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Abstract: With the global population surge, the consumption of nonrenewable resources and pollution
emissions have reached an alarming level. Engineered bamboo is widely used in construction,
mechanical and electrical product packaging, and other industries. Its main damage is the material
fracture caused by the expansion of initial cracks. In order to accurately detect the length of crack
propagation, digital image correlation technology can be used for calculation. At present, the
traditional interpolation method is still used in the reconstruction of engineered bamboo speckle
images for digital correlation technology, and the performance is relatively lagging. Therefore, this
paper proposes a super-resolution reconstruction method of engineering-bamboo speckle images
based on an attention-dense residual network. In this study, the residual network is improved by
removing the BN layer, using the L1 loss function, introducing the attention model, and designing an
attention-intensive residual block. An image super-resolution model based on the attention-dense
residual network is proposed. Finally, the objective evaluation indexes PSNR and SSIM and subjective
evaluation index MOS were used to evaluate the performance of the model. The ADRN method
was 29.19 dB, 0.938, and 3.19 points in PSNR, SSIM, and MOS values. Compared to the traditional
BICUBIC B-spline interpolation method, the speckle images reconstructed by this model increased by
8.55 dB, 0.323, and 1.43 points, respectively. Compared to the SRResNet method, the speckle images
reconstructed by this model were increased by 4.53 dB, 0.111, and 0.14 points, respectively. The
reconstructed speckle images of engineered bamboo were clearer, and the image features were more
obvious, which could better identify the tip crack position of the engineered bamboo. The results
show that the super-resolution reconstruction effect of engineered-bamboo speckle images can be
effectively improved by adding the attention mechanism to the residual network. This method has
great application value.

Keywords: engineered bamboo; speckle images; super-resolution; attention-dense residual network

1. Introduction

Engineered bamboo is a bamboo-based composite material made by the industrializa-
tion of raw bamboo, with the advantages of renewable and better mechanical properties [1].
It is an ideal material for construction and electromechanical packaging engineering [2].
However, due to the naturally porous structure of bamboo and the bonding technology
of engineered bamboo, crack expansion can lead to damage below the yield limit of the
material, thus affecting the load carrying capacity and life of the structure, as well as
causing stress softening and stiffness degradation. The tolerance of the material to such
crack expansion needs to be assessed by the critical fracture strain energy release rate, and
to obtain the critical fracture strain energy release rate accurately, the relationship curve
between the fracture strain energy and the crack expansion length must be obtained [3].
The accurate identification of crack tip location and crack extension length has been one of
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the research difficulties in fracture problems of composite materials. Since the cracks of
engineered bamboo are very fine and not easy to identify, the help of a high-performance
camera and digital image correlation (DIC) technology can improve the accuracy of iden-
tification and provide an effective means to calculate the reliability of the fracture strain
energy [4].

The DIC technique is a noncontact measurement method that uses image comparison
before and after deformation to detect the deformation and strain distribution on the sur-
face of an object and, thus, measure its mechanical properties. The higher the resolution of
an image, the more detail and texture information it contains, and the detail information [5]
of an image plays a crucial role in image analysis. In 2017, Pan Bing et al. [6] found that
the correlation of the graphs before and after deformation decreased dramatically when
the material underwent serious deformation. The problem with using the DIC method
is that the pattern of the correlation coefficient distribution graph of the image before
deformation is not obvious, which increases the difficulty of the measurement. For this
problem, many scholars have proposed inserting intermediate images, a unique track-
ing strategy combining Fourier–Mellin transform [7] for mutual correlation and reliable
guidance, DASIY feature description, and the PatchMatch method [8]; accelerated robust
feature algorithms and dependent path passing methods [9]; or a vision-based method
for the measurement [10], along with other solutions. However, all suffer from problems
such as mismatching or a high computational cost. In practical mechanical measurement
experiments, the use of a high-performance ultra-high-speed camera [11] can make the
distortion between each frame small enough; however, due to the limitation of camera
performance, this problem cannot be solved at the hardware level, and only advanced
reconstruction algorithms can be applied to improve the image quality.

Image super-resolution techniques [12] acquire one or more high-resolution images
from one or more low-resolution observations. The image quality can be effectively im-
proved by increasing the performance of the image acquisition device; however, there
is an upper limit to the number of optical sensors per unit area, so the improvement at
the hardware level is limited. In contrast, improving the resolution of the image from
the algorithm can better improve the image quality [13]. Traditional algorithms often
have problems such as high-frequency information loss and detail blurring during image
restoration, and the robustness of the model is poor. After that, people added the idea of
deep learning to the super-resolution algorithm and obtained better processing results. The
existing super-resolution algorithms based on deep learning include SRCNN, SRResNet,
etc. [14]. With the development of hardware devices, the number of layers of neural net-
works has been deepened, and the problem that the gradient cannot converge has arisen.
He Kaiming et al. [15] first introduced a residual structure in ResNet to try to solve the
problem of gradient disappearance. Ledig et al. [16] proposed SRResNet, the first applica-
tion of residual structure to image super-resolution. Zhang Y et al. [17] proposed a residual
channel attention network with channel attention mechanism, which is applied to the field
of image super-resolution for the first time. Wang Longguang et al. [18] proposed a generic
parallax-attention mechanism to capture stereo correspondence, which combines epipolar
constraint and an attention mechanism. Saeed Anwar et al. [19] proposed a densely residual
Laplacian network, using Laplacian attention to improve the quality of the restored image.

At present, the traditional methods are still used in the reconstruction of engineered-
bamboo speckle images for digital correlation technology, and the performance is rela-
tively lagging. The innovations of this study are as follows: (a) the attention module
is introduced into the residual network, and an image super-resolution model based on
attention-intensive residual network is proposed; (b) the ADRN algorithm is applied to the
super-resolution reconstruction of engineered-bamboo speckle images. The contributions
of this study are as follows: (a) the super-resolution reconstruction of engineered-bamboo
speckle images is realized, and the attention-intensive residual network is applied to the
reconstruction of engineering bamboo speckle images for the first time; (b) compared with
the traditional method, the quality of the reconstructed image in this study was greatly
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improved, and the deep information of the speckle images of the engineered bamboo was
better excavated.

2. Materials and Methods
2.1. Imaging

In this experiment, 4-year-old raw bamboo was used as the raw material to prepare
engineered-bamboo specimens. The raw material of raw bamboo about 1.7 m above the
ground and about 0.3 m in diameter was selected, and the specimens were processed and
made by the standard hot-pressing process. The hot-pressing process parameters are shown
in Table 1.

Table 1. Hot-pressing process parameters.

Related
Parameters Glue Sizing Press

Range Temperature Stress Time

Set value Phenolic resin 112 kg/m3 2500 t 135–138 ◦C 2300
T/SMPa 60 min

The mechanical properties of raw bamboo are not uniform because the fiber content
of the green side (outer side) and the matrix content of the yellow side (inner side) are
relatively high, so it needs to be soaked and softened and undergo fiber disintegration,
drying, sizing, embryo formation, pressurization in all directions, carbonization, cooling
and demolding, a surface treatment, pre-cutting, and other processes to form a finished
engineered-bamboo specimen with more uniform mechanical properties.

Figure 1 shows the fabricated engineered-bamboo specimens that were used in this
study, with a length of 500 mm, a width of 55 mm, a height of 30 mm, and a prefabricated
crack length of 160 mm. The number of specimens was 6. Three-point loading experiments
were performed on the six specimens in turn, in which the specimens were subjected to
shear stresses parallel to the crack surface and perpendicular to the leading edge of the
crack to produce a relative slip-open (type II) crack along the direction of the prefabricated
crack [20,21].
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Figure 1. Engineered bamboo specimens.

The experimental equipment included a DDL-100 kN universal testing machine, a 5F08
Thousand Eye Wolf® Revealer high-speed camera, and an image acquisition and parameter
control system in Hefei, China. Table 2 shows the types and performance parameters of the
experimental equipment.

Using the digital image correlation method to obtain speckle images of engineered
bamboo, firstly, we needed to prepare the engineered-bamboo specimens. The specimens
were screened and polished, and obvious cracks, bulges, dents, and other defects were
removed from the surface. Then, the surfaces of the specimens were polished smooth
with sandpaper. Subsequently, the specimens were measured and numbered. A vernier
caliper was used to measure the width, thickness, and crack length of the specimens three
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times, and the average value was taken. A tape ruler was used to measure the length of
the specimen three times and the average value was taken. The specimens with width
variation exceeding 0.5 mm and thickness variation exceeding 5% of the average value
were abandoned. To avoid over-spraying at one time and to ensure that the white matte
paint completely covered the base color of the bamboo, the white matte paint was sprayed
twice. After the white matte paint dried, black matte paint was sprayed according to the
above requirements.

Table 2. Equipment types and performance parameters.

Equipment Type Performance Parameters

Universal testing machine Range: 100 kN
Acquisition frequency: 20 Hz

High-speed camera

Maximum resolution: 4000 × 2000 pixels
Shooting speed: 4000 × 2000 @ 500 fps

Minimum exposure time: 1 µs
Image size: 7 µm

Sensitivity: 4.64 V/lux.s@525 nm
Support trigger method: internal trigger, external trigger

Image acquisition and parameter
control system

Acquisition period: 50,000–99,999 µs
Magnification: 1×

Maximum resolution supported: 4536 × 3024 pixels
Supplementary light sources

The specimens were then positioned and drawn with three vertical lines perpendicular
to the direction of the crack at 25 mm from the left and right ends of the specimen and at
the geometric center of the specimen to facilitate specimen installation. Vertical lines were
drawn at 310 mm from the beginning of the prefabricated initial crack and horizontal lines
were drawn at 5 mm from the upper end of the specimens for subsequent data analysis.
Figure 2 shows a schematic diagram of the engineered-bamboo specimens, and Table 3
shows the dimensional parameters of the engineered-bamboo specimens. Finally, the
engineered-bamboo speckle specimens were treated to eliminate friction by coating one
side of a PVC transparent sheet with olive oil and covering it with another PVC transparent
sheet to form a double-layer sheet with oil in the middle. The double-layer sheet was
inserted into the original crack with the projected area over the left positioning line to
eliminate the influence of contact friction between the upper and lower parts of the initial
crack as much as possible during loading in the experiment.
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Table 3. Dimensional parameters of engineered-bamboo specimens (unit: mm).

Related Parameters a0 ai L L0 Lc Lu B 2h x y

Numerical value 135 160 225 250 25 25 55 30 150 5
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The second step was image acquisition before and after loading. A typical image
acquisition system consists of a high-speed camera, a light source, an image acquisition card,
and a computer. The specimens were installed so that the centerline of the two supports
coincided with the left and right positioning lines, and the loading roller coincided with the
center positioning line. The camera was placed directly in front of the specimen, and the
camera was placed at a shooting angle perpendicular to the specimen’s speckle surface. The
camera’s optical axis was flush with the surface of the specimen, and the lighting source was
white light. The relevant parameters in the high-speed camera system control page were
set; the sampling frequency of the high-speed camera was set to 20 sheets/s, the loading
mode of the universal mechanical testing machine was set to constant loading, and the
loading speed was set to 2 mm/min until obvious changes appeared in the test piece cracks
or the applied load appeared to drop sharply when the loading was stopped. During the
measurement process, speckle patterns on the surface of the tested parts were captured by
the camera and stored on a hard disk for the next step of digital image correlation algorithm
processing. Figure 3 shows the fracture experimental system of the engineered-bamboo
specimens used in this study, Figure 4 shows the experimental process of three-point
loading (type II fracture), Figure 5 shows the engineered bamboo speckle specimens, and
Figure 6 shows an example of an engineered cracked bamboo speckle image.
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2.2. Preprocessing Images

The dataset required for the experiment was obtained from the speckle images of
engineered-bamboo material taken using the Thousand Eye Wolf high-speed camera of
Hefei Fuhuang Junda Hi-Tech Information Technology Co., Ltd. in Hefei, China. There
was a total of 1300 images, the length of the images was 4032 pixels, and the width was
1348 pixels. Some pictures from the dataset are shown in Figure 7.

The training set of super-resolution images consisted of corresponding high-resolution
and low-resolution image sample pairs. The original high-resolution images were from the
original engineered-bamboo speckle image because they have a large unused pure black
area, which significantly prolongs the training time. Thus, the original high-resolution
speckle image was first preprocessed to remove its black area to obtain the original high-
resolution image of the engineered bamboo. Since the resolution of the training-set image
was too high, all the images were cropped to obtain 128 × 128 image blocks. The low-
resolution images were obtained by the bicubic interpolation down-sampling processing of
the high-resolution images, and the proportional coefficient was ×4.

The proportions of the training set, validation set, and test set were at a ratio of 8:1:1,
i.e., the number of images in the training set was 1040 and the number of images in both
the validation and test sets was 130.
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2.3. Super-Resolution Reconstruction of Speckle Images of Engineered Bamboo Based on
an Attention-Dense Residual Network Model

Today, the interpolation method is almost always used for image reconstruction in
engineered-bamboo DIC techniques, and the restored image edge information is not clear
enough. To ensure the accuracy of the crack tip detection of engineered bamboo, this paper
introduces the ResNet model [22], and it was improved as follows: The batch normalization
(BN) layer was removed to improve the training stability of the network and reduce the
network-training time. The L1 loss function was used to improve the robustness of the
network, adding an attention model to improve the network’s attention to image details.
Finally, dense connections were used to enable the network to learn more high-frequency
features [23].

In this study, a modified attention-dense residual network (ADRN) was applied, and
the flow chart of the algorithm is shown in Figure 8, including an input layer, a multilayer
attention-dense layer, an up-sampling layer [24], and an output layer.
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The input layer consists of a convolutional layer [25] that serves as an input low-
resolution image ILR, and each image can be represented as a W × H× 3 real-valued tensor.
The number of output channels of the convolution is C, and the image after the convolution
operation can be described as the matrix of W × H × C. The convolution operation maps
the information of the three channels of the input image, R, G, and B, to the C convolution
kernel components, which deepen the shallow feature information of the input image
initially, and then enter the multilayer attention-dense layer afterward.

The multilayer attention-dense layer is divided into a dense residual block and
a secondary block, which contains the attention module. This layer can extract deeper
feature information from the image and calculate the weight of each channel so that the
model can focus more on critical feature information.

The up-sampling layer enlarges the feature map and outputs it to the output layer.
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The output layer consists of a convolutional layer that reduces the dimensionality of
the feature map to three.

The structure of the image generation algorithm based on the attention residual
structure is shown in Figure 9 with three levels. First, the first-level dense residual block
consists of n dense residual blocks (n is taken as 16), and each dense residual block contains
four cascaded secondary blocks and a convolutional layer. Each secondary block includes
a convolutional layer, an activation layer, and an attention module.
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2.3.1. Removal of BN Layer

In the super-resolution reconstruction task, the BN layer normalizes the image input
to all parts of the network in the network training and suppresses certain colors, textures,
and information of the image. However, the super-resolution reconstruction task is very de-
manding for the image, especially the engineered-bamboo speckle image super-resolution
task, which requires increased resolution of the image after reconstruction. At the same
time, the color, contrast, brightness, and other detailed information of the original image
must not be lost for the tip crack identification work to be carried out smoothly.

In the image super-resolution task, the problems of over-training and over-fitting of
the network rarely occur, so the regularization method is also rarely added to the super-
resolution reconstruction task, and the regularization role played by the BN layer has
a limited effect. At the same time, the BN layer needs to relearn the distribution of the
training data in each iteration, which will lead to an increase in the training time cost of
the model and generate artifacts, reducing the stability of the network training and the
generalization ability of the model.

In order to improve the training speed of the network, reduce the training time, and
improve the stability and generalization ability of the network, all BN layers in the network
were removed in this study.

2.3.2. Loss Function

In super-resolution tasks, the loss function evaluates the high-resolution image output
from the model by ISR relative to the original high-resolution image IHR difference, provid-



Sensors 2022, 22, 6693 9 of 17

ing guidance for the model. The most commonly used loss function is the L2 loss function,
the mean square error (MSE), as shown in Equation (1):

LSR
MSE =

1
r2WH

rW

∑
x=1

rH

∑
y=1

(
IHR
x,y − ISR

x,y

)2
(1)

where IHR and ISR denote the original high-resolution image and the high-resolution image
after super-resolution reconstruction, respectively; W and H are the width and height of
the image, respectively; and the peak signal-to-noise ratio (PSNR), the image evaluation
index, is the ratio of the peak signal intensity to the mean square error, so using the mean
square error as the loss function can obtain the maximum PSNR value.

The recently discovered the L1 loss function is the mean absolute error (MAE), the
expression of which is shown in Equation (2):

LSR
MAE =

1
r2WH

rW

∑
x=1

rH

∑
y=1

∣∣∣IHR
x,y − ISR

x,y

∣∣∣ (2)

Based on the derivation of its expression, the L2 loss function has a stronger penalty
for larger errors and a lower penalty for smaller errors. Meanwhile, the L1 loss function
considers a more uniform error penalty, meaning the L1 loss function has better robustness
than the L2 loss function.

In the specific application of super-resolution reconstruction tasks, the performance
of the reconstruction depends more upon the convergence and robustness of the network.
The L1 loss function and the L2 loss function have been compared in the literature [26,27],
where different loss functions were chosen in the same network to experimentally test if
the L1 loss function had stronger convergence than the L2. Therefore, the L1 loss function
was used for training the model in this study.

2.3.3. Choice of Attention Model

The reconstruction of speckle images of engineered bamboo requires high resolution,
and crack recognition requires extremely high contrast, texture, and other detailed infor-
mation. Combining the characteristics of different attention modules in order to enable
the model to restore images with not only high resolution but also detailed information,
the channel attention structure of the CBAM attention model was added to the network
structure after optimization.

2.3.4. Dense Residual Block Design

The current residual blocks used by SRResNet and SRGAN are shown in Figure 10a,
the residual block proposed by EDSR is shown in Figure 10b, and the attention-dense
residual block designed in this study is shown in Figure 10c. In contrast, the residual block
designed in this study removes all BN layers, incorporates the attention module [28], and
combines multilevel residual networks and dense connections.

The specific structure of the attention module is shown in Figure 11. After the image
passes through the convolution and activation layers, the attention module first performs
the average pooling operation and the maximum pooling operation to obtain the fea-
ture vectors FC

avg and FC
max, respectively, and then reduces the number of channels by the

convolution layer. The convolution kernel size of the convolution layer is X, as shown
in Equation (3), at which point, the ratio of the number of channels output to the initial
number of channels is M, as shown in Equation (4):

X =
C
R

(3)

M =
1
R

(4)
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Among them, C is the number of input characteristic channels, and R is the typical
value. In the reference CBAM structure, the value is 16.

The attention module restores the channels to the initial number of channels through
a ReLU activation layer with a convolution kernel size of C to reduce the computational
cost of the model. The next step is to calculate the weight size of each channel. At this time,
the weight of each channel is more dispersed, and the role of the Sigmoid activation layer is
to limit the scale coefficients of each channel between 0 and 1. Finally, the assigned weight
coefficients are input to each feature channel to achieve the purpose of making the model
pay more attention to the key areas in the image so that the model can reconstruct images
with richer details and sharper edges. The calculation process is shown in Equation (5):

F = σ
(

W1

(
ReLU

(
W0

(
FC

avg

)))
+ W1

(
ReLU

(
W0

(
FC

max

))))
(5)

where σ is the Sigmoid activation function, and FC
avg and FC

max are the feature vectors
obtained after the average pooling and maximum pooling operations, W0 ∈ RC/r∗C and
W1 ∈ RC∗C/r.
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2.3.5. Pseudocode of the Proposed Network

To better explain the procedure of our ADRN, we present the PyTorch-like pseudocode
of the ADRN (Algorithm 1). Algorithm 1 specifies the structure of a dense residual block.

Algorithm 1 The PyTorch-like pseudocode of ADRN.

(model): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Identity +
|Sequential(
| (0): ADRN(
| (ADRN1): ResidualDenseBlock_5C(
| (conv1): Sequential(
| (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
| (1): LeakyReLU(negative_slope=0.2, inplace=True)
| )
| (conv2): Sequential(
| (0): Conv2d(96, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
| (1): LeakyReLU(negative_slope=0.2, inplace=True)
| )
| (conv3): Sequential(
| (0): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
| (1): LeakyReLU(negative_slope=0.2, inplace=True)
| )
| (conv4): Sequential(
| (0): Conv2d(160, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
| (1): LeakyReLU(negative_slope=0.2, inplace=True)
| )
| (conv5): Sequential(
| (0): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
| )
| )

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

In order to ensure the fairness and scientific nature of the experiments, the same
hardware platform and software environment were used in this study. The hardware
platform configuration is shown in Table 4. The experiments were conducted using the
Windows 10 64-bit operating system, the programming language was Python 3.7, all deep
learning frameworks were built by Pytorch, the IDE was PyCharm Community Edition, and
CUDA10.1 and CUDNN7604 were used to accelerate the model training. The parameters
of each algorithm network are shown in Table 5.

Table 4. Hardware platform configuration table.

Hardware Configuration Name

Processors Intel Xeon (Xeon) W-2155@3.30 GHz
Motherboard (computer) (lit. lord board) Dell 0X8DXD Core i7

Video card Nvidia GeForce GTX 1080 Ti
Video memory 8 G

RAM Hynix DDR4 2666 MHz 64 G
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Table 5. Network parameters for each algorithm.

Algorithm SRResNet ADRN

Number of residual blocks 32 16
Training image size 128 128

Applicability to pretrained models deny deny
Loss function L2 L1

Number of feature maps 64 64
Batch size 16 16

Whether or not to add a BN layer yes no

This study used an initial learning rate of 2× 10−4 and the Adam optimizer, with
the decay rate parameters set to β1 = 0.9 and β2 = 0.999. The residual scaling coefficient,
calculated before the residuals were added to the main path, was set to 0.2. The ADRN
model proposed in this paper must run on GPU to ensure the immediacy of speckle image
processing [29].

In order to investigate the impact of the improvement points in this study on network
performance, an ablation experiment was used to gradually modify the network model and
compare their differences in terms of the objective index PSNR values and the structural
similarity (SSIM) values under the condition that the number of images in the test set was
130 and the magnification coefficient was 4. The results are shown in Table 6.

Table 6. Ablation experiments.

Improvements and
Indicators 1st 2nd 3rd 4th 5th

Loss function L2 L1 L1 L1 L1
BN layer

√ √
× × ×

Attention mechanisms × × ×
√ √

Dense connection × × × ×
√

PSNR/SSIM 28.92/0.896 28.92/0.896 29.25/0.902 29.03/0.927 29.19/0.938

The first step was to replace the L2 loss function with the L1 loss function. The effect
of this improvement is mainly reflected in the improvement in the convergence of network
training rather than in the improvement of the value of the evaluation index, which is not
very useful for the improvement in network performance.

Secondly, removing all BN layers saved computational resources and memory usage
while improving the stability of the network, resulting in small improvements in the PSNR
index and SSIM index of 0.33 dB and 0.006, respectively.

Then, the attention mechanism was added to the network structure to enhance the
ability of the network to restore detailed critical information. As the attention mechanism
added in this study is concerned with channel information, it did not have a positive effect
on the PSNR index and even decreased it, but it improved the SSIM index by 0.025, which
is a large improvement.

Finally, densely connecting the network allowed the network to learn more high-
frequency features with fewer parameters, and it was able to improve the performance of
the network while reducing its volume, resulting in a 0.16 dB improvement in the PSNR
index and a 0.011 improvement in the SSIM index.

4. Discussion

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

In order to evaluate the advantages and disadvantages between the improved algo-
rithm and other algorithms in this study, the improved algorithm was compared with other
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algorithms in terms of the objective index PSNR value and SSIM value and the subjective
index mean opinion score (MOS) value under the condition that the number of images in
the test set was 130 and the magnification coefficient was 4. Table 7 presents the PSNR and
SSIM values and MOS values and the test time of the three algorithms on the dataset of
speckle images of engineered bamboo timber.

Table 7. Comparison of the mean results of evaluation indexes and test time for the three algorithms
on the test set.

Algorithm PSNR (dB) SSIM MOS (Points) Test Time(s)

BICUBIC B-spline
interpolation 20.64 0.615 2.48 1.745 × 10−4

SRResNet 24.66 0.827 3.77 1.161
ADRN 29.19 0.938 3.91 1.872

As can be seen in Table 7, for super-resolution reconstruction of the engineered-bamboo
speckle image dataset, the ADRN method was 29.19 dB, 0.938, 3.19 points, and 1.872 s in
PSNR, SSIM, MOS, and algorithm time, respectively. The ADRN method improved the
PSNR index by 8.55 dB compared to the traditional BICUBIC B-spline interpolation method
and improved the SSIM index by 0.323 compared to the traditional method. Moreover,
the SSIM value was very close to 1. The effect on this evaluation index was significantly
improved, and the improvement in the subjective index MOS value was 1.43 points. This
method was significantly better than the traditional interpolation method on the speckle
images of engineered bamboo. Its objective evaluation indexes PSNR and SSIM improved
by 4.53 dB and 0.111, respectively, relative to SRResNet, which also had a large improve-
ment. There was also partial improvement in the subjective index MOS value, with a value
increase of 0.14 points, which confirms the significant role of the attention module and
dense residual structure in the image super-resolution reconstruction task. In addition, the
test time of the ADRN model is 1.872 s.

The difference between the subjective and objective evaluation indexes was further an-
alyzed. In the objective indexes, both PSNR and SSIM, the ADRN method used in this study
was significantly optimized compared to the other two methods, and the reconstructed
image quality was greatly improved for the task of super-resolution image reconstruction
of engineered bamboo, which better improved the shortcomings of the existing method
of restoring images that are not clear enough. In terms of the subjective index MOS, the
improvement in ADRN compared to the traditional interpolation method was also signifi-
cant. However, compared to SRResNet, the improvement was only 0.14 points, which was
greatly influenced by human subjective factors in the evaluation. Therefore, the subjective
index in the reconstruction quality analysis of engineered-bamboo speckle images is not
obvious enough, and further optimization analysis should be carried out.

Figure 12 presents the comparison of the reconstructed images by each algorithm.
The low-resolution (LR) image is shown in Figure 12a, the reconstructed image using the
BICUBIC B-spline interpolation method is shown in Figure 12b, the reconstructed high-
resolution image by the SSResNet method is shown in Figure 12c, and the reconstructed
high-resolution image by the ADRN method used in this study is shown in Figure 12d. As
can be seen in the figure, the image reconstructed using the BICUBIC B-spline interpolation
method has a certain degree of improvement in LR quality compared to the low-resolution
image, but the detailed texture information is still very blurred. Meanwhile, the images
reconstructed using the SRResNet method and the ADRN method used in this study were
significantly improved compared to those reconstructed using the BICUBIC B-spline inter-
polation method. The edges are significantly sharper, which illustrates the significant effect
of deep learning ideas and residual networks on model performance improvement [30].
The method used in this study also shows a small improvement in the effect of the restored
images relative to the SRResNet method. The detailed information of the speckle images of
the engineered bamboo wood was restored more clearly and the picture features are more
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obvious, which confirms that the attention mechanism is beneficial for the restoration of
detailed features, and, thus, the method proposed in this study has some practicality.
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As an innovative aspect of this study, the ADRN algorithm applied the attention
module to the dense residual block and constructed the attention-dense residual network
as a unit, which can better extract the deep feature information of the speckle images. The
network model could focus on the crack location information in the speckle images. This is
also the first time that the method was applied to the super-resolution reconstruction of
the engineered-bamboo speckle image. The effect of image reconstruction was improved
and the practical application value was greater. On the other hand, this study used the
common bicubic interpolation down-sampling method to obtain low-resolution images.
This degradation process is relatively simple, and the super-resolution network model can
only learn the reduction process of the preset degradation process. After that, it can be
further studied on paired high-resolution images and low-resolution images that are closer
to the real environment.
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5. Conclusions

In this study, an image super-resolution model based on the attention-dense residual
network was proposed to address the current problem that the super-resolution reconstruc-
tion of speckle images of engineered bamboo is not clear enough. A large improvement in
the quality of the super-resolution reconstruction of speckle images of engineered bamboo
was achieved.

In this study, we first produced a speckle image dataset of engineered bamboo and
then assigned a training set, validation set, and test set at a ratio of 8:1:1. Then, we designed
a multilayer attention-dense module, removed all the BN layers in the network, applied
the L1 loss function to guide the training of the model, added the attention model to the
residual network, combined the residual network step by step to form a multilayer dense
structure, and designed and completed the improved attention-dense residual network
model. The hardware configuration, software environment, and training parameters of the
experiment were given, and the reconstruction results of the engineered bamboo speckle
images were finally obtained by the improved model. The performance of each algorithm
on the test set was judged in terms of the objective evaluation indexes PSNR and SSIM and
the subjective evaluation index MOS, and the results reconstructed from the traditional
method and the improved algorithm used in this study on the engineered-bamboo speckle
images were compared. The ADRN method was 29.19 dB, 0.938, and 3.19 points in PSNR,
SSIM, and MOS values. In the analysis, it was found that the ADRN method proposed in
this study improved the objective evaluation indexes PSNR and SSIM and the subjective
evaluation index of the image quality by 8.55 dB, 0.323, and 1.43 points, respectively,
compared to the traditional BIUCBIU B-spline interpolation method, and by 4.53 dB, 0.111,
and 0.14 points, respectively, compared to SRResNet. This method has a very obvious
advantage over other methods in the super-resolution reconstruction of speckle images and
can restore the image detail information well, amplifying the features of the speckle images
of engineered bamboo to better identify the tip crack location. The improved algorithm
was proved to be of great value in the task of super-resolution reconstruction of speckle
images of engineered bamboo.

In the future, it can be further explored on the acquisition of low-resolution images
closer to the real environment. In addition, PSNR, SSIM, and MOS are general evalu-
ation indexes of image, and then other advanced evaluation indexes can be compared
and discussed to analyze the quality of super-resolution reconstructed images more com-
prehensively. Moreover, the method can be applied to speckle image super-resolution
reconstruction of other engineered materials, such as wood, to deal with image super-
resolution reconstruction tasks quickly and efficiently.
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