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Abstract: We examined the possibility of measuring dissolved oxygen by using a potentiometric
solid-state semiconductor sensor. Thin films of tin (IV) oxide (SnO2) are widely used in oxygen
gas sensors. However, their ability to detect dissolved oxygen (DO) in solutions is still unknown.
In this paper, we present a method for investigating the dissolved oxygen-sensing properties of
SnO2 thin films in solutions by fabricating a SnO2-gate field-effect transistor (FET). A similarly
structured hydrogen ion-sensitive silicon nitride (Si3N4)-gate FET was fabricated using the same
method. The transfer characteristics and sensitivities were experimentally obtained and compared.
The transfer characteristics of the FET show a shift in threshold voltage in response to a decrease in
DO concentration. The SnO2-gate FET exhibited a sensitivity of 4 mV/ppm, whereas the Si3N4-gate
FET showed no response to DO. Although the SnO2-gate FET responds to pH changes in the solution,
this sensitivity issue can be eliminated by using a Si3N4-gate FET, which is capable of selectively
sensing hydrogen ions without DO sensitivity. The experimental results indicate the promising
properties of SnO2 thin films for multimodal sensing applications.

Keywords: dissolved oxygen; hydrogen ion; multimodal sensing; ISFET; solid-state sensor;
potentiometric sensing

1. Introduction

All aerobic organisms require oxygen for survival. In the human body, oxygen from
the lungs is transported by red blood cells to the mitochondria, where it is used during
cell respiration to generate energy. Imaging methods to visualize cellular metabolism and
biological functions, such as blood oxygen levels and pH levels, are being developed for
the treatment of certain diseases, such as cancer [1–3]. The amount of dissolved oxygen
(DO) in blood is evaluated in terms of partial pressure of oxygen (pO2), which is an
important clinical medical parameter. Although blood oxygen concentration is important,
the direct measurement of DO changes in tissue fluid around cells or tissues caused by
metabolism may provide a more detailed picture of metabolic activity. Multiple methods
for measuring DO concentrations have been reported. The standard method for assessing
DO concentration in tissues is the polarographic electrode method [4]. Surface DO can
be measured using a multiwire electrode, and needle-shaped microelectrodes are used
for measurements within a tissue [5–7]. However, using this method, DO concentrations
can be measured only at those localized points where the electrode is placed. Spatial
measurements can only be obtained by repeating the measurements multiple times over
a certain area. Consequently, this method is invasive and there is a risk of tissue damage.
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An ion-sensitive field-effect transistor (ISFET)-based DO sensor was reported by Sohn in
1996 [8]. However, similar to the methods listed above, the device employed amperometry,
which measures oxygen concentration indirectly through the complex reaction of oxygen
reduction. In in vivo measurements, the series of reactions necessary for DO sensing may be
interfered by biological homeostasis, and sensing consumes oxygen, which may invasively
damage tissues. Therefore, this amperometric measurement is not suitable for in vivo
measurements. Therefore, we believe that it is more advantageous if DO can be detected
potentiometrically, which can sense the oxygen absorbed on the sensor surface without
oxygen consuming, resembling the detection principle of hydrogen ions (H+) in an ISFET
and ISFET technology-based sensors [9,10].

In this study, we propose a potentiometric DO-sensing device based on a field-
effect transistor (FET). We used SnO2, which is an oxygen-sensitive material widely
used in oxygen gas sensors and is seemingly used as a hydrogen ion-sensing film in
ISFETs [11–14]. However, SnO2 is expected to respond to a variety of ions similarly to other
metal oxides. Therefore, we propose a multimodal sensing approach to compensate for the
insufficient selectivity and specificity by combining multiple sensors. As a first step in the
development of the DO-sensing device based on the multimodal sensing concept, in this
study, we focused on pH correction because it is expected that SnO2 will respond to both
hydrogen ions and DO. We propose a device for the monolithic integration of a hydrogen
ion-sensitive FET and a DO-sensitive FET onto a single chip, as shown in Figure 1. This
is because the silicon nitride (Si3N4) thin film has ion selectivity only towards hydrogen
ions. From the perspective of the multimodal sensing approach, selecting a material for the
sensing membrane that can be formed by the CMOS compatible process is important for
the monolithic integration of multiple sensors, and both SnO2 and Si3N4 satisfy the CMOS
compatibility requirements. By simultaneously measuring the hydrogen ion concentra-
tion of the solution, that is, the pH, using an integrated hydrogen ion-sensitive FET, the
hydrogen ion-induced output component of the SnO2-gate FET can be eliminated, and an
accurate DO can be obtained. In this study, we fabricated a multimodal sensing device by
monolithic integration of FETs with SnO2 and Si3N4 as the sensitive layers and measured
its response to pH and different DO concentrations in solutions.
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Figure 1. Schematic diagram of the proposed DO-/hydrogen ion-sensitive FET.

2. Materials and Methods
2.1. Principle of H+ and O2 Sensing

Most ion sensors are potentiometric sensors, detecting ions by measuring the electrical
potential difference ∆∅ at a solid/liquid interface as a function of the ion concentration to
be determined. In a hydrogen ion-sensitive FET which has a Si3N4/SiO2/Si structure as
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the gate area, the ∆∅ between the electrolyte and the Si3N4 layer is given by the Nernst
equation [15]:

∆∅ = VREF +
RT
nF

ln αH+ (1)

where VREF is the reference electrode voltage, R is the gas constant, T is the absolute
temperature, n is the number of moles of electrons transferred in the reaction, and F is
the Faraday constant. Because αH+ is the H+ concentration, it can be calculated using the
measured ∆∅ at constant VREF and constant T.

Metal oxide gas sensors are among the most studied gas sensors. Although the nature
of solid interactions is poorly understood, in most studies, the principle of detection is
based on conductivity change, or changes in the capacitance, work function, mass, or
optical characteristics of the gas-sensing metal oxide material [16,17]. Most gas sensors
utilize semiconductor materials such as zinc oxide (ZnO) and SnO2, and they are believed
to operate via the adsorption of oxygen on the surface owing to oxygen vacancies, leading
to a high resistance. Studies have also been conducted on FET-based gas sensors. The
first hydrogen-sensitive gas FET (Lundström-FET) was introduced by Lundström in 1975,
whereby a thin palladium (Pd) layer was formed as a gate electrode on an ordinary metal
oxide semiconductor field-effect transistor [18]. In this device, hydrogen gas modifies the
work function of Pd, which changes the threshold voltage of the transistor. The suspended
gate FET (SG-FET) was introduced by Lorenz in 1990 for gas sensing [19]. The idea behind
this device is to measure the work function change due to gas adsorption on its sensing
film via an FET. Using this method, a variety of gases can be detected by replacing the
sensitive layer material.

In our study, we are interested in adopting the gas-FET and SG-FET principles and
applying them to the detection of oxygen gas in liquid media. SnO2 is a widely studied
gas-sensing material, and its interaction with oxygen has been reported [14,20]. In our
proposed device, the adsorption of oxygen to the oxygen vacancies on the surface of SnO2
modifies the work function of the material, which leads to a change in the threshold voltage
of the transistor. We would also like to point out that we chose SnO2 because it is compatible
with the fabrication process based on a standard CMOS. The similarity in the structures of
the gas-FET and hydrogen-sensitive FET is also convenient for the development of pH and
DO multimodal sensors.

2.2. Sensor Design

The proposed device, following the conventional structure of an ISFET, consists of an
ion-sensitive layer/SiO2/Si structure, whereby the ion-sensitive layer is Si3N4 for hydrogen
ion sensing and SnO2 for DO sensing. Both the SnO2-gate and Si3N4-gate FETs were
designed to have a channel width (W) of 800 µm. Two different channel length (L) devices
were designed: 100 µm and 200 µm, giving aspect ratios (W/L) of 8 and 4, respectively.
The W/L ratio controls the transconductance (gm) of the FET, as shown in Equation (2);
the higher the gm, the higher the drain-source current change produced by a gate-source
voltage change at a fixed drain-source voltage. In FET devices, high gm is ideal for utilizing
the full capability of the linear region as a transduction element. The sensitivity of the FET
to either DO or hydrogen ions is determined by the material of the gate dielectric and is
not influenced by its aspect ratio.

gm =
∂IDS
∂VGS

∣∣∣∣
VDS=const

(2)

The geometrical design of the FETs follows that of a conventional ISFET. However,
packaging constraints are considered when designing the chip layout. As the FETs were
immersed in the solutions, the source/drain diffusion area was extended, terminating in
small contact holes at the ends. This increases the distance of the sensing/gate region from
the metal contact pads, making it easier to apply the epoxy coating for waterproofing.
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2.3. Sensor Fabrication

A 4-inch p-type silicon wafer was used as the starting material. The fabrication of the
FETs was based on the standard CMOS process, and the steps are shown in Figure 2 and
are as follows:

a. A sacrificial SiO2 layer was formed on the p-type silicon wafer, and p+ channel
stoppers were formed via ion implantation.

b. Source/drain ion implantation was carried out.
c. During implantation, damage may be induced in the gate oxide layer [21,22]; there-

fore, a new SiO2-gate oxide layer (70 nm) was formed via wet oxidation.
d. The hydrogen ion-sensitive layer, Si3N4 (130 nm), was deposited using low-pressure

chemical vapor deposition (LP-CVD). The source/drain contact holes were then
opened.

e. Aluminum (1 µm) was deposited using DC sputtering at 1000 W, 0.5 Pa of Ar.
f. A photoresist mask was applied, and the DO-sensitive layer, SnO2 (100 nm), was

deposited by sputtering at 300 W, using a gas mixture of 90% Ar and 10% O2.
g. Using the lift-off method, SnO2 was patterned on top of the gate of a DO-sensitive

FET. O2 gas annealing was performed at 440 ◦C for 30 min.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 11 
 

 

 

  
(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d)  

Figure 2. Cross-section diagram showing the fabrication process of the proposed device. (a) Sacrifi-
cial oxide formation and channel stopper ion implantation. (b) Source/drain ion implantation. (c) A 
new layer of gate oxide (SiO2) is formed. (d) Deposition of Si3N4, and source/drain contact opening. 
(e) Aluminum contact sputtering. (f) Deposition of SnO2 on top of a photoresist mask. (g) Lift-off of 
photoresist mask. 

  
(a) (b) 

Figure 3. Optical microscope photo of the fabricated FET. (a) SnO2-gate FET; (b) Si3N4-gate FET. 

2.4. Measurement Procedure 
An external silver/silver (I) chloride (Ag/AgCl) glass reference electrode was sus-
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Figure 2. Cross-section diagram showing the fabrication process of the proposed device. (a) Sacrificial
oxide formation and channel stopper ion implantation. (b) Source/drain ion implantation. (c) A
new layer of gate oxide (SiO2) is formed. (d) Deposition of Si3N4, and source/drain contact opening.
(e) Aluminum contact sputtering. (f) Deposition of SnO2 on top of a photoresist mask. (g) Lift-off of
photoresist mask.
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An optical microscopy image of the fabricated device is shown in Figure 3. The
devices were encapsulated using an epoxy resin, leaving only the gates (sensing regions)
exposed to the test solution. The responses of the SnO2-gate FET and Si3N4-gate FET to
DO and hydrogen ions were investigated based on the drain current–gate voltage (Id–Vgs)
characteristics.
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Figure 3. Optical microscope photo of the fabricated FET. (a) SnO2-gate FET; (b) Si3N4-gate FET.

2.4. Measurement Procedure

An external silver/silver (I) chloride (Ag/AgCl) glass reference electrode was sus-
pended above the FET to ensure that the bottom edge touched the solution surface
(Figure 4). The source, drain, and reference electrodes were then connected to a semi-
conductor parameter analyzer (Agilent Technologies B1500A, Santa Clara, CA, USA) for the
I–V measurements. Both the SnO2-gate FET and Si3N4-gate FET were operated in constant
drain voltage (Vds = 50 mV) mode, and the source and bulk were ground. Buffer solutions
with pH values of 4.01, 6.86, and 9.18 were used for the pH measurement. To determine the
DO response of the FET without any influence from pH—that is, hydrogen ion changes in
the test solutions—the DO concentration of the solution under test was controlled by de-
oxygenation through degassing. In this method, 100 µL of pH 6.86 standard buffer solution
was placed onto the sensing area of the FET, which was placed inside a chamber containing
another beaker of the same solution and a DO meter (Edge DO Meter HI 2040-01 HANNA
Instruments, Woonsocket, RI, USA) inserted into the beaker (as shown in Figure 5). The
air inside the chamber was pumped out using a vacuum pump and the DO concentration
of the solution was monitored using a DO meter. The oxygen concentration of the liquid
decreases proportionally with the air pressure inside the chamber. When the solution
reached the desired DO concentration, the pump was stopped and the measurement was
performed. Note that as a preliminary experiment, we verified that the pH of the solution
does not change due to changes in DO caused by vacuuming.
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3. Results and Discussion
3.1. Electrical Characterization Results

Figures 6 and 7 show the drain current, Id, versus the gate voltage, Vg, of the SnO2-gate
FET and Si3N4-gate FET, respectively. This electrical characterization shows that both FETs
have the typical characteristics of field-effect transistors. No hysteresis effect was observed
in the SnO2-gate FET when positive and negative sweeps were applied. Note that the gm
of the Si3N4-gate FET was much smaller than that of the SnO2-gate FET. This is because
the gate length of the Si3N4-gate FET was 100 µm while the gate length of the SnO2-gate
ISFET was 200 µm. The Id–Vg results show that the current is proportional to the applied
voltage, which agrees with the characteristics of FET, whereby the curve shifts to the left in
low pH conditions and shifts to the right in high pH conditions. Repeated cycling of the
sensors between various pH buffer solutions was carried out by rinsing with deionized
water and then applying different pH solutions. In all cases, the sensors recovered their
original values, confirming reproducibility.
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3.2. Sensitivity of the FET Device

To discuss the sensitivity of the FET, the sensing output voltage (Vout) was determined
as the Vg of the FET at Id = 1 µA of Id–Vg characteristics, as shown in Figures 6 and 7. When
Id and Vd were kept constant, the changes in the threshold voltage induced by the changes
in the pH of the test solution caused identical changes in the gate voltage. Thus, the pH
sensitivity of the FET can be expressed using the following equation:

SpH =

∣∣∣∣ ∂Vg

∂pH

∣∣∣∣
Id const

(3)

The change in Vout due to the change in pH is plotted in Figure 8. The SnO2-gate FET
exhibited a pH sensitivity of 60.7 mV/pH and the Si3N4-gate FET exhibited a pH sensitivity
of 43.7 mV/pH. The sensitivity of the Si3N4-gate FET is in line with the reported sensi-
tivity [11] and obeys the Nernstian limit. However, the SnO2-gate FET exhibits a slightly
super-Nernstian pH response, which is common in metal oxide-based pH sensors [23].
This may be due to the oxygen content of the solution and the structure of the oxide. Both
FETs showed a satisfactory linear response to the pH. As for the pH measurement range,
SnO2-gate FETs have been reported to demonstrate a measurement range of pH 2–10 [11],
and Si3N4-gate FETs have been known to exhibit a suitable Nernstian response from pH 2
to 12 [24]. Similar characteristics can be expected for the fabricated devices, which have the
same basic structure and use the same sensing material.
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Dissolved oxygen (DO) is basically non-compound oxygen molecules dissolved in
water. Therefore, for the DO response, it is hypothesized that oxygen molecules in the
test solution adsorb onto the oxygen-vacant surface of the SnO2-sensitive layer, thereby
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modifying its work function, which then induces a change in the threshold voltage. This
causes an identical change in gate voltage. Thus, the DO sensitivity of the FET can be
expressed using the following equation:

SDO =

∣∣∣∣ ∂Vg

∂DO

∣∣∣∣
Id const

(4)

The change in Vg owing to the change in DO is plotted in Figure 9. The SnO2-gate
FET exhibited a DO response with a sensitivity of 4 mV/ppm. Vout of the SnO2-gate FET
decreased with increasing DO concentration. This response was not observed for the Si3N4-
gate FET. These findings suggest that the SnO2 layer is DO-sensitive, whereas the Si3N4
layer is not. In this evaluation, the lowest measured DO was 5 ppm. If we assume that the
FET response is linear to the amount of DO, the output voltage of the SnO2-gate FET at
0 ppm is expected to be −1.99 V, as shown in Figure 9. This is considered an acceptable
value based on the characteristics of the FET as an electronic device. Although the details
of the oxygen detection mechanism should be discussed separately, if the FET threshold is
shifted in the positive direction because of oxygen adsorption on the sensing membrane
surface, as assumed in Section 2.1, it may be possible to detect the absence of adsorbed
oxygen, i.e., 0 ppm DO. As for the upper limit of measurement, the DO of the solution
reaches equilibrium at approximately 8 ppm for air at room temperature and atmospheric
pressure, which corresponds to the maximum DO value of the solution measured in this
study. It is expected that even higher DO concentrations may be measured, but oxygen
adsorption on the membrane surface will eventually saturate. A detailed evaluation of the
lower and upper limits of DO measurement will require additional verification through an
investigation based on an experimental system that allows a wider range of DO variation.
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Because SnO2 is sensitive to both pH and DO, in conditions where the solution
undergoes both pH and DO changes, it is not possible to measure them simultaneously
using a discrete SnO2-gate FET. As the sensor output voltage is a function of two parameters,
pH and DO, it can be written as follows:

∆Vout = f (∆pH, ∆DO) (5)

where ∆Vout is the change in the output voltage, ∆pH is the change in pH, and ∆DO is the
change in DO. As the simplest example, two independent parameters can be expressed as
a linear combination using the following equation.

∆Vout = g (∆pH) + h (∆DO) (6)
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If the pH and DO responses follow Nernst’s equation, the equation can be trans-
formed as

∆Vout = SpH·∆pH + SDO·∆DO (7)

where SpH is the pH sensitivity and SDO is the DO sensitivity. Hence, when integrated
with a hydrogen ion-sensitive FET, ∆DO can be obtained as ∆pH is known. Simultaneous
sensing of DO and pH can be achieved by multimodal sensing using a SnO2-gate FET
and Si3N4-gate FET. Because both pH and DO sensing principles involve adsorption and
desorption on the sensing membrane, and the total amount of ions and oxygen adsorbed on
the membrane could affect the output, it is ideal to treat the sensor output as the simplest
linear combination. On the other hand, it should be noted that the independence and
coherence of the two parameters have not yet been verified, and thus, a detailed verification
under various measurement conditions is required.

There are examples of pH-ISFET-based sensors related to CMOS-compatible DO
sensing devices [8,25]. However, these devices are based on an irreversible detection
principle that consumes DO during sensing operations. On the other hand, our device
is based on the reversible phenomenon of oxygen adsorption/desorption on the sensing
membrane, and it does not interfere with the measurement target. A sensor based on FETs
has also been developed as a multi-ion sensing device [26–28]. The DO-sensing device in
this study is compatible with various multi-ion measurement FET sensors that have been
developed in the past. We have realized a new sensing modality in the field of FET-type
sensors via the addition of DO. We expect that this can be further expanded to multi-ion
and DO-sensing devices.

4. Conclusions

A simple device combining SnO2-gate and Si3N4-gate FETs has been presented. The
fabricated device was characterized, and the results suggest that the proposed sensor, when
operated in combination with FETs, is feasible for the determination of DO concentration
and pH. The results imply a useful application of solid-state FET devices for the detection
of DO concentrations in liquid media. Moreover, because FET-based potentiometric sensors
are compatible for array construction, a multimodal sensing array of DO and pH can be
expected. Sophisticated sensing arrays are novel tools in biomedical applications.
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