported
by previous studies [37–40]. Measurements were repeated 11 times per sample with a
sampling rate of 10 kHz.
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2.5. Data Processing Methods

There are four mechanoreceptors in the glabrous skin, as shown in Figure S3: Meissner
corpuscles (FA I), Pacinian corpuscles (FA II), Merkel disks (SA I), and Ruffini endings (SA
II) [31–33]. They respond to the mechanical stimuli applied to the skin and then fire nerve
impulses to the neuron. The physiological threshold of the amplitude of stimulation for
firing against the frequency was reported for each receptor, as summarized in Figure S4.
Based on this, we can approximate the threshold line, L, on the logarithmic chart for each
mechanoreceptor as:

LFAI =


−17.22log f + 53.91, if 0.5 ≤ f ≤ 10.13
−12.12log f + 48.78, if 10.13 < f ≤ 14.73
0.2373log f + 34.34, if 14.73 < f ≤ 67

(2)

LFAII =

{
−38.64log f + 64.57, if 20 < f ≤ 237.64
24.93log f − 86.48, if 237.64 < f ≤ 800

(3)

LSAI =

{
−10.90log f + 32.77, if 0.5 ≤ f ≤ 20.55
9.195log f + 6.390, if 20.55 < f ≤ 120

(4)

LSAII =


−17.22log f + 53.90, if 0.5 ≤ f ≤ 10.13
−12.12log f + 48.78, if 10.13 < f ≤ 128.51
−0.6747log f + 24.64, if 128.51 < f ≤ 400

(5)

where LFAI, LFAII, LSAI, and LSAII are the thresholds for FA I, FA II, SA I, and SAII, re-
spectively, and f is the frequency of the vibration stimulus. Each mechanoreceptor is
supposed to fire when the intensity of the mechanical stimulus surpasses the corresponding
threshold line.

The vibration data acquired by the vibration measurement system (Figure 3) were
compared with the above-mentioned threshold lines in the frequency domain to extract
meaningful information for tactile estimation as follows: First, the acquired output from
the strain gauges was converted to the vertical displacement using Equation (1), resulting
in the vibration data in the time domain. Then, we transformed the vibration data from
the time domain to an amplitude spectrum in the frequency domain using fast Fourier
transformation (FFT), implemented in MATLAB (MATLAB 2020a, Math Works Inc., Natick,
MA, USA) at a sampling frequency of 10 kHz and mediated with a Hamming window to
obtain the vibration data in the frequency domain. The Hamming window was discretized
with 32678 points to fit the length of the vibration data. Figure 4 shows a conceptual
diagram of the extraction of feature values. The colored area between the lowest threshold
and the measured vibration data corresponds to the firing status of the mechanoreceptors.
This study considers the combination of firing receptors and divides the entire area into
eight subareas, Di, as shown in Figure 4. The subscript i represents the mechanoreceptors
that are supposed to fire in the corresponding frequency range. Note that Di could be
zero when the vibration data are always lower than the thresholds. Detailed formulas for
calculating each feature are provided in the Supplementary Materials.

2.6. Tactile Estimation Models

We performed a regression analysis to predict the principal component scores for
each cluster using the features extracted from the vibration data, Di, and the dynamic
friction coefficient, µ’, using the Python library and state models. Considering that the
human tactile perception nature has nonlinearity [34–36], we developed four types of
linear/nonlinear regression models:

Linear : y = β0 + ∑p
i=1 βixi (6)

Logarithmic : y = β0 + ∑p
i=1 βi log(xi) (7)
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Interaction: y = β0 + β1xi+ β2xj+ β1xixj (8)

Polynomial : y = β0 + ∑a
i=1 β1xi

1 (9)

where xi and xj are the explanatory variables, that is, Di and µ’. y is the objective variable,
that is, the PC score. βi represents the coefficients to be determined. In the linear and
logarithmic models, regression formulas were constructed for all combinations of variables.
p means the number of variables to be entered and takes values from one to the maximum
number of variables that can be entered. In the interaction model, any two explanatory
variables were chosen to build the model, that is, 6C2 = 15 types of models were built for
one objective variable. In the polynomial model, only one variable was entered into a single
equation. a means the maximum number of dimensions of the input variable.

The explanatory variables were introduced using the brute-force method. A regression
model was constructed using data obtained from seven out of eight samples. The data for
the remaining samples were used to validate the developed regression model. This process
was repeated eight times, that is, all samples were used for validation. The model with the
lowest error was selected as the best model for each PC in each cluster.

For comparison, we also conducted regression analyses using the feature extraction
methods reported in a previous study [27]. In other words, a total of eight regression
equations were constructed for one objective value by combining two types of feature
extraction methods and four types of models, and the name of each regression model
was defined, as shown in Table 1. Previous research [27] only considered three features
extracted from the vibration data and used linear regression analysis focusing on the
mechanoreceptor with the lowest threshold at each frequency band. Thus, A-1 is the
method reported in a previous study [27], and the other models were newly constructed in
this study.
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Table 1. Classification of the regression models based upon the feature extraction method and
model type.

Model Type
Feature Extraction Method

Previously Reported Method [27] Proposed Method

Linear A-1 B-1
Logarithmic A-2 B-2
Interaction A-3 B-3
Polynomial A-4 B-4
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3. Results
3.1. Sensory Evaluation Results

As a result of cluster analysis, the subjects were mainly classified into Cluster 1
(10 subjects) and Cluster 2 (25 subjects), as shown in Figure 5. PCAs were performed on the
clusters. The results show two PCs extracted for Cluster 1 and three for Cluster 2, as shown
in Table 2. The cumulative contribution rates of the PCA results for Clusters 1 and 2 were
73.2% and 59.7%, respectively. The average PC scores for each sample were considered as
objective variables in the following regression analysis.
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Table 2. The result of principal component analysis. (Bold letters indicate evaluation words with an
absolute value of PC loadings of 0.5 or higher).

Evaluation Word

Principal Component Load

Cluster 1 Cluster 2

PC1 PC2 PC1 PC2 PC3

Smooth −0.933 −0.055 −0.646 0.186 −0.517
Sticky 0.913 0.136 0.695 0.300 −0.257
Pasty 0.872 0.120 0.724 0.385 0.088

Feel friction-drag 0.877 0.000 0.741 0.220 0.099
Moisten 0.840 0.236 0.466 0.371 0.276

Sleek −0.845 0.196 −0.617 0.356 −0.033
Slippery −0.561 0.427 −0.200 0.725 0.075
Velvety −0.215 0.836 −0.603 0.319 0.318

Fine −0.048 0.810 −0.452 0.356 0.507
Rough −0.188 −0.772 −0.011 −0.673 0.461

Eigenvalue 5.50 2.26 3.18 1.79 1.00
Contribution rates (%) 50.4 22.8 26.3 18.8 14.6

Cumulative contribution rates (%) 50.4 73.2 26.3 45.1 59.7

3.2. Feature Values Extracted from Vibration

The features corresponding to the eight subareas in Figure 4 were calculated, as
shown in Figure 6. As indicated, all the features have different trends among the samples,
suggesting that these features extracted from the vibration data could possibly explain
the differences in the samples. DSAISAIIFAI was significantly different, except between
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samples (1 and 2, 5, 6, 7), (2 and 3, 5, 6, 7), (3 and 5), (4 and 8), (5 and 6, 7), and (6 and
7). DALL was significantly different, except between samples (1 and 8), (2 and 3), (4 and
5), (4 and 7), and (5 and 7). A one-way analysis of variance showed that there were
significant differences (p < 0.05) between samples for DSAISAIIFAI, DALL, DSAISAIIFAII, DFAII,
and DSAIIFAII. Therefore, these five features for each sample were considered as index
variables in the following regression analysis. In addition, the three types of features
calculated based on the feature calculation method of a previous study [27] are shown in
Figure S5.
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Figure 6. Results of feature calculation for the eight samples. (a) DSAI, (b) DSAISAIIFAI, (c) DSAISAIIFAII,
(d) DALL, (e) DSAIIFAII, (f) DFAII, (g) DSAISAII, (h) DSAIFAII (mean ± SD, n = 11, NS: no significant
difference at 5% significance probability, *: p < 0.05, **: p < 0.01, †: significant differences are noted in
the text).

3.3. Regression Analysis

Using the features and the dynamic friction coefficient µ’ as index variables, we
performed the regression analysis to estimate the results of the sensory evaluation. The
type of model that showed the lowest error for each principal component and its values
are shown in Table 3, with the smallest error among all models for each PC shown in bold.
The relationship between the values predicted by the model with the smallest error and the
measured values is shown in Figure 7.

Table 3. The average error of each regression model. (Bold letters indicate the model with the lowest
error for each PC).

Cluster Principal
Component

Model

A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4

Cluster 1
PC1 0.134 0.115 0.876 0.138 0.052 0.018 0.061 0.876
PC2 0.539 0.506 1.133 0.795 0.545 0.535 0.451 0.338

Cluster 2
PC1 0.328 0.231 0.211 0.426 0.227 0.209 0.307 0.542
PC2 0.268 0.325 0.303 0.733 0.046 0.048 0.138 0.321
PC3 0.418 0.416 0.688 0.360 0.386 0.385 0.337 0.441
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The regression equations for constructing the model with the smallest error are shown
in Equations (10)–(14).

yC1PC1 = −4136 + 5.544log(DSAISAIIFAI) − 98.20 log(DSAIIFAII) + 466.3log(DFAII) + 0.9490 log(µ) (10)

yC1PC2 = 1.828 DSAIIFAII − 3.5 × 10−4 D2
SAIIFAII + 1.69 × 10−8 D3

SAIIFAII (11)

yC2PC1 = −16.88 + 2.856 log(DSAISAIIFAI) + 1.114 log(µ) (12)

yC2PC2 = −94.98 + 4.824 × 10−3 DSAISAIIFAII − 4.270 × 10−3 DALL + 8.772 × 10−3 DSAIIFAII (13)

yC2PC3 = 4911 − 2.237 DSAISAIIFAII − 0.4273 DSAIIFAII + 2.151 × 10−4 DSAISAIIFAI DSAIIFAII (14)

Note that yCiPCj is the principal component score of the jth PC of Cluster i. The
coefficient of determination R2, the adjusted coefficient of determination R’2, and the
p-values of each regression equation are shown in Table 4.

Table 4. Summary of the constructed regression equations.

Cluster Principal
Component Equation R2 R’2 p

Cluster 1
PC1 (10) 0.995 0.986 0.000854
PC2 (11) 0.458 0.241 0.217

Cluster 2
PC1 (12) 0.837 0.772 0.0107
PC2 (13) 0.935 0.887 0.0077
PC3 (14) 0.308 −0.211 0.651

4. Discussion

As shown in Table 3, the B-n models, in which the features were extracted by the
proposed method, had the lowest error among all PCs. This implies that considering the
combination of firing receptors improves the accuracy of the tactile estimation. As can be
seen, the linear regression model (B-1) is effective only for PC2 in Cluster 2, whereas the
nonlinear models (B-2, B-3, B-4) are effective for the other PCs. In other words, these results
suggest the effectiveness of considering nonlinear models. When the tactile sensation was
estimated by the method of a previous study [27], that is, when only the A-1 models were
constructed, the mean error of all five PCs was 0.337. In contrast, when both linear and
nonlinear models are considered using the features proposed in this study, the average
error (for the models shown in bold in Table 3) is 0.190. This is a 43.8% smaller error than
that using the A-1 models. These results suggest the effectiveness of building a nonlinear
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model between the features and the subjective sensory quantities, focusing on nonlinear
transformations in the brain from neural firing information to tactile perception. Since the
materials used in this study were limited, we believe that we can construct a more versatile
model that can estimate a wide range of tactile sensations by building models for different
materials and evaluating the differences between them in the future.

Table 4 indicates that the regression equations constructed for PC2 in Cluster 1 and
PC3 in Cluster 2 were insignificant, with a significance probability of 5%. In conjunction
with the results in Table 3, we can see that the errors of the two models are relatively
large (more than 0.3), although they are smaller than those of the previously reported
models. Measuring any additional physical quantities may improve the estimation of these
tactile sensations.

In the following, we will examine which features effectively explain PC1 in Cluster
1 and PC1/PC2 in Cluster 2, for which statistically significant regression equations were
constructed (p < 0.05). Table 5 shows the standard regression coefficients, β’, and their
p-values for each variable. PC2 in Cluster 2, where the linear model was effective, had
evaluation words with high principal component loadings such as “Slippery” and “Rough”,
as shown in Table 2. This implies that the roughness represented by PC2 in Cluster 2
was perceived. Furthermore, we found that the logarithmic model was effective for PC1
in both Cluster 1 and Cluster 2. Both principal components have “Smooth,” “Sticky,”
“Pasty,” “Feel friction-drag,” and “Sleek” as the evaluation words with an absolute value
of principal component loadings of 0.5 or higher. They are thought to represent similar
tactile sensations, such as smoothness. Thus, the results imply that we do not perceive
vibration stimuli linearly but logarithmically when perceiving smoothness regardless of
the cluster. Contrastingly, PC2 in Cluster 1 and PC3 in Cluster 2, which represent similar
tactile sensations, were effectively modeled by different types of models: the interaction
model and polynomial model, respectively. This difference may be due to the different
perceiving nature of each cluster. Therefore, to make the most of the extracted features in
tactile estimation, it is necessary to combine different types of models for different PCs or
evaluation words.

Table 5. Standard regression coefficients for each variable.

Objective Variable Explanatory Variable β′ p

yC1PC1

log(D SAISAIIFAI
)

0.797 0.004
log(D SAIIFAII

)
−0.426 0.011

log(D FAII) 0.469 0.018
log(µ) 0.438 0.013

yC2PC1
log(D SAISAIIFAI

)
0.515 0.039

log(µ) 0.645 0.018

yC2PC2

log(D SAISAIIFAII
)

0.357 0.072
DALL −0.787 0.005

DSAIIFAII 0.798 0.005

5. Conclusions

As an alternative to sensory evaluation, estimating human tactile evaluation scores
from information acquired by sensors is necessary for the development of products to
improve additional values. However, few accurate models for estimating tactile sensation
have been reported, and it is necessary to develop an accurate model based on the human
tactile perception mechanism. For this purpose, we developed a tactile sensing system
capable of detecting vibrations while a sensor runs over a sample. From the vibration
obtained, we proposed methods to estimate the firing values of mechanoreceptors focusing
on the simultaneous firing of multiple mechanoreceptors. In addition, we conducted
sensory evaluations to obtain the sample scores for different evaluation words and extracted
principal components for the tactile sensation of samples for the cluster divided by the
response tendency. Then, the relationship between the extracted features and tactile
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evaluation scores was modeled by linear and nonlinear regressions based on the human
tactile perception mechanism. The best model was determined by comparing the estimation
errors. In conclusion, the results suggest the effectiveness of the feature extraction method
proposed in this study and the reduction of error by considering nonlinear models. The
results suggest that the proposed nonlinear model improves the average estimation error
by 43.8% compared with the previously reported linear model. In addition, the obtained
regression equations reveal the physical quantities that contribute to the estimation of
smoothness and roughness. In contrast, the p-value of some models is not small enough for
quantitative tactile estimation. The appropriateness of the conclusion is limited to similar
plastic samples since this study only employs plastic plates. As a future task, we expect
to improve the tactile estimation by measuring not only vibration, but also other physical
properties such as heat flux that may vary depending on different materials.
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