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Abstract: Unmanned Aerial Vehicles (UAVs) are able to guarantee very high spatial and temporal
resolution and up-to-date information in order to ensure safety in the direct vicinity of the airport. The
current dynamic growth of investment areas in large agglomerations, especially in the neighbourhood
of airports, leads to the emergence of objects that may constitute a threat for air traffic. In order
to ensure that the obtained spatial data are accurate, it is necessary to understand the detection of
atypical aviation obstacles by means of their identification and classification. Quite often, a common
feature of atypical aviation obstacles is their elongated shape and irregular cross-section. These
factors pose a challenge for modern object detection techniques when the processes used to determine
their height are automated. This paper analyses the possibilities for the automated detection of
atypical aviation obstacles based on the YOLO algorithm and presents an analysis of the accuracy of
the determination of their height based on data obtained from UAV.
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1. Introduction

In recent years, a rapid development of investment areas in large cities has been
witnessed. This involves intensive construction works of new objects. Such works often
require the use of additional equipment, such as cranes, lifting cranes, etc., whose position
and height are often of great importance, especially if the works are conducted in the
direct vicinity of an airport. In such an event, these objects become temporary aviation
obstacles. Accurate data indicating the location and height of this type of obstacles are
necessary to ensure safety in the air space. Information about temporary aviation obstacles
is provided in the NOTAM (Notice to Airmen) announcements and is delivered by the air
traffic controller who supervises the security of the aviation operations. The emergence of
an aviation obstacle of temporary nature is the main factor that may generate risk in the
direct proximity of the airport. The area where the obstacle is located must be constantly
monitored by the airport manager [1]. However, temporary aviation obstacles are not
the only elements that pose a threat to air traffic safety. Permanent obstacles situated in
the vicinity of an airport also carry a risk and require flight procedures that will take into
account the elevation of such obstacles to be developed. There are certain recommendations
concerning the methods of obtaining data about obstacles, where an emphasis is placed
on the automation of processes for the purposes of collecting large sets of data. Still,
although the requirements and techniques for obtaining data about aviation obstacles
have been systematised, the automation of the mechanisms used to obtain data about
elongated obstacles, such as antennas, masts, etc., is still being developed [1]. In order to
capture very thin objects, a larger image scale than one used for traditional exploratory
flights is required. This, in turn, requires lower altitudes. The techniques used so far for
aviation obstacle detection have been based on the use of point clouds from airborne laser
scanning (ALS). These techniques have several drawbacks. To begin with, missing an
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elongated obstacle is impossible [1]. Secondly, the object detection control is performed
with the use of traditional ground measurements, which extend the entire process and
eliminate the possibility of its automation. Furthermore, to ensure safety in the airspace,
it is necessary to maintain the obstacle data, updating it regularly. Finally, the airborne
laser scanning does not provide a high time resolution of data acquisition. According
to the latest provisions of the Eurocontrol [1] manual, the detection of obstructions of an
elongated shape should be provided at a much larger image scale than that obtained in
the case of traditional photogrammetric flights. This is possible with a lower flight altitude
obtained with UAV flights. At a lower flight altitude, the obtained spatial accuracy (X, Y, Z)
will be the highest. Updating information about aviation obstacles involves obtaining and
processing large amounts of data. As a result, the process of obtaining and processing these
data must be automated. Currently, the process of reporting temporary aviation obstacles
takes a long time and often requires traditional, time-consuming geodetic measurements.
The automation of the process of obtaining data about temporary aviation obstacles and
ensuring the required accuracy levels for coordinates X, Y, Z of the obstacle pose a new
challenge in the research on obtaining data, which has been reliable so far.

The authors of this paper presented an innovative methodology for the automatic
detection and classification of elongated aviation obstacles based on data obtained from
unmanned aerial vehicles. The novelty of their approach consists of the fusion of the
YOLOv3 algorithm operating with the use of neural networks extracting features from the
image for the detection of atypical aviation obstacles. The authors also proposed and used
a new algorithm for obstacle classification, which is based on a dense point cloud for the
estimation of the height of these obstacles.

2. Related Works

Currently, aerial photogrammetry is the most efficient technique of collecting data
about obstacles, although it involves less automation than other techniques, such as ALS
(airborne laser scanning). The binding requirements for detecting atypical aviation ob-
stacles, which usually are “thin” objects of an elongated shape, require lower altitude
of flight than those applied in traditional aerial photogrammetry [1]. Achieving a lower
flight altitude becomes possible thanks to the use of unmanned aerial vehicles (UAVs).
At lower altitudes, the spatial accuracy (X, Y, Z) of temporary obstacles is much higher.
Apart from the altitude of flight, the temporal resolution of obtaining data as well as the
availability and low operating costs offer an attractive alternative for traditional telede-
tection platforms [2–6]. UAVs, which are used increasingly often, provide digital images
that are used to create dense point clouds to describe 3D objects [7]. This creates new
possibilities of object classification based on point clouds combined with the use of the
properties that are present in the images from the data obtained by UAVs [8]. However,
there is an emerging need to develop the automation of the processes in order to address
the challenge of detecting atypical aviation obstacles of elongated shapes where the correct
detection is only possible at such a low altitude of flight that can be ensured by a UAV.

2.1. Object Classification Based on RGB Imagery

Extracting objects from high-resolution images obtained by UAVs plays an important
role in geospatial applications, including urban planning, telecommunications, disaster
monitoring, navigation, updating geographic databases, and dynamic monitoring of cities.
Automated extraction of objects is a challenging task, as the objects in various regions
have different spectral and geometric properties. As a result, classic image processing
techniques are insufficient for automated extraction of objects from high-resolution data.
The deep learning and semantic segmentation models, which have become popular in
recent years, are used to extract objects from high-resolution images in an automated way.
However, the effective classification, detection, and segmentation of various objects in
remote sensing images also poses a challenge for scientists due to various factors, such
as the appearance of the object, various backgrounds, and environmental conditions. In
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general, image segmentation is a process that enables labelling pixels in the input image, so
that the pixels in the same region/area or object are correlated with the same class label. It
helps to determine whether the given UAV image contains one or more objects that belong
to the category of interest and locate any predicted position of the object in the image.

Object detection based on deep learning may be divided into two categories: two-stage
and single-stage detection. The RCNN (Region Based Convolutional Neural Networks)
(RCNN [9], Fast RCNN [10], and Faster RCNN [11]) series are a two-step algorithm, whose
accuracy highly exceeds that of many other detection algorithms. However, this type of
approach requires higher computational costs, which extends the processing time. In the
single-stage category, one may distinguish the SSD (Single Shot MultiBox Detector) [12,13]
and the YOLO (You Only Look Once) algorithm proposed by Joseph Redmon and Ross
Girshick [14]. YOLO solves the detection of objects like a regression problem and displays
the position and classification of the object in an end-to-end network within a single step.
Due to the detection speed, it is currently one of the most commonly used algorithms. The
YOLO algorithm is being constantly improved due to the significant errors emerging in the
accuracy of the detection of small objects. The version that deserves attention is YOLOv3,
which applies the method of grouping K-averages in order to automatically select the best
initial regression frame for the dataset. The multi-scale anchor mechanism [15] is adapted
to improve the accuracy of detecting small objects.

Anguelov et al., presented in the work by Liu, D., proposed an SSD algorithm that
uses the regression method for detection, integrates the positioning, and classifies it within
a single network. The SSD was modified into VGG16 [16], to replace the fully integrated
VGG16 layer with a convolutional layer.

As opposed to other methods, the deep learning methods are capable of distinguishing
the low and high-level properties automatically [17,18]. Such deep learning methods as
the Convolutional Neural Networks (CNNs) use convolutions to distinguish features auto-
matically. In 2014, pixel-based classification was enabled as a result of adapting the CNNs
model to a fully convolutional neural network [19]. Since then, deep learning methods
have often been used in research on semantic segmentation and object extraction [20]. In
recent years, research with the use of deep learning methods has been conducted in various
areas of remote sensing, including pre-processing of images [21], detecting objects [22],
pixel-based classification [23], and scene understanding [24]. Various research projects on
automated object extraction have also been conducted. Yang et al. [25] proposed a new
network dependent on DenseNets networks and the attention mechanism for the rational
use of functions at various levels. X. Li et al. [26] designed a new deep opponent network
named Building-A-Nets, which uses the opponent’s structure as a solid segmentation of the
roofs of buildings. L. Li et al. [27] presented a new model of CNNs called a Multiple-Feature
Reuse Network (MFRN) in order to reduce the requirements for GPU memory. Lu et al. [28]
used richer convolutional features (RCFs) to detect edges of objects based on remote sensing
images with high spatial resolution. Bittner et al. [29] developed a fully convolutional
network (FCN), which effectively combines high-resolution images with normalised DSM
and automatically generates prognoses for the objects. Xu et al. [30] extracted objects from
high-resolution remote sensing images with use of the Res-U-Net deep learning architecture
and directed filters. Boonpook et al. [31] applied the SegNet deep learning architecture to
build extraction from very high-resolution imagery from unmanned aerial vehicles (UAVs).
H. Liu et al. [32] proposed a fully convolutional network (DE-Net) that was created to store
information with the use of network calculations, especially in down-sampling, encoding,
and up-sampling procedures.

2.2. Research Purpose

This study attempts to verify the following research hypothesis: the detection of
atypical aviation obstacles with the use of a deep neural network whose structure is based
on the YOLO architecture, introducing a new algorithm for the classification of point
clouds, which is adapted to the geometrical features of atypical aviation obstacles and
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the criterion for the filtration of a point cloud obtained from a low altitude enabling the
detection of aviation obstacles with an accuracy that meets the requirements of ICAO
regulations [33–36].

The aim of the research was to develop a methodology for the automated detection
and classification of atypical aviation obstacles based on the data obtained from unmanned
aerial vehicles.

The paper is structured as follows: in Section 3, the research method is explained.
Section 4 presents test data and the experiment results. In Section 5, the results are discussed.
Finally, Section 6 provides a brief summary of this work.

3. Methods

This section describes the methodology of detecting atypical aviation obstacles based
on data obtained from UAVs. The whole process is presented in the block diagram below
(Figure 1). The diagram illustrates the essential stages of the developed methodology of
detecting atypical aviation obstacles. The first stage consisted in obtaining the photos from
the unmanned aerial vehicle. The next step was photogrammetric processing in Pix4D. As
a result, a point cloud and an orthophotomap were obtained. They were then the basis for
further analyses. The orthophotomap was used to detect obstacles in the image with the
use of the YOLO algorithm, which is based on a convolutional neural network (CNN) [14].
The objects detected in the orthophotomap were the basis for the determination of the
x, y coordinates of the centroid Ci for each atypical obstacle. The previously generated
point cloud was then used to determine the height of the obstacles. Based on the x, y
coordinates of the objects that were determined with the use of the YOLO algorithm, these
coordinates were defined in the point cloud. As a result, the search area in the point cloud
was narrowed. Later, areas for collecting data about obstacles were generated and used
to determine which of the detected objects penetrate through the surface of the areas and
thus become aviation obstacles [37]. A new algorithm was used to determine the height of
atypical aviation obstacles based on the point cloud. It assumed an iterative search of the
point cloud in reference to the determined centroid in order to determine the height Hmax.
The accuracy of the developed method was analysed based on the conducted experiments
and data about aviation obstacles contained in the Aeronautical Information Publication
(AIP), in the supplements that contain information about temporary aviation obstacles in
the vicinity of airports. Both the horizontal coordinates x, y and the vertical H coordinate
were analysed.
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3.1. Detection of Atypical Aviation Obstacles Using YOLOv3

The detection of atypical aviation obstacles based on image analysis was performed
with use of the YOLOv3 algorithm. The general course of detecting objects in an image
is presented in Figure 2. Data obtained from UAVs were subjected to photogrammetric
processing. As a result, an orthophotomap was obtained. This orthophotomap then became
the source of data for creating a set of data about atypical aviation obstacles. The objects
in the image were enclosed in envelopes. After the YOLO network was optimised and
trained on the developed datasets, the effectiveness of detection was checked. Finally, the
best model of selecting atypical aviation obstacles in an orthophotomap was selected.
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The YOLOv3 algorithm employs convolutional neural networks for the detection of
objects. Neural networks separate the features from images by layers of the convolution
and use the fully connected layers to predict the probability of output and information
about the position of the limiting rectangle. The main advantage of the algorithm as
a single-stage approach is the fact that the whole image is assessed by a single neural
network. It generates all prognoses based on the actual image, instead of the proposed
regions, as it is done in two-stage methods. The input image is represented as a tensor
of the dimensions n ×m × 3, where n and m refer to the width and height in pixels, and
3 refers to three colour channels. The YOLOv3 algorithm was created based on the YOLOv2
algorithm, which had a relatively low accuracy of detecting small objects. Due to that,
certain improvements were introduced, resulting in the new version of the algorithm:
YOLOv3. Firstly, the algorithm performs classification with numerous labels [38], where
independent logistic classifiers are used instead of the softmax classifier to predict classes
with multiple labels. In the learning phase, YOLOv3 uses binary cross-entropy loss instead
of the general mean square error to predict classes. A different bounding box prediction
was presented in the work of Al-Saffar et al. [39], where the objectness score is set to 1
if the bounding box prior overlaps a ground truth object more than others. However, if
the bounding box prior overlaps a ground truth object by more than a chosen threshold,
the prediction is ignored. Therefore, YOLOv3 has only one bounding box anchor for each
ground truth object. The work of Y. Li et al. [40] presented predictions across scale, where
YOLOv3 can predict boxes on three different scales and then extracts features from those
scales using feature pyramid networks.

The YOLO algorithm is an end-to-end network, so the whole process uses the method
of calculating loss which is referred to as the sum-squared error [41]. It is a simple sum
of the differences, including coordinate errors, IoU (Intersection-over-Union) errors, and
classification errors. YOLOv3 uses the Darnket-53 convolutional skeleton that consists of
53 convolutional layers, where it uniformly samples the input image to the dimensions
416 × 416 and assumes that the image is divided into 3 × 3 grids.
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3.2. Determination of the Centroid of an Atypical Aviation Obstacle

Detecting the temporary aviation obstacles with use of the YOLOv3 algorithm allowed
for the determination of the x, y coordinates of the centroid Ci of each obstacle. The
determination of centroid C for the obstacle, whose cross-section was a non-intersecting
polygon defined by N vertices (x0, y0), (x1, y1), . . . , (xn−1, yn−1) at the point (Cx, Cy), was
calculated using the following formula:

Cx =
1

6A

n−1

∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (1)

Cy =
1

6A

n−1

∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (2)

where A is the signature area of the polygon

A =
1
2

n−1

∑
i=0

(xi − xi+1yi) (3)

The x, y coordinates of the Ci centroid of the obstacles, whose cross-section is an ellipse
with extremes Ai, Bi of known x, y coordinates, were calculated using the following formula:

C =

(
xA + xB

2
,

yA + yB
2

)
(4)

where: xA, yA are coordinates of the extreme point of ellipse A, and xB, yB are coordinates
of the extreme point of ellipse B.

The determination of the coordinates of the centroid of each detected obstacle
was essential for the subsequent stage of analysis, i.e., determining the heights of the
aviation obstacles.

3.3. Estimation of Height of Temporary Aviation Obstacle

The determination of the Hmax height of an atypical obstacle consisted in an interactive
search of the point cloud with the aim to detect the highest point that belonged to the
analysed object. The subjects of the analysis were atypical aviation obstacles, which include,
among others, construction cranes, wind turbines, energy poles, and masts. In order to
define the height of a construction crane, data about the centroid of obstacle C (x, y) were
used and the maximum radius r of the crane boom reach was determined (Figure 3).
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The maximum value of the r radius was calculated using the data that define the
technical parameters of this type of objects. According to the assumptions, the maximum
value of the r radius is 90 m.

The first stage of searching the point cloud consisted in the determination of the initial
height H0 in the point cloud. For the centroid C of the obstacle, of the known coordinates x,
y, the Si plane with the r radius was defined:

(x− a)2 + (y− b)2 = r2 (5)

The realisation of the algorithm (iteration i = 1) started with searching the Si plane
for the height H0. The found point A of the point cloud belonged to the dataset B of the
point cloud of the temporary obstacle. The next stage (i = 2) was conducted at the distance
l = H0 + 10 cm. Each subsequent iteration was performed for the Si plane situated 10 cm
above the preceding one. The height search was continued until the last point belonging to
the set of point cloud B was found.

Hmax → A ∈ B, B ≥ 1 (6)

The height of other types of obstacles (wind turbines, energy poles, and masts) was
determined in a similar way as the height of the construction crane. The x, y coordinates of
the C centroid of the obstacle and the radius r of the reach of the analysed obstacle were
used (Figure 4). The value of the r radius was defined based on the maximum technical
parameters of the given type of object. In the subsequent step, the iterative search of the
point cloud was performed with the aim to determine the height of the obstacles Hmax.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 23 
 

 

 

 

 

(a) (b) (c) 

Figure 4. Determination of the height of the detected obstacle: (a) energy pole, (b) wind turbine, (c) 

mast. 

3.4. Classification of Point Cloud 

The aim of the classification of point cloud was to detect aviation obstacles that be-

long to the group of atypical obstacles. The course of the classification procedure is pre-

sented in the diagram below (Figure 5). It was assumed that the characteristic features 

that define atypical obstacles are their elongated shape and irregular cross-section. The 

first adopted classification criterion was the height of the objects which was determined 

based on the point cloud. The second criterion was based on the distribution of the points 

in the point cloud in relation to the centroid Ci of the analysed object. 

 

Figure 5. Scheme of classification of point cloud. 

It was assumed that for objects belonging to the group of elongated obstacles, the 

ratio of the width w of the object to its height H [42] should meet the following condition: 

Figure 4. Determination of the height of the detected obstacle: (a) energy pole, (b) wind turbine,
(c) mast.

3.4. Classification of Point Cloud

The aim of the classification of point cloud was to detect aviation obstacles that belong
to the group of atypical obstacles. The course of the classification procedure is presented in
the diagram below (Figure 5). It was assumed that the characteristic features that define
atypical obstacles are their elongated shape and irregular cross-section. The first adopted
classification criterion was the height of the objects which was determined based on the
point cloud. The second criterion was based on the distribution of the points in the point
cloud in relation to the centroid Ci of the analysed object.
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It was assumed that for objects belonging to the group of elongated obstacles, the ratio
of the width w of the object to its height H [42] should meet the following condition:

w
H
≥ 1

5
(7)

where: w is the width of the obstacle and H is the height of the obstacle.
The ranges of obstacle classification considering their width and height were defined

with a confidence interval of 68%.
Then, the point clouds assigned to the relevant groups of obstacles were classified

taking into account their cross-section, where the characteristics of the distribution of points
in the point cloud in relation to the centroid Ci were analysed. To this end, an iterative search
of the point cloud was conducted in belts pi of a fixed width m (Figure 6a). The position of
the points of the point cloud in pi belts was calculated based on the determined distance di
of the points in the cloud from the centroid Ci (Figure 6b), using the following formula:

di =

√
(xC − xi)

2 + (yC − yi)
2 (8)

where: xc is the coordinate x of the centroid [m], ys is the coordinate y of the centroid [m], xi
is the coordinate x of the point in the point cloud [m], and yi is the coordinate y of the point
in the point cloud [m].
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Figure 6. Analysis of the distribution of the points in the point cloud in relation to centroid Ci:
(a) Searching the point cloud in belts pi of a fixed width m; (b) The determination of the position of
the points of the point cloud in pi belts based on the determined distance di of the points in the cloud
from the centroid Ci.
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The maximum number of iterations and searches of the point cloud was calculated
based on the ratio between the maximum distance dmax of the point in the point cloud from
centroid Ci to the width m of the pi belt, using the following formula:

imax =
dmax

m
(9)

4. Materials and Experimental Results
4.1. Study Area

The research was conducted at two test sites, located in the direct vicinity of the Łask
military airport (ICAO code: EPLK) and the Radom–Sadków airport (ICAO code: EPRA)
(Figure 7). The Łask airport (ARP: 51◦33′04′′ N; 019◦10′57′′ E) is situated in central Poland,
while the Radom–Sadków airport (ARP: 51◦23′20′′ N; 021◦12′42′′ E) is located east of the
Łask airport.
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4.2. Description of Data Sets
4.2.1. EPLK

The source data for the generation of the dense point cloud was obtained using
the Trimble UX-5 airframe, equipped with a Sony a7R camera. The aerial platform was
equipped with a single-frequency GPS receiver, recording data at the frequency of 10 Hz.

Flights were conducted in two test areas in April 2019. The photographic conditions
were good, i.e., the sky was covered with a small amount of cumulus clouds, and the
average wind velocity was approximately 2 m/s. Camera settings were defined in the
manual mode, while the focus of the lens was set to infinity. The first and the second test
sites were the areas surrounding the Łask military airport. The measurement campaign
consisted of 15 test blocks, where each block contained about 600 images. The data were
obtained at the altitude of approx. 250 m above the ground level. Flights were performed
in the East–West direction, based on the assumption that the longitudinal and transverse
coverage was approx. 75%. The signalled photopoints were designed and measured in
the test area. All the points were measured with use of the RTK technique in the GNSS
system. The terrain coordinates of the photopoints were determined with the mean error of
mx,y,z = ±0.03 m. The first area contained six photopoints and eight independent control
points, while for the second the numbers were, respectively, six and seven. The ground
sampling distance (GSD) was 0.04 m.
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4.2.2. EPRA

The source data for aerotriangulation was obtained using the VTOL WingtraOne
system, equipped with a Sony RX1R II camera. The aerial platform was equipped with
a single-frequency GPS receiver, recording data at the frequency of 10 Hz. As part of the
research analysis, the GNSS data recorded by an AsteRx-m2 UAS receiver placed on the
Tailsitter unmanned platform was used. The flight was carried out in the two research areas
in June 2021. The imaging conditions were good. The first and the second research area
covered the area around the Radom–Sadków airport. Fourteen test blocks were realised
during the flight, and each of them contained almost 600 images. The data were obtained
at the altitude of 250 m above the ground level. The flight was conducted in the East–West
direction, assuming that the transverse and longitudinal coverage was 75%. The signalled
photopoints were designed and measured with use of the RTK technique in the GNSS
system in the test area. The terrain coordinates of the control points were determined
with the mean error mx,y,z = ±0.03 m. The first area contained six photopoints and seven
independent control points, while for the second the numbers were, respectively, four and
seven. The ground sampling distance (GSD) was 0.04 m.

4.3. Atypical Aviation Obstacles

Objects that may pose a threat to aerial vehicles due to their dimensions are referred to
as aviation obstacles. Apart from permanent objects such as buildings or terrain elevations,
aviation obstacles may also be fixed objects of a temporary nature, or mobile objects (e.g.,
construction cranes), which are called temporary aviation obstacles. Obstacles whose
height exceeds the limiting planes, are considered to be objects that may pose a threat in
the aviation space. Temporary objects, such as construction cranes, are slender structures,
and their atypical shape makes it more difficult to determine their height. Permanent
obstacles may also have the form of elongated or slender objects, which include, among
others: masts, wind turbines, chimneys, and energy poles (Table 1).

Table 1. Atypical aviation obstacles.

Type of Aviation Obstacle

Mast
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4.4. Surfaces of Obtaining Data about Obstacles

Ensuring safety in the aviation space is a very complex process. Some of its numerous
elements include creating aviation maps, designing procedures, etc. The basis for creating
aviation materials is obtaining and collecting data about aviation obstacles.

As a result of the need to gather and store such data, the following coverage areas are
distinguished: 1, 2 (2a, 2b, 2c, 2d). Area 2a is a rectangular area around the runway that
includes the runway itself and the abandoned take-off security area, if it exists. Area 2b
is the area that stretches from the end of area 2a in the direction of take-off, 10 km long
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and opening at an angle of 15% to each side. The inclination of this area is 1.2%. Area 2c
stretches outside areas 2a and 2b to a maximum of 10 km from the border of area 2a. Its
surface has an inclination of 1.2%. Finally, area 2d is an area located outside areas 2a, 2b,
and 2c, which reaches up to 45 km from the reference point of the airport or to the existing
TMA border; whichever is closer [37].

Collecting data on obstacles in areas 2a and 2b (Figure 8) is directly related to ensuring
safety in the airspace during the critical phases of the aircraft’s flight, i.e., take-off and
landing. Therefore, it is necessary to update the data on obstacles in these areas on an
ongoing basis.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 23 
 

 

 

Figure 8. Obstacle data collection surfaces—Area 2a and area 2b (side profile view). 

Areas 2b and 2c are inclined planes that rise starting from area 2a. These areas de-

termine the threshold altitudes for collecting data about aviation obstacles. The most 

important data about the obstacles are their horizontal location, height, and type of ob-

stacle. 

4.5. Experimental Results 

The experiments were conducted in two test areas located in the vicinity of the Łask 

airport (EPLK) and two test areas near the Radom–Sadków airport (EPRA). Tests were 

conducted on data obtained from UAVs during four photogrammetric flights. Two of 

them took place in the direct vicinity of the Łask airport (Figure 9) and the other two near 

the Radom–Sadków airport (Figure 10). The test areas were selected based on two crite-

ria: the first one assumed that the study area should match the 2b area, i.e., the area of 

collecting data about terrain and obstacles. The second criterion was the existence of tall 

objects that might interfere with safety in the aviation space. The test areas were selected 

so as to gather the largest possible amount of data. 

 

Figure 9. Test areas—Łask airport. 

Figure 8. Obstacle data collection surfaces—Area 2a and area 2b (side profile view).

Areas 2b and 2c are inclined planes that rise starting from area 2a. These areas
determine the threshold altitudes for collecting data about aviation obstacles. The most
important data about the obstacles are their horizontal location, height, and type of obstacle.

4.5. Experimental Results

The experiments were conducted in two test areas located in the vicinity of the Łask
airport (EPLK) and two test areas near the Radom–Sadków airport (EPRA). Tests were
conducted on data obtained from UAVs during four photogrammetric flights. Two of them
took place in the direct vicinity of the Łask airport (Figure 9) and the other two near the
Radom–Sadków airport (Figure 10). The test areas were selected based on two criteria: the
first one assumed that the study area should match the 2b area, i.e., the area of collecting
data about terrain and obstacles. The second criterion was the existence of tall objects that
might interfere with safety in the aviation space. The test areas were selected so as to gather
the largest possible amount of data.
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Figure 10. Test areas—Radom–Sadków airport.

At the first stage, images were obtained from the UAVs and then processed in specialist
Pix4D software. During the photogrammetric data processing, a dense point cloud was
generated, which was later used to determine the height of atypical aviation obstacles.
Apart from that, an orthophotomap was created and used to detect atypical aviation
obstacles with use of the YOLOv3 algorithm and to define their location. The detection
of atypical aviation obstacles started with the analysis of the orthophotomap. To this end,
artificial neural networks were used to separate the features from the images. The Ci
centroids were defined for each detected object. The data about the location of atypical
aviation obstacles obtained in this way made it possible to find these objects in the point
cloud and were the starting point for further analyses of the point cloud.

4.6. Detecting Atypical Aviation Obstacles in the Orthophotomap

At this stage, the YOLOv3 algorithm based on convolutional neural networks was
used to detect atypical aviation obstacles. Artificial neural networks separate the features
from the images by layers of the convolution and use the fully connected layers to predict
the probability of output and information about the position of the limiting rectangle.

Although several trained YOLO networks containing some known datasets exist, the
neural network still requires training to improve its precision in working with such specific
objects as atypical aviation obstacles.

The model was trained with the use of Google Colab. A notebook based on YOLOv3
that employs trained Darknet-53 weights was used. A set of data for atypical aviation
obstacles was added to the notebook. The training parameters recommended by the
authors of the solution were used for network training purposes. Additionally, the training
consisted of 400 epochs, which took approx. 120 min.

The network was trained for four classes of objects: construction crane, energy
pole, wind turbine, and mast. This resulted in the size of the first scale output tensor
of 13 × 13 × 16.

Non-standard image databases containing objects from the following classes: con-
struction crane, energy pole, wind turbine, and mast were prepared based on the orthopho-
tomaps being a part of the digital database for Poland created by the National Geodetic
and Cartographic Resource (PZGiK). Orthophotomaps in the standard 0.10 m × 0.10 m
were used for tests. The database for the wind turbine class of elevators was enriched with
a publicly accessible database [43].

Most of the images used contained more than one object for the three classes: construc-
tion crane, energy pole, and wind turbine. On the other hand, in the mast class, a majority
of the images contained single objects representative of the class. Objects from all classes
were fully placed inside boxes. Images, where only a part of the object was visible, were
excluded from the training set or the object was not marked as belonging to a specific class.
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The research experiment was conducted on 800 images that contained a total of
1023 objects. The images were randomly divided into three sets of data: training data
(70% images) used to estimate the weights of the artificial neural network, validation
data (20% images) used to test the trained network, and test data (10% images) used
to test the functioning of the network after training. The set of training data consisted
of 560 images that contained a total of 716 objects, the validation data set consisted of
160 images containing a total of 205 objects, while the test data set consisted of 80 images
containing a total of 102 objects. The full distribution of the data set is presented in the
table below (Table 2).

Table 2. Contents of the data set.

Data Set Category Number of Images Number of Objects

Training set

Construction crane 143 184

Energy pole 141 196

Wind turbine 140 188

Mast 136 148

Validation set

Construction crane 44 52

Energy pole 39 63

Wind turbine 41 49

Mast 36 41

Test set

Construction crane 22 27

Energy pole 19 30

Wind turbine 21 26

Mast 18 19

The results of the detection of atypical aviation obstacles on the data from the test
dataset are presented in Figure 11a–d. A sample limiting box for the construction crane
class, in green, is presented in Figure 11a,d. A sample limiting box for the energy pole class,
in pink, is presented in Figure 11b,c. A sample limiting box for the wind turbine class, in
beige, is presented in Figure 11b,c. A sample limiting box for the mast class, in magenta, is
presented in Figure 11d.
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Figure 11. Sample detection (fragment of orthophotomap): (a) construction cranes; (b) wind turbines
and energy poles; (c) wind turbines and energy poles; (d) construction crane and mast.

The detection of atypical aviation obstacles in the orthophotomap allowed for the
determination of the centroid C (x, y) for each detected object. Data about the location of
aviation obstacles obtained in this way enabled research conduction on the point cloud.

4.7. Accuracy Evaluation of YOLOv3 Algorithm

The indicators used to assess the accuracy of the detected aviation obstacles are
average precision (AP) and mean average precision (mAP). AP defines the proportion of the
correct detections to the sum of the correct detections (i.e., the correct determination of the
location and classification) and false detections of objects. A high value of the AP coefficient
means that there are few false predictions. The mAP coefficient is used to measure the
average accuracy of detection of multiple types of objects. The higher the mAP, the more
comprehensive the model is in all categories. Average precision and mean average precision
are calculated using the formula below [44]:

AP =
N

∑
k=1

Precision(k)∆Recall(k) (10)

mAP =
1
N

N

∑
i=1

APi (11)

where: APi is the average accuracy of class i, and N is the number of classes.
During the measurement of mAP, the efficiency of both the classification and the

positioning with the use of limiting frames in the image are assessed. The mAP formula is
based on Confusion Matrix, Intersection over Union (IoU), and Recall and Precision.

Objects are detected based on the Intersection over Union (IoU) concept [45,46]. IoU
measures the overlapping of two borders and is used to estimate the extent to which the
predicted border overlaps with the actual border of the object. The IoU value is a measure
of the accuracy of the determination of the position and size of the object. The measure is
calculated based on the actual frame of the object and the frame returned by the artificial
neural network. It is defined as the ratio of the product (intersection of the boxes) to
their sum.

Based on the data in Table 3, it was found that the value of the IoU index for the
construction crane class was 69.4%, for the energy pole it was 78.2%, for the wind turbine
class it was 74.2%, and, finally, for the mast class it was 64.9%. These results demonstrate
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that the accuracy of the positioning and location was better for objects belonging to the
energy pole and wind turbine classes. However, the IoU index for the construction crane
and mast classes was slightly lower. The value of the average precision (AP) for the
construction crane category was 74.8%, for the energy pole class it was 67.6%, for the
wind turbine class it was 65.2%, and for the mast class 75.3%. A high value of the AP
coefficient means that few false predictions were obtained. The mAP value of the applied
YOLOv3 algorithm reached the value of 70.7%. Such relatively high value of mAP confirms
that the model is comprehensive and that this algorithm may be used to detect atypical
aviation obstacles.

Table 3. Accuracy of test results in various categories.

Category IoU (%) AP (%) mAP (%)

Construction crane 69.4 74.8

70.7
Energy pole 78.2 67.6

Wind turbine 74.6 65.2

Mast 64.9 75.3

One may distinguish three different types of loss: box loss, objectness loss, and
classification loss. The box loss shows how well the algorithm is able to locate the centre
of the object and how well the predicted bounding box covers the object, while objectness
is, in general, a measure of the likelihood of the presence of the object in the proposed
area of interest. Finally, the classification loss provides an idea of how well the algorithm
can predict whether the given object belongs to a class. The curves of loss of the applied
YOLOv3 algorithm for 400 epochs are presented in Figure 12a–h. For the training data,
the box loss and objectness loss diagrams show high fluctuations for the first half of the
epochs. After approx. 200 epochs, the curve stabilises. The classification loss curve flattens
after about 50 epochs. For validation data, the box loss curve begins to stabilise after
200 epochs, while the objectness loss curve stabilises after about 50 epochs. The course of
the classification loss curve for validation data is very dynamic in the initial epochs. Then,
it stabilises after approx. 200 epochs. Based on these curves, it was found that the loss
of the model decreases gradually with the increase in the number of epochs. Recall and
precision curves (Figure 12d,e) stabilise after 200 epochs and demonstrate that the model
is reliable. The mAP diagram for IoU = 0.5 (Figure 12i) shows that the model stabilises
after 200 epochs, giving a high mAP index. The dynamics of the course of the mAP curve
for IoU = 0.5–0.95 (Figure 12j) is similar. However, in this case the value of the mAP index
is lower.

Based on the obtained results, it was found that the mAP index achieved higher values
for lower values of the IoU (Figure 12i), which means that the boxes are not perfectly
matched to the dimensions of the objects. The system obtained poorer results for small
objects that belonged to the mast class and for objects of an elongated shape in the image
which belonged to the construction crane category. This was an expected result, as one
of the characteristic properties of the YOLO network is fast operating speed, but at the
expense of a slightly worse detection of small objects. Additionally, it was noted that the
efficiency of the network was lower for objects from the classes mentioned above, which
were mostly situated in densely developed areas. Slightly lower values of the mAP index
were achieved for higher values of IoU. In this group, obstacles belonging to the energy
pole and wind turbine classes were detected. It was noted that a high value of the mAP
index confirms that the model is comprehensive and that this algorithm may be used to
detect atypical aviation obstacles.
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Figure 12. Accuracy evaluation curves: (a) Box loss function in the training process; (b) Objectness loss
function in the training process; (c) Classification loss function in the training process; (d) Precision;
(e) Recall; (f) Box loss function in the validation process; (g) Objectness loss function in the validation
process; (h) Classification loss function in the validation process; (i) mAP when IoU is set to 0.5;
(j) mAP when IoU is set from 0.5 to 0.95.

4.8. Detection of Atypical Aviation Obstacles Based on Point Cloud

Atypical aviation obstacles were classified based on the point cloud. It was assumed
that such atypical obstacles are characterised by a slender, elongated shape, and an irregular
cross-section. These characteristics were the basis for the determination of the classification
criteria of atypical aviation obstacles. The first criterion was the height of the analysed
objects, which was determined based on the point cloud. The second criterion was the
geometric properties of the point cloud in transverse cross-section in reference to the
defined centroid Ci of the object.

4.8.1. Generating a Dense Point Cloud

The photos obtained during UAV flights were subjected to photogrammetric pro-
cessing in the Pix4D software. The matching of multiple images made it possible for the
research team to obtain a “dense” cloud of points. The input data for generating the point
cloud were the images and their external orientation. Based on the obtained point cloud,
the RMS error of the position of the 3D point was determined. For the first test area it was
0.4 m, for the second test area it was 0.3 m, for the third test area it was 0.3 m, and for the
fourth test area it was 0.2 m.

4.8.2. Classification of Point Cloud

The detection of atypical aviation obstacles conducted on the orthophotomap enabled
to determine their location (C (x, y)). The data of the horizontal coordinates x, y of aviation
obstacles were used to locate these objects in the point cloud. The classification of the
cloud was performed with use of the iterative method for each previously located aviation
obstacle. The determination of the Hmax height of an atypical obstacle consisted in an
iterative search of the point cloud with the aim to detect the highest point that belonged
to the analysed object. The initial stage of point cloud search was performed for C (x, y,
H0), where H0 is the minimum height of the object determined based on the point cloud
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(Figure 13). Iterations were performed until the last point belonging to the object was found
in the point cloud.
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Figure 13. Classification of construction crane point cloud.

The classification of the point cloud was followed by its filtration. The aim of this
stage was to analyse the previously detected objects based on the heights obtained from
the point cloud. To achieve it, areas 2a and 2b were created to collect data about obstacles
for the Radom–Sadków and Łask airports. Area 2a was a flat plane, while area 2b was a
plane inclined by 1.2% in relation to area 2a.

The generated planes constituted the border above which data on aviation obstacles
are collected. Plane 2b rose to the specified height H. The data concerning height allowed
for the filtration of the point cloud. The points from the point cloud that penetrated
through the plane (Figure 14) automatically became obstacles and were included in the set
of obstacles’ data.
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4.9. Analysis of the Matching Accuracy of the Point Cloud

The matching accuracy of the point cloud was analysed based on the reference data
contained in the database on obstacles, as well as in the supplements attached to the
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Aeronautical Information Publication. The supplement contains, among others, information
about temporary aviation obstacles. The obstacles’ database is developed taking into
account all reported aviation obstacles. It contains information concerning: the geographical
latitude and longitude of the obstacle, its absolute height, elevation above ground level,
location (town), type of obstacle, etc. The analysis of the matching accuracy of the point
cloud took into consideration how well it fit in the horizontal plane (coordinates X, Y) and
in the vertical plane (coordinate Z) (Table 4).

Table 4. Statistical values that characterise the matching accuracy of the point cloud.

Obstacle Average Difference in
Coordinate X (m)

Average Difference in
Coordinate Y (m)

Average Difference in
Height H (m) Mean Error (m) Standard Deviation (m)

Construction crane 0.6 0.7 0.4 0.7 0.5
Energy pole 0.4 0.3 0.5 0.5 0.4

Wind turbine 0.3 0.4 0.5 0.5 0.6
Mast 0.6 0.5 0.6 0.6 0.5

The accuracy analysis was conducted for four classes of aviation obstacles: construc-
tion crane, energy pole, wind turbine, and mast.

The analysis of the statistical values that characterise the matching accuracy of the
point cloud revealed that the average difference in horizontal coordinates (X, Y) fell into
the range from 0.3 m to 0.7 m, while the average difference in height (Z) ranged from 0.4 m
to 0.6 m. The average error of matching between the point cloud and the set of data about
obstacles ranged from ±0.4 m to ±0.7 m, whereas the standard deviation was between
0.5 m and 0.6 m. The results of the accuracy analysis demonstrated that the method of
detection and classification of aviation obstacles guarantees horizontal and vertical accuracy
at the level of several tens of centimetres.

5. Discussion

Section 4, which presents the research experiments and the results of detecting atypical
obstacles, confirms the high efficiency of the developed method. That section discussed
the complexity of the process of accurate detection of aviation obstacles. The complexity
consisted in combining two different techniques of obtaining data: from the image, with
the use of the YOLOv3 algorithm, and as a result of the point cloud analysis. The latter
consisted in an iterative search of the point cloud in reference to the previously defined
centroid in order to determine the height. The point cloud matching results met the accuracy
requirements provided in the ICAO documentation [33–36]. The results of the detection
of atypical aviation obstacles demonstrated that the performance of the neural network
determined with the use of the mAP index was better for objects where the boxes were less
accurately matched to the dimensions of the objects. This case referred to the mast category,
which was represented by small objects. Previous research on the detection of small objects
based on images from UAV revealed that using the YOLOv3 algorithm to detect such
objects results in lower accuracy [47]. Apart from that, a lower IoU index was noted in the
construction crane category. Objects belonging to this group were characterised by a thin
shape in the image. Both masts and construction cranes were usually located in densely
built-up areas. A slightly lower value of the mAP index was found in the wind turbine
and energy pole categories. However, in these cases, the value of the IoU index was higher,
which proved that such objects were detected with higher accuracy. Most of them were
located in open areas, free from dense development.

Although the efficiency of detecting small objects with the use of deep learning
methods has improved significantly in recent years, there is still a difference between the
accuracy levels achieved for small and large objects [48]. Most research studies present
satisfactory results in the detection of large objects. The YOLOv3 algorithm is being
continuously improved in order to enhance the efficiency of detecting small objects in
images. Liu et al., in their work [47], proposed improving the darknet structure by means
of increasing the convolutional operations in the early layer in order to enrich the spatial
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information. Some studies also revealed an effective reduction of the gap in detecting small
objects by means of increasing the number of datasets that use vast amounts of data to train
the models [49,50].

UAV provides the images which then become the basis for detecting various types of
objects with the use of the YOLOv3 algorithm. Kharchenko et al., [51] in their research on the
detection of objects in the vicinity of an airport demonstrated that the YOLOv3 algorithm
was characterised by a high detection capacity and positioning accuracy. Moreover, the
works by Junos, Mohamad Haniff et al. [52] showed the influence of the correction of
images from UAVs on the results of the detection of objects with the use of the YOLOv3
algorithm. Similar accuracy was obtained at the level of 0.3 m to 0.5 m by Mitsevich [53],
who proposed a solution for remote and effective obstacle identification and assessment
processes with the use of remote sensing stereo imagery. The photogrammetric methods
based on the three-dimensional vector models were used, which were integrated into the
stereo pair of satellite and aviation scanner images.

The results of detection of atypical aviation obstacles were also compared with the
use of methods standardly used for the acquisition of data for the needs of GIS. Wierzbicki
et al. [54] have proposed a modified, fully convolutional U-Shape Network (U-Net) for
the segmentation of a high-resolution aerial orthoimages and dense LiDAR data in order
to automatically extract building outlines. Rottensteiner et al. [55] detected buildings
with the Dempster–Shafer method using LiDAR data and aerial photos, and they reached
an accuracy of 85%. Sohn and Dowman [56] achieved a building detection accuracy of
80.5% using a combination of IKONOS and LiDAR satellite data. A detailed analysis of
the accuracy has been presented in the work of Khoshboresh-Masouleh et al. [57], where
various types of areas have been examined, reaching an IoU value of 76%. The position
accuracy of the detection of buildings for the purposes of GIS ranges from 0.7 m to 1.5 m
in a wide variety of research [58–60]. Therefore, the results of aviation obstacle detection
presented in this article correspond to the results of object detection carried out by different
authors using other techniques.

6. Conclusions

The presence of aviation obstacles in the direct proximity of the airport may have a
negative influence on ensuring safety in the aviation space. The existing databases about
aviation obstacles have to meet certain requirements concerning accuracy, which are pro-
vided in the legal standards that regulate international aviation law. These documents
also contain the requirements and techniques for obtaining data about aviation obstacles.
Although the issues related to collecting data about obstacles have been regulated, the
automation of the process of collecting data about elongated obstacles still needs improve-
ment [1]. In order to capture very thin objects, a larger image scale than one used for
traditional exploratory flights is required. This, in turn, requires lower altitudes, which
may be achieved by using UAVs to detect this type of obstacles. At a lower flight altitude,
the obtained spatial accuracy (x, y, z) will be the highest. The automation of the process
of obtaining data about obstacles, in particular elongated ones that may be described as
atypical, still remains a challenge.

The paper constitutes an attempt to present the method of automated detection and
classification of atypical aviation obstacles based on data obtained from UAVs. The research
was conducted with the use of the YOLOv3 algorithm to detect objects in the image. The
methodology of the classification of the point cloud that had been presented in the previous
study by Lalak et al. [61] has also been modified. The main aim of the methodology is to
detect atypical aviation obstacles in the direct vicinity of an airport by combining the image
and the point cloud data.

Based on the conducted analysis of the matching accuracy of the point cloud, it was
found that the average differences in horizontal coordinates x, y were, respectively, ±0.3 m
and ±0.4 m, while the average difference in height was ±0.5 m. The accuracy levels
obtained on the horizontal and vertical planes met the requirements contained in the ICAO
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regulations [33–36]. As a result of training the model with the YOLOv3 algorithm, the
value of average precision (AP) for the construction crane class was 74.8%, for the energy
pole class 67.6%, for the wind turbine class 65.2%, and, finally, for the mast class 75.3%. A
high value of the AP coefficient means that few false predictions were obtained. The mAP
value of the applied YOLOv3 algorithm reached the value of 70.7%. Such a high value of
mAP confirms that the model is comprehensive and that this algorithm may be used to
detect atypical aviation obstacles.

The developed methodology may significantly improve the process of analysing the
operational limitations of aerial vehicles, designing procedures or creating aviation maps,
as well as enhance the security in the aviation space by limiting the risk of collision of the
aerial vessel with an obstacle to a minimum.
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