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Abstract: In recent years, autonomous driving technology has been changing from “human adapting
to vehicle” to “vehicle adapting to human”. To improve the adaptability of autonomous driving
systems to human drivers, a time-series-based personalized lane change decision (LCD) model is
proposed. Firstly, according to the characteristics of the subject vehicle (SV) with respect to speed,
acceleration and headway, an unsupervised clustering algorithm, namely, a Gaussian mixture model
(GMM), is used to identify its three different driving styles. Secondly, considering the interaction
between the SV and the surrounding vehicles, the lane change (LC) gain value is produced by
developing a gain function to characterize their interaction. On the basis of the recognition of the
driving style, this gain value and LC feature parameters are employed as model inputs to develop a
personalized LCD model on the basis of a long short-term memory (LSTM) recurrent neural network
model (RNN). The proposed method is tested using the US Open Driving Dataset NGSIM. The
results show that the accuracy, F1 score, and macro-average area under the curve (macro-AUC)
value of the proposed method for LC behavior prediction are 0.965, 0.951 and 0.983, respectively,
and the performance is significantly better than that of other mainstream models. At the same time,
the method is able to capture the LCD behavior of different human drivers, enabling personalized
driving.

Keywords: autonomous vehicles; lane-change decision; driving style; LSTM; interaction

1. Introduction

Autonomous driving is expected to help reduce traffic accidents, reduce the workload
of drivers, and improve the quality of transportation, which has become a research hotspot
in recent years [1]. However, the majority of people are skeptical regarding self-driving
cars. A poll conducted in Germany found that roughly 25% of respondents were hesitant
to utilize self-driving cars because their set driving patterns made them feel psycholog-
ically constrained and uneasy [2]. According to studies, in addition to legal and safety
considerations, fulfilling user expectations, user acceptability, and accessibility to func-
tional implementation are the fundamental requirements for the effective deployment of
autonomous cars [3]. Therefore, enabling autonomous vehicles to have more accurate,
comfortable, and personalized behavioral decisions is the key to improving autonomous
driving technology.

The LCD problem is one of the more complicated and demanding challenges in
autonomous driving technology, and has been intensively investigated by researchers at
home and abroad [4]. Existing LCD methods can roughly be divided into two categories:
rule-based methods and learning-based methods. Rule-based decision-making methods
plan the behavior of autonomous vehicles, and establish a decision-making behavior library
based on driving rules, knowledge, experience, and traffic rules [5]. The Gipps [6] model
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and the CORSIM [7] model are examples of traditional rule-based LCD models. Finite
state machines have also frequently been employed in autonomous driving LCD systems,
providing an example of rule-based decision-making techniques. Wang et al. [8] proposed
a driving LCD model based on the finite state machine, which output the best driving
behavior in the current scene by means of a benefit evaluation model. Qi et al. [9] designed
a hierarchical finite state machine behavioral decision-making model. Rule-based decision-
making methods can handle the general driving environment well, but they are designed
in a fixed way, and their mode cannot be adjusted for drivers with different driving styles.

The monitors and sensors of autonomous cars are now able to record the motion state
parameters of both the vehicle in front and other nearby vehicles thanks to advancements
in autonomous driving decision-making technology. As a result, it is possible to study
how vehicles make decisions by mining historical vehicle motion data [10], which is one
of the key causes for the progressive rise in popularity of learning-based methodologies.
Liu et al. [11] built an autonomous LCD model based on benefit, safety, and tolerance
using a Bayesian parameter-optimized support vector machine method. Ma et al. [12]
constructed a driving agent model based on a Bayesian network, which integrated vision
and decision making. Tang et al. [13] proposed a lane change prediction method based
on an adaptive fuzzy neural network. Xie et al. [14] utilized random forests to simulate
LC maneuvers from the standpoint of traffic incidents. Díaz-Álvarez et al. [15] employed
artificial neural networks to model the behavior of drivers performing LC tasks. Human
driving behaviors are typically extremely nonlinear and complicated movements that are
challenging to adequately simulate using traditional shallow machine learning models.

Deep neural networks (DNNs) are able to mimic discretionary lane changing (DLC)
operations on roads more accurately, and may implicitly include memory effects in their
structures [16]. DNNs have been shown to possess excellent application potential for behav-
ioral decision making in complicated settings, such as urban roadways and crossroads [17].
On the basis of NGSIM data, Zhang et al. [18] established a vehicle following and LC
simulation model using an LSTM model optimized by the Hybrid Retraining Constraint
(HRC) training method. Zhang et al. [19] utilized XGBoost to construct an LC prediction
model on the basis of the NGSIM dataset with selected high-dimensional driving feature
data. Fang [20] used a deep belief network (DBN) to build an LCD model, and trained the
network using NGSIM data, and the results showed that the network outperformed the
BP neural network. Although these methods can achieve good LC predictions in driving
scenarios, they have limitations with respect to modeling interactions with each other.

The analysis of the above decision-making approaches reveals that less study has
been performed on personalized behavioral decision making and more emphasis has been
placed on security and scene coverage in current LCD methods. At present, most of the
personalized driving research focuses on the design of assisted driving systems and the
identification of driving style. In fact, different drivers show different personal preferences
in terms of risk perception, ride comfort and travel efficiency. Therefore, from a driving style
perspective, enabling autonomous driving to capture human decision-making behavior
is expected to provide drivers and occupants with personalized choices. In addition, the
above methods only consider the feature quantities (e.g., speed, acceleration and distance)
related to the motion state of the subject vehicle when modeling behavioral decisions.
However, when an autonomous vehicle is operating in the driving environment, it forms
a whole in which both it and the surrounding vehicles affect each other. Autonomous
vehicles cannot make precise behavioral decisions by only considering the characteristics
of the motion state of the subject vehicle.

To address these issues, on the basis of the LSTM recurrent neural network model, this
paper establishes an LCD model that considers the driving style of the SV and includes
interactions. Firstly, personalization factors (driving characteristics and driving style) are
introduced into the algorithm model, enabling autonomous vehicles to capture individual
characteristics and human decision making, with the aim of achieving personalized driving,
while also improving the adaptability of automated driving systems to human drivers.
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Then, the interaction between the autonomous vehicle and surrounding vehicles is modeled
by constructing a gain function to improve the accuracy of the decision-making method.
At the same time, the driving environment is extended to three lanes, with the autonomous
vehicle being able to perform lane keeping and left–right LC, which is more general. The
contributions of this study can be summarized as follows:

(1) A driving style recognition method for autonomous vehicles on highways is
proposed, and characteristic variables such as speed, acceleration and headway are selected
for quantitative analysis.

(2) The interaction between the main vehicle and the surrounding vehicles is modeled
through the gain function, which enhances the understanding of the scenario by the
autonomous vehicle.

(3) A personalized decision-making model with interaction is established. The behav-
ioral feature data and LC gain values of different driving styles are used as the input of the
LSTM model, and then the time series relationship of various states in the process of lane
change is learned.

The rest of this paper is organized as follows: Section 2 briefly describes the overall
framework and data processing modules of the paper; Section 3 describes the scheme
for driving style identification; Section 4 constructs a personalized LCD model; Section 5
describes the model evaluation and analysis of the results; and Section 6 presents the
conclusions.

2. The High-Level Framework of the Personalized LCD Model

This section introduces the high-level framework of an LSTM-based personalized LCD
model and proposes a scheme for NGSIM data processing. The following content will be
elaborated on the basis of this framework.

2.1. The High-Level Framework

The high-level architecture of the personalized LCD model proposed in this paper
is shown in Figure 1, and includes four modules: data processing module, driving style
recognition module, LC interaction module, and LCD module. Among them, the main
function of the data processing module is to extract the state feature information between
the SV and the surrounding vehicles. The information of the SV will be used to learn the
driving style by means of the unsupervised clustering algorithm GMM. GMM is able to
obtain the best cluster labels for each vehicle on the basis of handcrafted features. The
LC interaction module is mainly used to model the interaction between the SV and the
surrounding vehicles. Here, the gain function is used to describe its interaction, and the
left LC gain value, lane keeping gain value, and right LC gain value of the SV are obtained.
On the basis of driving style recognition, the LC feature parameters and LC income value
are used as the input of the decision model, and then the LCD command is obtained.

2.2. NGSIM Data Processing

The NGSIM dataset provides actual driving trajectory data on US roadways. Ac-
cording to the study demands, the data of the I−80 and US−101 expressway portions
were selected as the original data to develop the LC behavior sample library. The NGSIM
information is gathered from various time periods for different places, and it is able to
reflect congestion and moderate traffic conditions. A key concern with raw NGSIM data is
that there are several substantial errors in the data, such as irregular and missing values for
vehicle speed and acceleration. Significant outliers that are 20 times greater than the mean
are termed outliers, and outliers are replaced by the mean. Then, the log−exponentially
weighted moving average filtering technique (sEMA) introduced by Thiemann [21] is used
to filter and preprocess the NGSIM data.



Sensors 2022, 22, 6659 4 of 19Sensors 2022, 22, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Illustration of the high−level framework for the personalized LCD model. 

2.2. NGSIM Data Processing 
The NGSIM dataset provides actual driving trajectory data on US roadways. Accord-

ing to the study demands, the data of the I−80 and US−101 expressway portions were se-
lected as the original data to develop the LC behavior sample library. The NGSIM infor-
mation is gathered from various time periods for different places, and it is able to reflect 
congestion and moderate traffic conditions. A key concern with raw NGSIM data is that 
there are several substantial errors in the data, such as irregular and missing values for 
vehicle speed and acceleration. Significant outliers that are 20 times greater than the mean 
are termed outliers, and outliers are replaced by the mean. Then, the log−exponentially 
weighted moving average filtering technique (sEMA) introduced by Thiemann [21] is 
used to filter and preprocess the NGSIM data. 

The NGSIM data provide the trajectory data of all cars on the road, including the 
speed, acceleration and location information of each vehicle every 0.1 s. It includes three 
vehicle types: motorbikes, cars and trucks. This research focuses solely on the trajectory 
data of cars. Here, we conduct the following data filtering: 
• Eliminate the vehicle data without the preceding vehicle. Such data will lead to miss-

ing parameters for driving style clustering and LCD. 
• Considering that there may be MLC vehicles in the auxiliary lanes (lanes 1 and 6), 

extract the relevant data of the middle lanes (lanes 2, 3, 4 and 5). 
• Select the vehicle data of the 10 s complete LC trajectory, that is, 50 frames of data (5 

s) before the lane crossing and 50 frames of data (5 s) after the crossing. 
• Remove continuous lane change and non-adjacent LC behavior data. 

After performing the data processing described above, 403 left LC samples, 121 right 
LC samples and 1400 lane keeping samples are extracted from the NGSIM dataset. Con-
sidering that there are fewer LC samples, this will affect the training accuracy of the deci-
sion model. Therefore, data augmentation is performed for the LC samples using a ran-
dom sampling approach employing a random sampling rate between 0.8 and 0.9 per iter-
ation. For each sample sequence, the sampling unit randomly creates a number within the 
range of the sampling rate and randomly extracts the data to construct a subsequence of 
the main sequence. Finally, 1208 left LC samples, 363 right LC samples and 1400 lane 
keeping samples are obtained, for a total of 2971 samples. 
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The NGSIM data provide the trajectory data of all cars on the road, including the
speed, acceleration and location information of each vehicle every 0.1 s. It includes three
vehicle types: motorbikes, cars and trucks. This research focuses solely on the trajectory
data of cars. Here, we conduct the following data filtering:

• Eliminate the vehicle data without the preceding vehicle. Such data will lead to
missing parameters for driving style clustering and LCD.

• Considering that there may be MLC vehicles in the auxiliary lanes (lanes 1 and 6),
extract the relevant data of the middle lanes (lanes 2, 3, 4 and 5).

• Select the vehicle data of the 10 s complete LC trajectory, that is, 50 frames of data (5 s)
before the lane crossing and 50 frames of data (5 s) after the crossing.

• Remove continuous lane change and non-adjacent LC behavior data.

After performing the data processing described above, 403 left LC samples, 121 right
LC samples and 1400 lane keeping samples are extracted from the NGSIM dataset. Consid-
ering that there are fewer LC samples, this will affect the training accuracy of the decision
model. Therefore, data augmentation is performed for the LC samples using a random
sampling approach employing a random sampling rate between 0.8 and 0.9 per iteration.
For each sample sequence, the sampling unit randomly creates a number within the range
of the sampling rate and randomly extracts the data to construct a subsequence of the
main sequence. Finally, 1208 left LC samples, 363 right LC samples and 1400 lane keeping
samples are obtained, for a total of 2971 samples.

3. Driving Style Recognition Based on GMM

In this section, the Gaussian mixture model (GMM) is used to generate a unique
driving style for each vehicle. The Gaussian mixture model is an extension of the Gaussian
model, and it is also a linear combination of multiple Gaussian distribution functions. GMM
is the fastest−learning probability model. Its principle is to construct the most suitable
mixed multi-dimensional Gaussian distribution model by fitting the input dataset [22]. The
Gaussian mixture model GMM can be described as follows:

p(xi|θ) =
k

∑
n=1

πk N(xi|µk, Σk) (1)
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Here, xi denotes multidimensional feature data. θ is the parameter of the Gaussian
mixture model, which can be expressed as θ = {πk, µk, Σk}. πk is the weight of each
Gaussian distribution, meaning the probability of each cluster class being selected, and
∑K

k=1 πk = 1, where µ and Σ are the mean and covariance parameters of the multivariate
Gaussian function, and K is the number of models. N(xi|µk, Σk) is the univariate Gaussian
distribution function in this case, and its form is as follows, where Σk = σ2

k , σk represents
the standard deviation of the kth class:

N
(

x
∣∣µ, ∑

)
=

1

(2π)
D/2|Σ| 12

exp
[
−1

2
(x− µ)TΣ−1(x− µ)

]
(2)

When clustering datasets, the Gaussian mixture model for unknown parameters is
not able to determine which potential components each data point originates from, so it is
necessary to estimate the parameters of the Gaussian mixture model. The expectation max-
imization algorithm (EM) is a commonly used algorithm for GMM parameter estimation.
EM is a maximum likelihood estimation algorithm that iteratively computes the maximum
value of the cost function [23].

(1) Selection of the Number of Clusters: GMM−based clustering requires the number
of clusters k to be pre−specified, and finding the optimal value of k is a challenge. To obtain
the optimal number of clusters, this paper adopts the Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC) to evaluate the performance of GMM clustering,
where k is the number of clusters, N is the number of data points, and L is the maximum
likelihood of the objective function. The formulas for calculating AIC and BIC are as follows:

AIC = 2k− 2ln(L) (3)

BIC = kln(N)− 2ln(L) (4)

(2) Feature Selection: Different drivers have distinct driving styles when they drive.
This paper classifies drivers by analyzing the identification parameters of each driver’s
driving characteristics. There is no uniform standard for the selection of driving style
characterization parameters, and different scholars choose different indicators. The driv-
ing style index parameters selected in this paper are shown in Table 1, in order to fully
characterize the driving style of the driver.

Table 1. Statistical description of the features used for driving style recognition.

Symbol Features Statistic Values

ACC Acceleration Max Acceleration Mean Acceleration Acceleration STD
TH Time Headway Max Time Headway Mean Time Headway Time Headway STD
Jerk Jerk Max Jerk Mean Jerk Jerk STD
VX Lateral speed Max Lateral speed Mean Lateral speed Lateral speed STD
VY Longitudinal speed Mean Longitudinal speed Longitudinal speed STD
SH Space Headway Mean Space Headway Space Headway STD

In this research, the influence of GMM on driving style recognition is investigated. The
GMM−based driving style identification algorithm is able to determine the driving style of
the SV on the basis of few driving behavior data. From Table 1, it can be seen that feature
information such as speed, acceleration, lateral speed, and spatial headway time distance
of the SV are extracted. At the same time, statistics such as standard deviation, mean
and maximum values are introduced to strengthen the robustness of the GMM clustering
method recognition.

Here, it is assumed that the driving style of each vehicle does not change at a particular
time. The data for the statistical characteristics of the three SV driving styles are shown
in Table 2. The driving styles can be defined as aggressive, moderate, and conservative
on the basis of the characteristic quantities of lateral speed maximum, acceleration mean,
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and headway time distance. The definition of these three groups of names is only a
reflection of the clustering of the SV driving styles and does not affect the further analysis
of personalized LCD.

Table 2. Comparison of characteristic parameters of drivers with different driving styles.

Styles VY Mean VY STD VX Max VX mean VX STD ACC Max ACC Mean ACC STD

Conservative 9.391 3.305 1.260 0.595 0.406 3.122 2.670 0.519
Moderate 11.310 2.426 1.337 0.618 0.316 3.715 3.257 0.443

Aggressive 12.682 1.590 1.568 0.721 0.397 4.842 4.006 0.547

Styles TH Max TH Mean TH STD Jerk Max Jerk Mean Jerk STD SH Mean SH STD

Conservative 0.864 0.597 0.674 2.936 −0.056 1.025 34.240 4.764
Moderate 0.565 0.431 0.457 2.518 −0.073 1.106 28.973 3.787

Aggressive 0.540 0.276 0.982 2.637 −0.086 0.901 23.651 1.368

Using the built GMM clustering algorithm, 481 driving behaviors were classed as
aggressive, 1286 were classed as moderate, and the remainder (1204) were classed as
conservative. It can be seen from Table 2 that drivers with different driving styles exhibit
significantly different driving behaviors. Aggressive drivers tend to drive at faster speeds,
with shorter following distance and smaller headway. However, conservative drivers chose
lower speeds, longer following distances and larger headway distances in order to drive
carefully. Figure 2 presents a visualization of the three clusters of driving styles. As shown
in the figure, the data for the three driving styles also exhibit varied significant distributions
in the feature space.
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4. Personalized Decision-Making Model Based on LSTM

This section presents the modeling of the LC interaction behavior of vehicles, the
fundamental model of LSTM, and the personalized LCD model. Recent breakthroughs in
deep learning have made it feasible to extract high-level characteristics from raw data [24].
In this paper, the capacity of LSTM networks to capture complex characteristics in LC
scenes is exploited to model LCD behavior on the basis of temporal feature sequences.

4.1. Modeling of LC Interaction Behavior of Vehicles
4.1.1. Scenario Description of Vehicle LC Behavior

Vehicle LC behaviors are typical and crucial activities performed by drivers in response
to their driving demands, driving environment conditions, and traffic flow. To describe
the LC behavior in a complicated environment, the LC driving scenario represented in
Figure 3, below, is adopted. The surrounding vehicles are dispersed according to their
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location relative to the SV. Special emphasis placed on the fact that the SV is fitted with the
decision system and accompanying sensors described in this paper, which are capable of
capturing information about the surrounding vehicles in real time.
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Figure 3. Illustration of lane change driving scenario.

Depending the features of LC behavior and the research aims, the LC process is
frequently divided into two stages [16]. The first stage is the LCD stage, which is the
process of driver intention creation and route selection. The second stage is the LC execution
stage, which consists of the identification of collision−free pathways and the tracking of
the produced paths. However, this research only addresses the first stage. The precise
meanings of the parameters in Figure 3 are presented in Table 3.

Table 3. The meanings of parameters in the lane-changing scene.

SV The Subject Vehicle

LF/V/RF The vehicle in front of SV in left/middle/right lane
LR/RV/RR The vehicle in front of SV in left/middle/right lane

VLF/VFV/VRF The speed of vehicle in front of SV in left/middle/right lane
VLR/VRV/VRR The speed of vehicle in behind of SV in left/middle/right lane

4.1.2. LC Interaction Behavior Modeling

On the basis of the interaction information, the surrounding vehicles in real traffic
scenarios are regarded as an interdependent whole, and their maneuvering behaviors
affect each other’s decisions. To explain this interaction, the lane change benefit function
described in [25] is borrowed, and the effects of SV travel efficiency, collision risk and driver
comfort are considered. According to the literature [26], the behavioral decision making of
a normal rational driver is a process of continuously pursuing the maximization of benefits.

The vehicle should be driven at as high a speed as possible under safe driving condi-
tions, and the gain function of travel efficiency is set as shown in Equation (5), in which
VS,t is the current speed of the SV, Vl is the current speed limit of the road section, where
Vl = 80 Km/h is taken, and Vf is the current traffic speed of the road section.

Uefficiency =
(

VH,t −Vf

)
/
(

Vl −Vf

)
(5)

For the calculation of the collision risk benefit, it is necessary to first predict the
trajectory of the SV and the surrounding vehicles during the future period T, and then
judge the collision risk according to the trajectory.

• For the surrounding vehicles, use the constant turn rate and acceleration model
(Constant Turn Rate and Acceleration, CTRA) to predict its trajectory during the future
period T.

• For the SV, trajectory prediction needs to be performed according to its driving inten-
tion. If it is lane keeping, use the CTRA model to obtain its trajectory; if it is LC, use
the quintic polynomial spline curve to fit its LC trajectory.
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To improve the accuracy of the collision gain, here, the collision safety condition is
defined. The collision benefit is characterized by the distance between vehicles, calculated
on the basis of the collision safety condition. Assuming that the length and width of the
SV and the surrounding vehicles Vq are L0, D0, Lq, and Dq, respectively, the coordinates

and heading angles of the two vehicles at a certain time t are (xt
0, yt

0, ϕt
0) and

(
xt

q, xt
q, ϕt

q

)
,

and the difference between the heading angles of the two vehicles ∆ϕ = ϕt
0 − ϕt

q. Then,
the conditions under which the SV and surrounding vehicles will not collide at any time t
during the prediction period are:∣∣∣(xt

0 − xt
q

)
cosϕt

q +
(

yt
0 − yt

q

)
sinϕt

q

∣∣∣ ≥ √L0 + D0

2
sin(α + |∆ϕ|) +

Lq

2
+ ∆s (6)

Then, the gain function of the collision risk between the SV and the surrounding
vehicle Vq is:

USV,Vq =

{
0 , match safety conditions

− 1
d

SV,Vq
min

, dismatch safety conditions (7)

In the formula, d
SV,Vq
min is the minimum distance between the SV and the surrounding

vehicles Vq(qε{1, 2, 3, . . . , m}) during the prediction period T. The collision gain of the SV
and all surrounding vehicles in the forecast period is as follows:

Ucollision = ∑
t∈T,t 6=0

USV,Vq (8)

During driving, drivers prefer to drive at a smooth speed; sharp acceleration, deceler-
ation and frequent LC can affect their comfort. Here, the negative value of the sum of the
squares of lateral acceleration ax and longitudinal acceleration ay integrated over the time
period T is used as the comfort gain. The comfort gain can then be expressed as follows:

Ucom f ort = −
∫ T

0

(
a2

x + a2
y

)
dt (9)

The travel efficiency gain Ue f f iciency, the collision gain Ucollision, and the comfort gain
Ucom f ort of the SV can be calculated using Equations (5), (8) and (9), above; then, the total
gain is

Utotal = ω1Ue f f iciency + ω2Ucollision + ω3Ucom f ort (10)

In the formula, ω1, ω2 and ω3 are the weight coefficients of each gain. Using the
NGSIM dataset, after normalizing the three returns, according to [26], the conjugate gra-
dient method can be used to estimate the respective weight coefficients, as follows: ω1 =
0.2834, ω2 = 0.6426, ω3 = 0.3182.

4.2. The Basic LSTM Model

The Long Short-Term Memory Neural Network (LSTM) is a recurrent neural network
(RNN) structure [27]. LSTM overcomes the issue of gradient explosion and gradient
disappearance present in RNN [28,29]. Unlike RNN, LSTM adds three additional ‘gate’
control structures, namely the forget gate, input gate and output gate. The storage unit is
used to implement timing storage and timing prediction. The primary unit structure of
LSTM is represented in Figure 4.
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In the following, the LSTM cell structure and its concepts are described in further detail.
Among these, the sigmoid function and the tanh function are two significant activation
functions in the LSTM network structure. Their expressions are as follows.

sigmoid(x) =
1

1 + e−x (11)

tanh(x) =
ex − e−x

ex + e−x (12)

(1) Forget gate: During the training period, the forget gate decides which information
is to be abandoned. ft stands for forget gate, which is defined as follows:

ft = σ
(

W f [ht−1, Xt] + b f

)
(13)

where ht−1 is the output memory state of the LSTM in the previous cycle, and Xt represents
the state of the input.

(2) Input gate: The input gate determines which fresh information will be input. Its
expression is as follows:

it = σ(Wi[ht−1, Xt] + bi) (14)

C̃t = tanh(Wc[ht−1, Xt] + bc) (15)

Ct = ft ∗ Ct−1 + it ∗ C̃t (16)

In the expression for the input gate, it represents the input gate, C̃t is the estimate for
the new cell, and Ct is the new long-term memory formed by this network.

(3) Output gate: The output gate regulates the output of the LSTM. Its expression is
as follows:

Ot = σ(W0[ht−1, Xt] + b0) (17)

ht = Ot ∗ tanh(Ct) (18)

where Ot represents the output of the network at this moment, and ht is the output of the
new hidden state information. W∗ =

(
W f , Wi, Wc, W0

)
represents the weight matrix of

LSTM from unit to gate, and b∗ =
(

b f , bi, bc, b0

)
represents the bias vector of each gate.
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4.3. Building the Personalized LCD Model

In this paper, LSTM is mainly used to process the LC feature vector and LC gain data
of the SV’s personalized and generate driving decision instructions. LSTM is able to obtain
driving features at different timestamps, and then mine higher−level time series features
to represent driving memory effects [30]. Due to the incorporation of historical driving
information, the LSTM model is able to achieve improved predictions.

In actual traffic scenarios, the driver’s LC conduct is impacted by several factors. In
addition to the microscopic driving state of the driver themselves and the surrounding
vehicles, drivers have to consider other factors in order to make the best LCD [31]. On
the basis of the experience of previous researchers [32,33] regarding the selection of LCD
feature parameters, 20 LCD feature parameters were selected and added to the LC gain
values in this paper, as shown in Table 4. It is important to note, in particular, that the
features used for the LCD are different from those used for the clustering of driving styles
in Table 1. Since LC is a continuous process, its requirements need to be calculated at each
time step. Driving style, on the other hand, is constant throughout a particular time period,
and therefore does not need to be measured as regularly.

Table 4. Statistical description of characteristic parameters of driving decisions.

Number Features Description

X1 VSV Speed of the SV
X2 aSV Acceleration of the SV
X3 ∆DSV_FV The distance between SV and FV
X4 ∆VSV_FV The speed difference between SV and FV
X5 ∆aSV_FV The acceleration difference between SV and FV
X6 ∆DSV_RV The distance between SV and RR
X7 ∆VSV_RV The speed difference between SV and RR
X8 ∆aSV_RV The acceleration difference between SV and RR
X9 ∆DSV_LF The distance between SV and LF
X10 ∆VSV_LF The speed difference between SV and LF
X11 ∆aSV_LF The acceleration difference between SV and LF
X12 ∆DSV_LR The distance between SV and LR
X13 ∆VSV_LR The speed difference between SV and LR
X14 ∆aSV_LR The acceleration difference between SV and LR
X15 ∆DSV_RF The distance between SV and RF
X16 ∆VSV_RF The speed difference between SV and RF
X17 ∆aSV_RF The acceleration difference between SV and RF
X18 ∆DSV_RR The distance between SV and RR
X19 ∆VSV_RR The speed difference between SV and RR
X20 ∆aSV_RR The acceleration difference between SV and RR
X21 Utotal The total lane change profit value

The feature parameters of the vehicle are directly transferred to vectors as model input,
which may lead to data redundancy. To check whether there is redundancy of information
between features, the correlation of feature parameters was analyzed using Spearman’s
coefficients [10]. The correlation matrix between the features is shown in Figure 5, where
the values are the correlation coefficients m, and m ∈ [−1, 1]. The closer the value of m is
to ±1, the higher the linear correlation between the random variables xi and xj. Usually,
if |m| > 0.5, a significant correlation between the variables is implied. Similarly, the
deeper the color in the correlation matrix, the higher the connection between the two traits,
suggesting that they contain more related information. To filter out redundant variables,
m = 0.6 was selected as the threshold value. If a pair of variables has a correlation coefficient
m ≥ 0.6, one of them will be deleted to speed up model training.
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To achieve a personalized LCD, in this paper, a decision model is developed, as shown
in Figure 6. The structure of the model contains five layers, where the input layer is used to
receive information on the state of the SV and the surrounding vehicles. The data accepted
by the input layer are time series variables that characterize the lane changing behavior of
the SV, the length of which is denoted by tp, and the data for each time step are as follows:

X =
[
Xt

1, Xt
2, Xt

3, . . . , Ut
LLC, Ut

LK, Ut
RLC
]

(19)

where
[
Xt

1, Xt
2, Xt

3, . . . Xt
20
]

is the decision feature vector extracted from the SV trajectory
with known driving style, and Ut

LLC, Ut
LK and Ut

RLC are the gain values of the SV performing
left LC, lane keeping and right LC at time t, respectively.

The second layer of the model’s structure is composed of a two−layer LSTM neural
network. This LSTM network layer captures the key factors influencing vehicle behavior
decisions from the high−dimensional time series data and then classifies the input data
appropriately. The third layer is a fully connected layer, which is used to transform
the dimensions of the transmitted data. The fourth layer is the Softmax layer, which is
processed by the Softmax classifier to obtain the LC behavior probability matrix of the SV.
This probability matrix is as follows:

P = [P1, P2, P3] (20)

where P1, P2 and P3 are the probabilities of left LC, lane keeping and right LC for the
SV, respectively. The fifth layer is the output layer of the model, which obtains the lane
change decision results at the prediction time tp. According to [34], the LC time in a
highway environment is generally between 3.5 s and 6 s, and a complete LC process can
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be performed in an average of 5 s. However, this paper only considers the LC decision, so
tp = 3 s is chosen.
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The aim of this LCD model is to enable the SV to generate safe, stable, and person-
alized LC decisions on the basis of its own driving state and the location information of
surrounding vehicles. Firstly, the LC feature parameters of the SV are extracted on the basis
of GMM clustering. Then, the personalized LC feature parameters and LC gain values are
utilized as feature inputs to train the model and generate the resulting LCD.

5. Model Evaluation and Analysis

In this section, the LCD model is evaluated using multiple evaluation metrics, and
a comparison with other models is performed. Furthermore, LCD models considering
various driving styles are evaluated. The training tasks for the dataset pre−processing
and decision models in this paper were performed by MATLAB 2020a and pytorch-based
jupyter on a laptop in the Windows 10 environment.

5.1. Data Preparation

In this paper, data were extracted from the NGSIM dataset to train the decision
model. On the basis of the recognition of SV driving style, further LC decision parameters
were extracted. Sequential data with a predicted time length of 3 s between the SV and
surrounding vehicles were extracted using the sliding window method. At the same time,
the personalized LCD samples were labeled with data. The left LC, lane keeping, and right
LC were represented using 0, 1 and 2, respectively. Then, 80% of the cases were randomly
selected from the total sample data as training samples for the decision model, while the
remaining 20% were used as test samples.

5.2. Model Parameter Settings

In this paper, the LSTM network is used to learn the interaction characteristics of the
vehicle, and the behavioral decision of the SV is output through Softmax. The parameter
settings for the LSTM network model are shown in Table 5. To achieve better model training
accuracy, we set the batch size to 512, the number of nodes in the hidden layer to 256, and
the number of iterations for model training to 300. The cross−entropy function is used
to train the LSTM network model. Importantly, a learning rate that is too high will cause
the loss function to ignore the minimum loss, while a learning rate that is too small will
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make training exceedingly sluggish. On the basis of previous research and experience [35],
the optimal learning rate was finally determined to be 0.0124 by plotting the learning rate
against training loss.

Table 5. The settings of the LSTM network model.

Item Description Value

Batch size Batches per training 512
Hidden size Number of hidden neural units of LSTM 256

Epoch The number of iterations for LSTM model training 300
Output size LSTM model output size 3

Learning rate Learning rate 0.0124
Loss function Instruct LSTM to update weight parameters CrossEntropy

5.3. Results and Analysis
5.3.1. Evaluation Indicators of the Model

The model is trained using the training set, and the model performance is evaluated
using the test set. Performance metric testing involves the following.

(1) Accuracy rate Acc: Indicates the proportion of the number of correct predictions in
the model test instance to the total number of test instances, and its calculation formula is
as follows:

Acc =
Tp + TN

Tp + TN + FP + FN
(21)

where Tp is the number of samples where the true label is positive and the prediction is also
positive; TN is the number of samples where the true label is negative and the prediction
is also negative; FP is the number of samples where the true label is negative and the
prediction is positive; and FN is the number of samples where the true label is positive and
the prediction is negative.

(2) F1 score: Refers to the harmonic mean of the precision rate P and the recall rate R,
and its calculation formula is as follows:

P =
TP

Tp + Fp
(22)

R =
TP

Tp + FN
(23)

F1 =
2 ∗ P ∗ R

P + R
(24)

(3) Test loss Tloss: The cross−entropy loss of the decision model on the test set; its
expression is as follows:

Tloss = −
1
m

m

∑
i=1

N

∑
n=1

PiN log(qiN) (25)

where m is the number of samples tested by the model, n is the LC decision intention, PiN
is the true label of the ith sample in the test set belonging to the Nth decision intention,
and qiN is the probability of the model predicting that the ith sample belongs to the Nth
decision intention.

In the NGSIM dataset, the number of cars executing lane-maintaining actions is
substantially larger than the number of cars performing LC. From the previous LC data
extraction, it can be recognized that the number of right LC is smaller than the number of
left LC. When the multi−class data are uneven, the accuracy evaluation method is flawed.
Therefore, this study presents assessment measures such as accuracy rate, recall rate, and F1
score. Meanwhile, the Macro-average receiver operating characteristic curve (ROC curve)
and the area under the curve (Macro-AUC) are also utilized to assess the performance of
the LCD model.
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5.3.2. Decision Model Evaluation and Comparison

To verify the effectiveness of the LCD method proposed in this paper, the relevant
performance metrics of several models are compared and analyzed using the same dataset.
Here, the LCD model LSTM_I proposed in this paper is compared with five other algorith-
mic models. These are: the LSTM model, the SVM model [11], the Logistic Regression (LR)
model [36], the KNN model [37] and the XGB model [10]. Of these, the LSTM model is
a single LCD model that does not take into consideration the introduction of interaction
feature parameters. In addition, the other models (SVM, LR, KNN and XGB) are applied
using Python and the “scikit-learn” package. It should be noted that this part of the dataset
does not specify the driving style of each vehicle.

The optimization of model parameters is an issue that needs to be considered here.
Common model parameter optimization methods include genetic algorithm, random
search, and Bayesian optimization. Compared with other optimization algorithms, the
Bayesian approach exhibits superior performance in fewer iterations [38]. Therefore, the
Bayesian method is selected here to optimize the model. A selection of critical parameters
and variables following the optimization of each model is shown in Table 6.

Table 6. Key parameters following the optimization of each model.

Model Optimal Parameter

SVM C = 7.42; gamma = 0.001; kernel: ‘rbf’
LR Penalty: ‘l2’; tol = 1e − 4; max_iter = 640; solver: ‘sag’; multi_class = ‘multinomial’

XGB learning_rate = 0.0124; max_depth = 6; min_child_weight = 0.1; gamma = 0.36
KNN n_neighbors = 5; leaf_size = 30, weights: ‘uniform’; algorithm = ‘auto’

In this paper, the performance of the six decision models is tested using data under
different time windows. To improve the real-time performance and accuracy of the decision
models, the upper limit of the time length was chosen to be 3 s. The accuracy of the different
LCD models was calculated for time windows of 0.5, 1.0, 1.5, 2.0, 2.5, and 3 s, respectively,
as shown in Figure 7. As can be seen from Figure 7, the overall accuracy of the model
increases as the dataset increases. The accuracy of all models stabilized when the data
time length reached 2.5 s. Furthermore, the accuracy of our models already exceeded 95%
at a time length of 2.0 s for the test data. Compared with the LSTM model without the
introduction of interactions, our model demonstrated an improvement in overall accuracy
by 4.26%. Compared with SVM, LR, KNN and XGB, the overall accuracy was improved
by 8.89%, 11.04%, 14.65% and 4.96%, respectively. This shows that the introduction of the
interaction module did improve the accuracy of the autonomous driving LCD.
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The LCD model is established 3 s before LC. The six LC models are trained and tested
on the basis of datasets I−80 and US−101, and the results are shown in Table 7. As can be
seen from Table 7, the LSTM_I model has combined accuracy, recall, and F1 score values of
0.965, 0.951 and 0.956, respectively, demonstrating better classification accuracy than the
other models. This indicates that the model is better able to mine the potential features
in the LC process and generate more accurate decision results. Additionally, the test loss
values of different decision models are presented in Table 7. From Table 7, it can be seen
that our model also shows better performance in terms of test loss values. This further
demonstrates that the decision model is capable of making more accurate predictions.

Table 7. Performance comparison of the different approaches.

Model
Precision (%) Recall (%) F1-score (%)

Tloss
LCL LK LCR LCL LK LCR LCL LK LCR

LSTM_I 96.54 97.33 95.46 98.24 96.57 90.37 97.28 97.10 92.84 0.127
LSTM 94.42 92.26 91.51 88.04 94.01 89.70 93.67 93.19 92.60 0.210
SVM 89.03 86.49 88.43 84.18 90.07 80.59 87.08 88.44 83.23 0.267
LR 86.21 90.54 80.60 84.36 83.28 83.16 84.50 85.39 81.62 0.368

XGB 93.86 91.47 90.33 95.06 92.39 81.64 94.16 91.22 85.35 0.156
KNN 76.63 81.68 84.20 80.17 82.54 83.66 78.84 81.40 83.59 0.423

Figure 8 shows the macroscopic receiver operating characteristic curves of the six
models. Among them, the KNN algorithm model has the worst performance, with a
Macro−AUC value of 0.815. The Macro−AUC value of the SVM model is slightly higher
than that of the logistic regression model, with Macro−AUC values of 0.894 and 0.865,
respectively. In addition, the LSTM model algorithm exhibits better performance than the
XGB model algorithm, with Macro−AUC values of 0.952 and 0.937, respectively. Mean-
while, the LCD model LSTM_I proposed in this paper shows the best performance, with a
Macro−AUC value of 0.983.
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In general, the LCD model proposed in this paper shows better performance than the
other decision models. The reason for this is that, during the process of traffic flow, the SV
and the surrounding vehicles form an interacting whole. The behavioral decisions of the
SV are not only influenced by its own state, but also by the driving environment and the
behavior of the surrounding vehicles. In addition, the LCD model proposed in this paper
is able to learn the correlation between vehicles on the basis of the interaction and mine
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the key features affecting LC. Under the same driving environment, this decision model is
able to make more reasonable behavioral decisions on the basis of the surrounding vehicle
information and its own state.

5.3.3. Model Evaluation Considering Driving Style

In this section, the LSTM_I model is further evaluated using the various driving style
data obtained in Section 3. The classification results of the test data for different driving
styles are shown in Table 8. From Table 8, it can be seen that the decision model has high
accuracy in predicting non-LC behavior, while it has the lowest accuracy in predicting right
LC behavior. Meanwhile, among the different driving styles, moderate has the highest
overall accuracy, followed by conservative and aggressive, from high to low, respectively.
This is because there is an imbalance in the data of the three driving styles extracted in this
paper, and more feature data could improve the accuracy of the model to a certain extent.
In addition, the prediction accuracy when taking different driving styles into consideration
was overall higher than that for samples without driving style classification.

Table 8. Prediction accuracy of LCD model considering driving style.

Decision Results
Driving Style

Left Lane Changing Lane Keeping Right Lane Changing

Conservative 96.95% 98.87% 94.57%
Moderate 97.94% 99.79% 96.59%

Aggressive 94.85% 97.68% 92.29%
Mean 96.58% 98.78% 94.48%

Non-Classified 94.18% 98.14% 92.10%

Table 9 shows the prediction accuracy of the six models for predictions based on data
related to driving behavioral characteristics for different driving styles. The data in the
table are the average of the prediction accuracy of each model for behaviors such as LCL,
LK and RCL. From Table 9, it can be seen that the overall accuracy of the LSTM_I model
is better than that of the other five models, both for classified and non-classified samples.
Among them, the average accuracy of the LSTM_I model prediction, performed on the basis
of three driving style feature data points, is 97.28%, while the accuracies of the other five
models are 92.98%, 86.29%, 84.32%, 91.69% and 81.35%, respectively. In addition, the same
conclusion as that presented in Table 8 can also be obtained: for the six LCD models, the
prediction accuracy following classification is higher than that for the unclassified samples.

Table 9. The prediction accuracy of 6 models considering the driving style of the SV.

Driving styles LSTM_I LSTM SVM LR XGB KNN

Conservative 96.80% 91.76% 84.61% 85.65% 90.58% 81.94%
Moderate 98.46% 95.31% 92.62% 90.03% 95.31% 86.43%

Aggressive 96.57% 91.89% 81.64% 77.27% 89.18% 74.67%
Mean 97.28% 92.98% 86.29% 84.32% 91.69% 81.35%

Non-Classified 96.51% 91.59% 83.96% 82.81% 89.89% 77.2%

Figure 9 shows several examples of lane change predictions for vehicles with different
driving styles. Here, we use the LSTM_I model to predict the driving behavior of real
vehicles found in the NGSIM data, and we color-code the actual trajectories of the predicted
vehicles according to the model’s predictions. In this case, the data segments that correctly
predict the LK and LC behavior are represented in purple and green, respectively. Data
segments that are not involved in the prediction are marked in black, while data that predict
LK and LC incorrectly are shown in red. As can be seen from Figure 9, the model has
an overall prediction accuracy of over 94% for vehicles with different driving styles. In
contrast to Table 8, the prediction accuracy is higher for aggressive driver behavior. In
addition, the model has a prediction time range of 12 ms to 18 ms, which is sufficient for
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real-world situations. Overall, the decision model proposed in this paper is able to produce
good lane change predictions for drivers with different driving styles.
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6. Conclusions

This research proposes an LCD model that considers SV driving styles as well as
interactions. Feature variables such as speed, acceleration and headway time distance are
selected, and the style type is identified for each vehicle sample on the basis of the unsu-
pervised clustering algorithm GMM. The interaction between the SV and the surrounding
vehicles is described by constructing a gain function, which takes into account the safety,
driving efficiency, and comfort of the SV. The LC feature variables with different driving
styles and the LC gain values are used as model inputs to construct an LSTM−based
personalized LCD model.

To verify the effectiveness of the model, real vehicle trajectory data, MGSIM, were
used to evaluate the model. The model was also compared with other models, and the
results showed that the model outperformed the other models in terms of accuracy, F1
score, and macro−AUC value. This indicates that the model is able to make more accurate
behavioral decisions on the basis of the state of its own vehicle and information regarding
the surrounding vehicles. Behavioral decisions were also evaluated for different driving
styles. The test results showed that the personalized LCD framework is able to make sound
decisions on the basis of different driving styles, and it can provide personalized options
for different drivers.

Future work will focus on the improvement of the proposed model algorithms and the
application of real−time on−board hardware systems for algorithm validation. Addition-
ally, other traffic participants (e.g., pedestrians, non-motorized vehicles) will be taken into
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consideration in the driving environment in order to further improve the decision−making
capability of autonomous vehicles.
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