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Abstract: Finding a template in a search image is an important task underlying many computer
vision applications. This is typically solved by calculating a similarity map using features extracted
from the separate images. Recent approaches perform template matching in a deep feature space,
produced by a convolutional neural network (CNN), which is found to provide more tolerance to
changes in appearance. Inspired by these findings, in this article we investigate whether enhancing
the CNN’s encoding of shape information can produce more distinguishable features that improve the
performance of template matching. By comparing features from the same CNN trained using different
shape–texture training methods, we determined a feature space which improves the performance
of most template matching algorithms. When combining the proposed method with the Divisive
Input Modulation (DIM) template matching algorithm, its performance is greatly improved, and the
resulting method produces state-of-the-art results on a standard benchmark. To confirm these results,
we create a new benchmark and show that the proposed method outperforms existing techniques on
this new dataset.

Keywords: template matching; convolutional neural networks; VGG19

1. Introduction

Template matching is a technique for finding a rectangular region of an image that
contains a certain object or image feature. It is widely used in many computer vision
applications, including object tracking [1,2], object detection [3,4], and 3D reconstruction
[5,6]. A similarity map is generally used to quantify how well a template matches each
location in an image, typically generated by sliding the template through the search image,
then the matching position is determined by finding the location of maximum value of
the similarity map. Traditional template matching generates the similarity map based on
pixel intensity values, and is not robust to hard matching scenarios such as significant
non-rigid deformations of the object, changes in the illumination and size of the target,
and occlusion [7]. To address this issue, more distinctive hand-crafted features such as
scale-invariant feature transform (SIFT) [8] and histogram of oriented gradients (HOG) [9]
can be used instead of the intensity values for robust template matching [10–13]. However,
these features must be extracted by certain manually predefined algorithms based on expert
knowledge, and therefore have limited description capabilities [14].

With the help of deep features learned from convolutional neural networks (CNNs),
vision tasks such as image classification [15,16], object recognition [17,18], and object
tracking [19,20] have recently achieved great success. In order to succeed in such tasks,
CNNs need to be trained with big data and automatically build internal representations
that are less effected by changes in the appearance of objects in different images. Therefore,
CNNs have strong description capability far exceeding that of hand-crafted features; recent
methods have been successfully applied to a feature space produced by the convolutional
layers of a CNN, achieving impressive performance [7,21–26].
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The higher layers of CNNs are believed to learn representations of shapes from
low-level features [27]. However, recent studies [28,29] have demonstrated that ImageNet-
trained CNNs are biased toward making categorisation decisions based on texture rather
than shape. The same works showed that CNNs could be trained to increase sensitivity to
shape, resulting in improved accuracy and robustness of object classification and detection.
Assuming that shape information is useful for template matching, these results suggest
that the performance of template-matching methods applied to CNN-generated feature
spaces could potentially be improved by training the CNN to be more sensitive to shape.

In this article, we verified this assumption by comparing features from five CNN
models that had the same network structure while differing in shape sensitivity. Our results
show that training a CNN to learn about texture while biasing it to be more sensitive
to shape information can improve template matching performance. Furthermore, by
comparing template-matching performance when using feature spaces created from all
possible combinations of one, two, and three convolutional layers of the CNN, we found
that the best results were produced by combining features from both early and late layers.
Early layers of a CNN encode lower-level information such as texture, while later layers
encode more abstract information such as object identity. Hence, both sets of results (the
need to train the CNN to be more sensitive to shape and the need to combine information
for early and late layers) suggest that a combination of texture and shape information is
beneficial for template matching.

Our main contributions are summarised as follows:

• We created a new benchmark; compared to the existing standard benchmark, it is
more challenging, provides a far larger number of image pairs, and is better able to
discriminate between the performance of different template matching methods.

• By training a CNN to be more sensitive to shape information and combining features
from both early and late layers, we created a feature space in which the performance
of most template matching algorithms is improved.

• Using this feature space together with an existing template matching method, DIM [30],
we obtained state-of-art results on both the standard and new datasets.

This paper is an extension of work originally presented at ICIVS2021 [31]. The con-
ference paper reported the template matching results of the DIM algorithm using features
extracted from four VGG19 models with different shape sensitivities in order to determine
the best deep feature space for template matching, then compared the performance of many
template-matching algorithms in that feature space. The current work adds a reviews of the
latest literature in Section 2, details of the DIM algorithm in Section 3.2, new results using
features from a new VGG19 model (Model_E) trained by the latest shape–texture debiased
training method [29] along with related discussion in Section 4, visualisation of the results
of different template matching algorithms in Section 4.4, and a concluding discussion in
Section 5.

2. Related Work
2.1. Template Matching

Traditional template matching methods calculate the similarity map using a range
of metrics such as the normalised cross-correlation (NCC), sum of squared differences
(SSD), and zero-mean normalised cross-correlation (ZNCC), which are applied to the
pixel intensity or colour values. However, because these methods rely on comparing the
values in the template with those at corresponding locations in the image patch, they are
sensitive to changes in lighting conditions, non-rigid deformations of the target object, or
partial occlusions, which can result in a low similarity score when one or multiple of these
situations occur. To overcome the limitations of classic template matching methods, many
approaches [7,21,22,24–26,32] have been developed. These methods can be classified into
two main categories.

One category attempts to increase tolerance to changes in appearance by changing
the computation that is performed to compare the template to the image. For example,
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Best-Buddies Similarity (BBS) counts the proportion of sub-regions in the template and
the image patch that are Nearest-Neighbour (NN) matches [7]. Deformable Diversity
Similarity (DDIS) explicitly considers possible template deformation using the diversity
of NN feature matches between a template and a potential matching region in the search
image [24]. Annulus Projection Transformation and Neighbour Similarity (APT-MNS) [26]
builds the global spatial structure of the target object using a novel annulus projection
transformation (APT) vector to filter out the incorrectly matched NN candidates, then
estimating the best matched candidates using the MNS measurement. Weighted Smallest
Deformation Similarity (WSDS) [25] calculates the smallest deformation between each point
in the template and its NN matches to explicitly penalise the deformation. In addition,
weights are defined for points in the template based on their likelihood of belonging to the
background calculated through NN matching with the points around the target window.
This reduces the negative effect of background pixels contained in the template box. The
Divisive Input Modulation (DIM) algorithm [30] extracts additional templates from the
background and lets the templates compete with each other to match the image. Specifically,
this competition is implemented as a form of probabilistic inference known as explaining
away [33,34], which causes each image element to only provide support for the template
that is the most likely match. Previous work has demonstrated that DIM, when applied to
colour feature-space, is more accurate in identifying features in an image compared to both
traditional and recent state-of-the-art matching methods [30].

The second category of approaches changes the feature space in which the comparison
between the template and the image is performed. The aim is for this new feature space
to allow better discrimination in template matching while increasing tolerance to changes
in appearance. Co-occurrence based Template Matching (CoTM) transforms the points in
the image and template to a new feature space defined by the co-occurrence statistics to
quantify the dissimilarity between a template and an image [22]. Quality-Aware Template
Matching (QATM) is a method that uses a pretrained CNN model as a feature extractor.
It learns a similarity score that reflects the (softness) repeatness of a pattern using an
algorithmic CNN layer [21]. Occlusion Aware Template Matching (OATM) [32] searches
neighbours among two sets of vectors and uses a hashing scheme based on consensus
set maximisation, and is hence able to efficiently handle high levels of deformation and
occlusion.

2.2. Deep Features

Many template matching algorithms from the first category above can be applied both
to deep features and directly to colour images. The deep features used by BBS, CoTM, and
QATM are extracted from two specific layers of a pre-trained VGG19 CNN [35], conv1_2
and conv3_4. Following the suggestion in [20] for object tracking, DDIS takes features
from a deeper layer, fusing features from layers conv1_2, conv3_4, and conv4_4. In [23],
the authors proposed a scale-adaptive strategy to select a particular individual layer of a
VGG19 to use as the feature space according to the size of template. In each case, using deep
features was found to significantly improve template matching performance compared to
using colour features.

A recent study has shown that ImageNet-trained CNNs are strongly biased towards
recognising textures rather than shapes [28]. The same study demonstrated that the
same standard architecture (ResNet-50) [36] that learns a texture-based representation
on ImageNet is able to learn a shape-based representation when trained on ‘Stylised-
ImageNet’, a version of ImageNet that replaces the texture in the original image with the
style of a randomly selected painting through AdaIN style transfer [37]. This new shape-
sensitive model was found to be more accurate and robust in both object classification and
detection tasks. However, the stylised dataset needs to be generated before the training
process using a pre-defined set of texture source images. Due to computation and resource
limitations, each image in the stylised dataset is only transferred by one random artistic
image, which results in lack of diversity for each sample. Furthermore, the training process
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is complicated and involves first training the network on both standard and stylised training
datasets, then fine-tuning on the standard dataset. In contrast, [29] proposes a shape–texture
debiased training method which provides the corresponding supervisions from shape and
texture simultaneously. Similarly, this method is based on AdaIN style transfer, with the
difference in implementation being that it replaces the original texture information with
uninformative texture patterns from another randomly selected image from the training
mini-batch rather than with the style of randomly selected artistic paintings. This results in
increments of diversity for each image; hence, this method achieves higher accuracy and
robustness than [28] for image classification with the ResNet-50 architecture. Inspired by
these findings, in this paper we investigate whether enhancing the shape sensitivity of a
CNN can produce more distinguishable features that improve the performance of template
matching.

3. Methods
3.1. Training CNN with Stylised Data

Previous work on template matching in deep feature space (see Section 2) has em-
ployed a VGG19 CNN. To enable a fair comparison with those previous results, we used
the VGG19 architecture as well. However, we used five VGG19 models that differed in
terms of the way they were trained to encode different degrees of shape selectivity, as
summarised in Table 1.

Table 1. The five different VGG19 CNN models used in this paper. IN and SIN are the abbreviations
of ImageNet and Stylised-ImageNet, respectively.

Name Training Fine-Tuning Rank of Shape Sensitivity

Model_A IN - 4
Model_B SIN - 1
Model_C IN + SIN - 2
Model_D IN + SIN IN 3
Model_E IN - -

Model_A to Model_D were trained using the same approach as in [28], with a stylised
dataset generated before the training process; the ranking shape-sensitivity of these models
was controlled by setting the different training datasets manually. Model_A was trained
using the standard ImageNet dataset [35]; we used the pretrained VGG19 model from the
PyTorch torchvision library. This model has the least shape bias. Model_B was trained on
the Stylised-ImageNet dataset, and thus has the most shape bias. Model_C was trained on
a dataset containing the images from both ImageNet and Stylised-ImageNet. Model_D was
initialised with the weights of Model_C followed by fine-tuning on ImageNet for 60 epochs
using a learning rate of 0.001 multiplied by 0.1 after 30 epochs. Therefore, Model_C and
Model_D have intermediate levels of shape bias, with model_D being less selective to shape
than Model_C. The stylised data samples used in Model_E were generated during training,
and the training process provided supervisions from shape and texture simultaneously
[29]. Hence, Model_E has an intermediate level of shape bias, although where it should
rank relative to Model_C and Model_D was impossible to quantify. The learning rate was
0.01 multiplied by 0.1 after every 30 epochs for Model_B and Model_E, and after every 15
epochs for Model_C. The number of epochs was 90 for Model_B and Model_E and 45 for
Model_C,; as the dataset used to train Model_C was twice as large as that used to train
Model_B, the number of weight updates was the same for both models. The other training
hyperparameters used for each model were a batch size of 256, momentum 0.9, and weight
decay 1e-4. The optimiser was SGD.
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3.2. DIM Template Matching Algorithm

The DIM algorithm has previously been found to produce the best performance for
template matching in colour feature space [30]. Hence, it was selected as the underlying
algorithm to determine the best CNN feature space to use for template matching. A detailed
description of the DIM algorithm can be found in [30]; for the convenience of the reader, a
brief introduction is provided below.

In contrast to other template matching methods that only use the appearance of the
target, DIM considers potential distractors, that is, regions that are similar to the matching
target. These distractors are represented as additional templates that are cropped from the
same image as the given template. All of the templates, representing both the target and the
distractors, compete with each other to be matched with the search image. This inference
process performs by explaining away [33,38,39]: possible causes (i.e., templates) compete
to explain the sensory evidence (i.e., the search image), and if one cause explains part of
the evidence (i.e., a part of the image), then support from this evidence for alternative
explanations (i.e., other templates) is reduced, or explained away. An example is shown in
Figure 1.

Figure 1. An illustration of template competition. The red rectangle area in the left image shows
the template used for finding the matching location in the right image. The four same-sized green
rectangle areas are the additional templates taken from the left image. These templates compete with
each other to be matched to the right image. This competition means that only one template can be
the best matching one at each location. The locations matching each template are shown on the right.

DIM minimises the Kullback–Leibler (KL) divergence between the input and a recon-
struction of the input created by the additive combination of the templates. This requires
the input to be non-negative [30]. Therefore, a pre-processing step is required to separate
the positive and rectified negative values of the features directly into two parts, which are
then concatenated along the channel dimension:

Ipre = concatenate(ReLU(φ(I)), ReLU(−φ(I))) (1)

where I is a colour or grayscale image, φ(I) are features extracted from the image, and
ReLU is the function that, if positive, outputs an element of the input directly, and otherwise
outputs zero.

To apply DIM directly to the image feature space, feature extraction was performed
as follows:

φ(I) = γ
k

∑
c=1

(Ic − Ic ? f ) (2)

where c is the index over the number of image channels, k has a value of one for a grayscale
image and three for a colour image, γ is a gain factor that was set here to a value of 2, and f is
a Gaussian filter with a standard deviation equal to half of the smaller value of the template
width or height [30]. This operation results in each channel of φ(I) being represented by the
deviations between the pixel intensity values and the local mean intensity. In this paper, the
five VGG19 models were used as feature extractors; hence, φ(I) represents deep features of
I extracted by the CNNs.
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Both the template and the search image were pre-processed as described in the pre-
vious paragraph. For the template image, additional templates were extracted around
locations where the correlation between the target template and the image was strongest,
excluding locations where the additional templates would overlap with each other or
where the bounding box defined the target [30]. Five additional templates were used in the
experiments described in this paper. DIM requires the templates to have dimensions that
are odd numbers, otherwise the reconstruction of the input does not align with the actual
input; see Equation (3) for details. Therefore, if one side of the target template is even, it is
padded by one row on the right or one column on the bottom with zeros, then the new size
of target template is used to generate the additional templates.

DIM was implemented using the following equations:

Ri =
p

∑
j=1

(
vji ? Sj

)
(3)

Ei = Iprei � [Ri]ε2
(4)

Sj ←
[
Sj
]

ε1
�

k

∑
i=1

(
wji ∗ Ei

)
(5)

where i is an index over the number of input channels (the maximum index k is twice the
channel number of the extracted features); j is an index over p, which is the number of
different templates being compared to the image; Ri is a two-dimensional array represent-
ing a reconstruction of Iprei (I, pre-processed using Equation (1)); Ei is a two-dimensional
array representing the discrepancy (or residual error) between Iprei and Ri; Sj is a two-
dimensional array that represents the similarity between template feature j and the image
feature at each pixel; wji is a two-dimensional array representing channel i of template j,
with the sum of the values in each template wj being normalised in order to sum to one;
vji is another two-dimensional array representing template values (where the values of vj
were made equal to the corresponding values of wj, except that they were normalised to
have a maximum value of one); [·]ε = max(·, ε); ε1 and ε2 are parameters with their values
set to ε2

max(
p
∑
j

vji)
and 1× 10−2, respectively; � and � indicate element-wise division and

multiplication, respectively; and ? and ∗ represent the cross-correlation and convolution
operations, respectively. All elements of S were initially set to zero, and Equations (3)–(5)
were iteratively updated and terminated after ten iterations for all of the experiments
reported in this paper.

For a search image I, in order to avoid a poor estimate of φ(I) and edge effects during
template matching, when DIM was directly applied to the image feature-space, I was first
padded on all sides with intensity values that were mirror reflections of the image pixel
values near the borders of I. The width of the padding was equal to the width of the
template on the left and right borders and equal to the height of the template on the top
and bottom borders. The final similarity maps S were cropped to be the same size as the
original image once the template matching method had been applied [30]. When applying
DIM to deep feature space, φ(I) was padded using the same method corresponding to the
width and height of the template in deep space, and S was cropped to be the same size as
φ(I) after application of DIM.

The best matching location can be represented by a single element with the largest
value of the similarity map Sj for template j, as in other template matching methods. How-
ever, the best matching location is often represented by a small population of neighbouring
elements with high values [30]. Therefore, post-processing was performed to sum the
similarity values within neighbourhoods:

Sj = Sj ? Ke(max(1, α ∗ w), max(1, α ∗ h)) (6)
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where Ke is a binary-valued kernel containing ones within an elliptically shaped region,
and has a width and height equal to α times the width w and height h of the template; α
was set to 0.025.

4. Results
4.1. Dataset Preparation

The BBS dataset [7] has been widely used for the quantitative evaluation of template
matching algorithms [7,21–24]. This dataset contains 105 template–image pairs sampled
from 35 videos (three pairs per video) from a tracking dataset [40]. Each template–image
pair is taken from frames of the video that are 20 frames apart. To evaluate the performance
of a template matching algorithm, the intersection-over-union (IoU) is calculated between
the predicted bounding box and the ground truth box for the second image in the pair. The
overall accuracy is then determined by calculating the area under the curve (AUC) of a
success curve produced by varying the threshold of IoU that counts as success.

Although the BBS data is widely used, it is not particularly good at discriminating the
performance of different template matching methods. To illustrate this issue, we applied
one baseline method (ZNCC) and three state-of-art methods (BBS, DDIS, and DIM) to the
BBS dataset in colour space. The results show that there are 52 template–image pairs where
all methods generate very similar results; these can be sub-divided into seven template–
image pairs for which all methods fail to match (IoU less than 0.1 for all four methods),
13 template–image pairs for which all methods succeed (IoU greater than 0.8 for all four
methods), and 32 template–image pairs for which all methods produce similar intermediate
IoU values within 0.1 of each other. This means that only 53 template–image pairs in the
BBS dataset help to discriminate the performance of these four template matching methods.
These results are summarised in Figure 2.

less than 0.1 more than 0.8 difference < 0.1 valid

7

13

32

53

BBS dataset 

8
7

37

148

KTM dataset

Figure 2. Discriminative ability of two datasets evaluated by comparing the IoU scores produced by
ZNCC, BBS, DDIS, and DIM.

We therefore created a new dataset, the King’s Template Matching (KTM) dataset,
following a similar procedure to that used to generate the BBS dataset. The new dataset
contains 200 template–image pairs sampled from 40 new videos (five pairs per video)
selected from a different tracking dataset [41]. In contrast to the BBS dataset, the template
and the image were chosen manually in order to avoid pairs that contain significant
occlusions and non-rigid deformations of the target (which no method is likely to match
successfully), and the image pairs were separated by 30 (rather than 20) frames in order
to reduce the number of pairs for which matching would be easy for all methods. These
changes make the new data more challenging and provide a far larger number of image
pairs that can discriminate the performance of different methods, as shown in Figure 2.
Both the new dataset and the BBS dataset were used in the following experiments.
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4.2. Template Matching Using Features from Individual Convolutional Layers

To reveal how the shape bias affects template matching, we calculated the AUC using
DIM with features from every single convolutional layer of the five models. As the features
from the later convolutional layers are down-sampled using max-pooling (by a factor of
1
2 , 1

4 , 1
8 , and 1

16 compared to the original image), the bounding box of the template was
multiplied by the same scaling factor and the resulting similarity map is resized back to the
original image size in order to make the prediction. The AUC scores across the BBS and
KTM datasets are summarised in Figure 3, and the mean and standard deviation of these
AUC scores are summarised in Figure 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Model_A Model_B Model_C Model_D Model_E

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Model_A Model_B Model_C Model_D Model_E

(b)

Figure 3. The AUC scores of DIM using features from different convolutional layers of five models:
(a) evaluation on BBS dataset and (b) evaluation on KTM dataset.
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Model_A Model_B Model_C Model_D Model_E
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
U

C

BBS dataset

Model_A Model_B Model_C Model_D Model_E
0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
U

C

KTM dataset

Figure 4. Mean and standard deviation of the AUC scores using features from different convolutional
layers of five models.

For all five models, there is a tendency for the AUC to be higher when template
matching is performed using lower layers of the CNN compared to later layers. This
suggests that template matching relies more on low-level visual attributes such as texture,
rather than higher-level ones such as shape. Among the four models trained with stylised
samples, the AUC score for most CNN layers is greater for Model_D than Model_E, greater
for Model_E than Model_C, and greater for Model_C than Model_B. This tendency, which
can be clearly seen in Figure 4, suggests that template matching relies more on texture
features than shape features. Comparing Model_A and Model_D, it is hard to say which is
better. However, the AUC score calculated on the BBS dataset using features from conv4_4
of Model_D is noticeably better than that for Model_A. This suggests that increasing the
shape bias of later layers of the CNN could potentially lead to better template matching.
However, this result is not reflected by the results for the KTM dataset. One possible
explanation is that, in general, the templates in the KTM dataset are smaller than those in
the BBS dataset (with the template size defined in terms of area, i.e., as the product of its
width and height; the mean template size of for the KTM dataset is 1603 pixels2, whereas
it is 3442 pixels2 for the BBS dataset). Smaller templates tend to be less discriminative.
The sub-sampling that occurs in later levels of the CNN results in templates that are even
smaller and less disriminative. This may account for the worse performance of the later
layers of each CNN when tested using the KTM dataset rather than the BBS dataset. This
represents a a confounding factor in attributing the better performance of the early layers
to a reliance on texture information.

In order to illustrate the differences in the features learned by Model_A and Model_D,
the first three principal components of conv4_4 were converted to RGB values. As shown in
Figure 5, the features from Model_D contain more information about edges (shape) than
those from Model_A. However, it is hard to distinguish the small object in fourth row, as it
is represented by a very small region of the feature space.
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(a) Template image (b) Model_A (c) Model_D (f) Model_D (d) Search image (e) Model_A 

Figure 5. Visualisation of conv4_4 layers for image pairs with different template sizes: (a) the first
image in the pair shows the bounding box defining the template; (b,c) visualisations of the corre-
sponding features produced in layer conv4_4 of (b) Model_A and (c) Model_D; (d) the second image in
the pair shows the bounding box of the ground truth location of the target object; (e,f) visualisations
of the corresponding features produced in layer conv4_4 of Model_A and Model_D, respectively.

4.3. Template Matching Using Features from Multiple Convolutional Layers

We compared Model_A, Model_D, and Model_E by applying the DIM template
matching algorithm to features extracted from multiple convolutional layers of each CNN.
In order to combine feature maps with different sizes, bilinear interpolation was used to
make them the same size. If the template was small (height times width less than 4000) the
feature maps from the later layer(s) were scaled to be the same size as those in the earlier
layer(s). If the template was large, the feature maps from the earlier layer(s) were reduced
in size to be the same size as those in the later layer(s). To maintain a balance between
low and high level features, the dimension of the feature maps from the later layer(s) was
reduced by PCA to the same number as in the earlier layer.

Table 2 shows the AUC scores produced by DIM using features from two convolutional
layers of Model_A, Model_D, and Model_E. All possible combinations of two layers were
tested; the table shows only selected results with the best performance. It can be seen from
Table 2 that for the 24-layer combinations for which results are shown, 21 results for both
BBS and KTM dataset are better for Model_D than for Model_A, and 14 results for BBS
dataset and 13 results for KTM dataset are better for Model_E for Model_A. Hence, both
networks with more shape bias perform better than the network with the least shape bias.
These results thus support the conclusion that more discriminative features can be obtained
by increasing the shape bias of the VGG19 model, which increases the performance of
template matching.

The results for Model_D are better than those for Model_E for 17 of the 24 layer
combinations for the BBS dataset and for 18 of the 24 layer combinations for the KTM
dataset. Furthermore, the best result for each dataset (indicated in bold) is generated
using the features from Model_D. Hence, among the three models, Model_D produced
best performance. To determine whether fusing features from more layers would further
improve template matching performance, DIM was applied to all combinations of three
layers from Model_D, resulting in a total of 560 different combinations using three layers.
As it is impossible to show all these results in this paper, the highest ten AUC scores are
shown in Table 3. For both datasets, using three layers produced an improvement in the
best AUC score (around 0.01) compared to using two layers.
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Table 2. Partial AUC scores of DIM using features from two convolutional layers of Model_A (upper
value in each cell), Model_D (middle value in each cell), and Model_E (lower value in each cell). The
up and down arrows indicate whether the AUC score of Model_D or Model_E is better or worse than
that of Model_A.

(a) Evaluation on BBS dataset.

Layer

AUC Layer
conv3_3 conv3_4 conv4_1 conv4_2 conv4_3 conv4_4

conv1_1
0.710 0.705 0.713 0.697 0.698 0.711
0.707↓ 0.714↑ 0.704↓ 0.718 ↑ 0.710↑ 0.708↓
0.692↓ 0.673↓ 0.700↓ 0.711↑ 0.697↓ 0.694↓

conv1_2
0.686 0.686 0.674 0.655 0.680 0.683
0.686 0.687↑ 0.707↑ 0.696↑ 0.690↑ 0.710↑
0.658↓ 0.659↓ 0.675↑ 0.695↑ 0.683↑ 0.677↓

conv2_1
0.658 0.670 0.664 0.653 0.662 0.667
0.659↑ 0.669↓ 0.665↑ 0.671↑ 0.683↑ 0.693↑
0.686↑ 0.663↓ 0.666↑ 0.690↑ 0.687↑ 0.687↑

conv2_2
0.659 0.661 0.653 0.641 0.659 0.663
0.665↑ 0.667↑ 0.676↑ 0.679↑ 0.676↑ 0.682↑
0.682↑ 0.653↓ 0.688↑ 0.684↑ 0.672↑ 0.691↑

(b) Evaluation on KTM dataset.

Layer

AUC Layer
conv3_3 conv3_4 conv4_1 conv4_2 conv4_3 conv4_4

conv1_1
0.687 0.684 0.677 0.668 0.670 0.678
0.689↑ 0.691↑ 0.682↑ 0.695↑ 0.684↑ 0.687↑
0.672↓ 0.676↓ 0.664↓ 0.672↑ 0.675↑ 0.678

conv1_2
0.687 0.689 0.682 0.685 0.675 0.682
0.680↓ 0.694↑ 0.695↑ 0.697↑ 0.691↑ 0.690↑
0.668↑ 0.672↓ 0.670↓ 0.669↓ 0.669↓ 0.673↓

conv2_1
0.634 0.633 0.647 0.645 0.655 0.639
0.642↑ 0.651↑ 0.665↑ 0.671↑ 0.668↑ 0.666↑
0.658↑ 0.673↑ 0.643↓ 0.648↑ 0.665↑ 0.660↑

conv2_2
0.642 0.651 0.664 0.661 0.669 0.669
0.657↑ 0.664↑ 0.670↑ 0.673↑ 0.669 0.669
0.657↑ 0.665↑ 0.640↑ 0.651↓ 0.665↓ 0.670↑

Table 3. Best ten results when using combinations of features from three convolutional layers of
Model_D; here, for instance, C1241

44 means that features from conv1_2, conv4_1, and conv4_4 were
fused.

(a) Evaluation on BBS dataset.

Layers C1241
44 C1134

43 C1142
44 C1243

52 C1122
43 C1141

44 C1141
43 C1134

42 C1243
44 C1134

44

AUC 0.728 0.727 0.724 0.724 0.723 0.722 0.720 0.720 0.720 0.720

(b) Evaluation on KTM dataset.

Layers C1134
42 C1232

43 C1134
43 C1222

42 C1231
42 C1234

42 C1234
43 C1231

43 C1233
43 C1133

42

AUC 0.711 0.709 0.708 0.706 0.706 0.705 0.705 0.705 0.705 0.704

4.4. Comparison with Other Methods

This section compares our results with those produced by other template matching
methods in both colour and deep feature space. When evaluated on the BBS dataset, the
deep features used by each template matching algorithm were the features from layers
conv1_2, conv4_1, and conv4_4 of Model_D. When evaluated on the KTM dataset, the deep



Sensors 2022, 22, 6658 12 of 15

features used as the input to each algorithm were those from layers conv1_1, conv3_4,
and conv4_2 of Model_D. BBS, CoTM, and QATM have been tested on BBS data by their
authors using different deep features, and thus we compared our results to these earlier
published results as well.

The comparison results are summarised in Table 4, and examples of the results for
particular images are shown in Figure 6. All methods except QATM and BBS produce
improved results using the proposed deep features than when using colour features. This is
true for both datasets. Of the methods that have previously been applied to deep features,
the performance of two (NCC and QATM) are improved, while that of two others (BBS
and CoTM) is made worse when using our proposed method to define the deep feature
space. Potential further improvements to the performance of these methods could be
achieved by optimising the feature extraction method for the individual template matching
algorithm, as has been done here for DIM. However, it should be noted that simple metrics
for comparing image patches such as NCC and ZNCC produce close to state-of-the-art
performance when applied to our proposed deep feature space, outperforming much
more complex methods of template matching such as BBS, CoTM, and QATM when these
methods are applied to any of the tested feature spaces, including those proposed by the
authors of these algorithms.

Figure 6. Comparison performance of different methods using the proposed feature extraction
method. The colour boxes indicate the template location defined by: Ground truth BBS

CoTM DDIS DIM NCC QATM SSD ZNCC. Note that the colour
images have been converted to greyscale in order to make the bounding boxes more visible. The
boxes predicted by ZNCC and NCC are remarkably similar, and thus overlap.

ZNCC and NCC produce very similar scores on both datasets. ZNCC is similar to
NCC, with the only difference being the subtraction of the local mean value from the feature
vectors being compared. This operation makes ZNCC more robust to changes of lighting
conditions when applied directly to colour images, and for this reason the AUC score of
ZNCC on both datasets is higher than that of NCC in colour space. The features extracted
by the CNN appear to be insensitive to lighting changes; therefore, the results of NCC and
ZNCC are remarkably similar when applied to these features.
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Table 4. Quantitative comparison of the performance of different template matching algorithms
using different input features.

Method

AUC Feature BBS Dataset KTM Dataset

Colour Deep Deep Colour Deep
(Proposed) (Proposed)

SSD 0.46 - 0.54 0.42 0.54

NCC 0.48 0.63 [23] 0.67 0.42 0.67

ZNCC 0.54 - 0.67 0.48 0.67

BBS 0.55 0.60 [7] 0.54 0.44 0.55

CoTM 0.54 1 0.67 [22] 0.64 0.51 0.56

DDIS 0.64 - 0.66 0.63 0.68

QATM - 0.62 2 0.66 - 0.64
DIM 0.69 - 0.73 0.60 0.71

1 We were unable to reproduce this result using the code provided by the authors of CoTM. Our different result is
shown in the table. 2 The authors of QATM report an AUC score of 0.69 when this method is applied to the BBS
dataset [21]. However, examining their source code, we note that this result is produced by setting the size of
the predicted bounding box as equal in size to the width and height of the ground truth bounding box. Other
methods are evaluated by setting the size of the predicted bounding box equal to the size of the template (i.e.,
without using knowledge of the ground truth that the algorithm is attempting to predict). We have re-tested
QATM using the standard evaluation protocol and our result for the original version of QATM is 0.62. As QATM
is designed to work specifically with a CNN, it was not applied directly to colour images.

One known weakness of BBS is that it may fail when the template is very small
compared to target image [7]. This may explain the particularly poor results of this method
when applied to the KTM dataset.

DIM achieves the best results on both datasets when applied to deep features. DIM
performs particularly well on the BBS dataset, producing an AUC of 0.73, which, as far as
we are aware, makes it the only method to have scored more than 0.7 on this dataset. The
DIM algorithm produces state-of-the-art performance on the KTM dataset when applied
to deep features. When applied to colour features, the results are good, although not as
good as DDIS on the KTM dataset. This is because small templates in the KTM dataset
may contain insufficient detail for the DIM algorithm to successfully distinguish the target
object. Using deep features enhances the discriminatory ability of small templates enough
that the performance of DIM increases significantly. These results demonstrate that the
proposed approach is effective at extracting distinguishable features, which lead to robust
and accurate template matching.

5. Discussion

The experiments described above demonstrate that template matching relies more
on low-level visual attributes such as texture than higher-level attributes such as shape.
However, it is clear that slightly increasing the shape bias of a CNN by changing the method
of training the network and then combining the outputs of a range of convolutional layers
produces a feature space in which template matching can be achieved with greater accuracy.
This is because the combination of low-level features that can accurately locate the target
with high-level features that are more tolerant to appearance changes enables more robust
recognition and localisation of the target object.

6. Conclusions

Our results demonstrate that slightly increasing the shape bias of a CNN by changing
the method used to training the network can produce more distinguishable features,
allowing template matching to be achieved with greater accuracy. By running a large
number of experiments using shape-biased VGG19 architectures, we determined the best
combination of convolutional features on which to perform template matching with the
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DIM algorithm. This same feature space was shown to improve the performance of most
other template matching algorithms as well. When applied to our new feature space, the
DIM algorithm was able to produce state-of-art results on two benchmark datasets.

Author Contributions: Conceptualization, B.G. and M.W.S.; methodology, M.W.S.; software, B.G.;
validation, B.G.; formal analysis, B.G.; investigation, B.G.; resources, B.G.; data curation, B.G.;
Writing—Original draft preparation, B.G.; Writing—Review and editing, B.G. and M.W.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Scholarship Council (CSC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: As part of this study we created a new benchmark, KTM, for template
matching. This dataset, along with the code used in the proposed method, can be found at: https:
//github.com/iminfine/Deep-DIM (accessed on 1 June 2022).

Acknowledgments: The authors acknowledge use of the research computing facility at King’s
College London, Rosalind (https://rosalind.kcl.ac.uk (accessed on 1 June 2022),) as well as the Joint
Academic Data science Endeavour (JADE) facility. Reprinted by permission from Springer with
license number 534007092188 for the paper: Gao, B.; Spratling, M.W., Robust Template Matching via
Hierarchical Convolutional Features from a Shape-Biased CNN, in Proceedings of the International
Conference on Image, Vision, and Intelligent Systems (ICIVIS 2021), Changsha, China, 15–17 June
2021, pp. 333–344.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, B.; Spratling, M.W. Explaining away results in more robust visual tracking. Vis. Comput. 2022; pp. 1–15. doi: 10.1007/s00371-

022-02466-6
2. Gao, B.; Spratling, M.W. More Robust Object Tracking via Shape and Motion Cue Integration. Signal Process. 2022, 22, 108628.
3. Ahuja, K.; Tuli, P. Object recognition by template matching using correlations and phase angle method. Int. J. Adv. Res. Comput.

Commun. Eng. 2013, 2, 1368–1373.
4. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the

Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 379–387.
5. Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis.

2002, 47, 7–42.
6. Chhatkuli, A.; Pizarro, D.; Bartoli, A. Stable template-based isometric 3D reconstruction in all imaging conditions by linear

least-squares. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28
June 2014; pp. 708–715.

7. Oron, S.; Dekel, T.; Xue, T.; Freeman, W.T.; Avidan, S. Best-buddies similarity—Robust template matching using mutual nearest
neighbors. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1799–1813.

8. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 2004, 60, 91–110.
9. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1,
pp. 886–893.

10. Dou, J.; Qin, Q.; Tu, Z. Robust image matching based on the information of SIFT. Optik 2018, 171, 850–861.
11. Lee, H.; Kwon, H.; Robinson, R.M.; Nothwang, W.D. DTM: Deformable template matching. In Proceedings of the 2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016;
pp. 1966–1970.

12. Sibiryakov, A. Fast and high-performance template matching method. In Proceedings of the CVPR 2011, Washington, DC, USA,
20–25 June 2011; pp. 1417–1424.

13. Arslan, O.; Demirci, B.; Altun, H.; Tunaboylu, N.S. A novel rotation-invariant template matching based on HOG and AMDF
for industrial laser cutting applications. In Proceedings of the 2013 9th International Symposium on Mechatronics and Its
Applications (ISMA), Amman, Jordan, 9–11 April 2013; pp. 1–5.

14. Antipov, G.; Berrani, S.A.; Ruchaud, N.; Dugelay, J.L. Learned vs. hand-crafted features for pedestrian gender recognition. In
Proceedings of the 23rd ACM international Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 1263–1266.

15. Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans.
Image Process. 2015, 24, 5017–5032.

https://github.com/iminfine/Deep-DIM
https://github.com/iminfine/Deep-DIM
https://rosalind.kcl.ac.uk


Sensors 2022, 22, 6658 15 of 15

16. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 3156–3164.

17. Liang, M.; Hu, X. Recurrent convolutional neural network for object recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3367–3375.

18. Wohlhart, P.; Lepetit, V. Learning descriptors for object recognition and 3d pose estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3109–3118.

19. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In
Proceedings of the European Conference on Computer Vision; Springer: Amsterdam, The Netherlands, 2016; pp. 850–865.

20. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Robust visual tracking via hierarchical convolutional features. IEEE Trans. Pattern Anal.
Mach. Intell. 2018.

21. Cheng, J.; Wu, Y.; AbdAlmageed, W.; Natarajan, P. QATM: Quality-Aware Template Matching For Deep Learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 11553–11562.

22. Kat, R.; Jevnisek, R.; Avidan, S. Matching pixels using co-occurrence statistics. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1751–1759.

23. Kim, J.; Kim, J.; Choi, S.; Hasan, M.A.; Kim, C. Robust template matching using scale-adaptive deep convolutional features. In
Proceedings of the 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA
ASC), Kuala Lumpur, Malaysia, 12–15 December 2017; pp. 708–711.

24. Talmi, I.; Mechrez, R.; Zelnik-Manor, L. Template matching with deformable diversity similarity. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 175–183.

25. Zhang, Z.; Yang, X.; Gao, H. Weighted smallest deformation similarity for NN-based template matching. IEEE Trans. Ind. Inform.
2020, 16, 6787–6795.

26. Lai, J.; Lei, L.; Deng, K.; Yan, R.; Ruan, Y.; Jinyun, Z. Fast and robust template matching with majority neighbour similarity and
annulus projection transformation. Pattern Recognit. 2020, 98, 107029.

27. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing.
Annu. Rev. Vision Sci. 2015, 1, 417–446.

28. Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. arXiv 2018, arXiv:1811.12231.

29. Li, Y.; Yu, Q.; Tan, M.; Mei, J.; Tang, P.; Shen, W.; Yuille, A.; Xie, C. Shape-Texture Debiased Neural Network Training. arXiv 2020,
arXiv:2010.05981.

30. Spratling, M.W. Explaining away results in accurate and tolerant template matching. Pattern Recognit. 2020, 104, 107337.
31. Gao, B.; Spratling, M.W. Robust Template Matching via Hierarchical Convolutional Features from a Shape Biased CNN. In

Proceedings of the The International Conference on Image, Vision and Intelligent Systems (ICIVIS 2021), Changsha, China, 15–17
June 2021, pp. 333–344.

32. Korman, S.; Milam, M.; Soatto, S. OATM: Occlusion aware template matching by consensus set maximization. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2675–2683.

33. Kersten, D.; Mamassian, P.; Yuille, A. Object perception as Bayesian inference. Annu. Rev. Psychol. 2004, 55, 271–304.
34. Spratling, M.W. Unsupervised learning of generative and discriminative weights encoding elementary image components in a

predictive coding model of cortical function. Neural Comput. 2012, 24, 60–103.
35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
37. Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE

International Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2017; pp. 1501–1510.
38. Lochmann, T.; Deneve, S. Neural processing as causal inference. Curr. Opin. Neurobiol. 2011, 21, 774–781.
39. Lochmann, T.; Ernst, U.A.; Deneve, S. Perceptual inference predicts contextual modulations of sensory responses. J. Neurosci.

2012, 32, 4179–4195.
40. Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848.
41. Liang, P.; Blasch, E.; Ling, H. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Trans. Image

Process. 2015, 24, 5630–5644.


	Introduction
	Related Work
	Template Matching
	Deep Features

	Methods
	Training CNN with Stylised Data
	DIM Template Matching Algorithm

	Results
	Dataset Preparation
	Template Matching Using Features from Individual Convolutional Layers
	Template Matching Using Features from Multiple Convolutional Layers
	Comparison with Other Methods

	Discussion
	Conclusions
	References

