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Abstract: Road surface properties have a major impact on pavement’s life service conditions. Nowa-
days, contactless techniques are widely used to monitor road surfaces due to their portability and
high precision. Among the different possibilities, laser profilometers are widely used, even though
they have two major drawbacks: spatial information is missed and the cost of the equipment is
considerable. The scope of this work is to show the methodology used to develop a fast and low-cost
system using images taken with a commercial camera to recover the height information of the road
surface using Convolutional Neural Networks. Hence, the dataset was created ad hoc. Based on
photometric theory, a closed black-box with four light sources positioned around the surface sample
was built. The surface was provided with markers in order to link the ground truth measurements
carried out with a laser profilometer and their corresponding intensity values. The proposed network
was trained, validated and tested on the created dataset. Three loss functions where studied. The
results showed the Binary Cross Entropy loss to be the most performing and the best overall on the
reconstruction task. The methodology described in this study shows the feasibility of a low-cost
system using commercial cameras based on Artificial Intelligence.

Keywords: deep learning; convolutional neural networks; profilometer; image; photometric stereo;
light; road pavements; texture; 3D reconstruction

1. Introduction

Road surface characteristics have a major role in pavement’s life service conditions.
Since the surface coarse is directly in contact with the vehicle tyres and exposed to the
inclemency’s of the time, it is usually the first layer to exhibit issues. As a result, safety
conditions [1], guidance comfort [2], tyre performance and noise emission [3] are among
the principal affected surface characteristics.

The assessment of road surfaces is a matter of concern to both the public administration
and the private sector, either for research interests or for monitoring purposes. In order
to carry out the task, several techniques have been studied over the years. Nowadays,
contactless techniques are preferred over classical methods due to their portability and high
precision [4]. The high cost associated with the instrumentation makes them unaffordable
for a broader public. Therein lies the importance to develop a simple, portable low-cost
system that works with acceptable precision as an alternative solution to be adopted by
these less favoured sectors. In this way, even if the economic resources are limited, the
assessment of the road surface can still be made. Although they are both expensive, laser
profilometers are slightly more affordable and therefore preferred over 3D lasers to measure
surface texture, even though some important spatial information is missed [5].
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In the recent years, the use of commercial photographic cameras for scientific purposes
has been increasing [6], mainly due to the technological developments achieved in the
sensor’s field [7] and their lower price compared with professional equipment. Among the
different possibilities within the fields using imagery systems to retrieve depth information,
three techniques satisfy the specific requirements for this present study: Photogrammetry,
Depth from Focus/Defocus and Photometric Stereo.

In order to use Photogrammetry to retrieve depth information, matched points from
different views are needed [8]. This procedure comes with two downsides. First, the
matching algorithms and the iterative bundle adjustment required to solve the problem
consumes too much computational time and resources. Second, in order to take the shots
from different views two possibilities arises: to use several cameras or to develop a system
that moves the camera around the study area. With either one or the other, the solutions
would make the system too expensive and oversized, and therefore unpractical for our
purpose.

Depth from Focus/Defocus is a technique where the images are obtained by actively
controlling camera parameters, typically the focal setting or the image plane axial position,
and taken from the same point of view. Afterwards, the depth estimation is retrieved by
analysing the areas that are perfectly in focus at each focal distance [9]. The main drawback
with this technique comes from the estimation of the focus metric. Particularly in the
present paper, this technique is not pursued due to the difficulty to dynamically change the
focal parameters with commercial cameras.

Photometric Stereo (PS) is a technique to retrieve depth information based on the re-
flectance properties of the material and their interaction with an incoming light source [10].
The principle of this method is to change the direction of the incident light source between
successive shots while holding the viewing direction constant. This provides enough
information to determine the surface orientation at each picture element. Since the geom-
etry of the object does not change from the different shots, the correspondence between
them is known a priori. Finally, the surface depth information is retrieved from the es-
timated normal map. In real set-ups, PS techniques carry on with different sources of
errors such as: image noise, shadows occlusion, specular highlights, light calibration er-
rors, inter-reflections or subsurface scattering of light which bias the normal and albedo
estimation [11,12].

In the last decades, several studies supported the use of this technique for road surfaces
problems [13,14]; nevertheless, they typically assess the performance of the reconstruction
using overall surface descriptors, and the estimated surface is not compared with the
true one.

The past 50 years have seen an exponential increase in the usage of computational
resources for research purposes. Particularly, theoretical techniques such as Machine Learn-
ing (ML) and Deep Learning (DL) have seen the light after years of lacking resources to be
feasible [15]. The recent evolution in the field of Graphics Processing Units’s (GPU) applied
to modern artificial intelligence have placed the field within scientist practitioner’s reach.

Both ML and DL seek to solve an imposed task in an automatic manner [16]. The main
difference lies in the fact that ML requires specific knowledge in the field to identify the
features needed by the algorithm, while DL uses back propagation and gradient descent to
make the network learn by itself which features are relevant and which ones are not. This
specific characteristic have made the latter gain ground over the first one. Particularly, in
the field of computer vision, one type of network has succeed to have impressive results,
Convolutional Neural Networks (CNN) [17]. This type of network emerged from the
study of the brain’s visual cortex, and they have been used in image recognition since the
1980s [18].

As stated before, several fields have started to use DL for research purposes and
PS is no exception. In [19], DL was used to automatically learn the critical illumination
conditions required at input. The network selects the most relevant illuminant directions
used to estimate the surface normal. In [20], a novel photometric stereo network that
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directly learns relationships between the photometric stereo input and surface normals of a
scene was introduced.

According to the Universal Approximation Theorem, any function can be approxi-
mated by a network with sufficient depth and enough amount of data. Generally, the scope
of any Neural Network is to generalise the imposed task to best suit all the possible case
scenarios. This creates a well-known problem known as “Over-fitting” [21], in which the
network performs perfectly on the given dataset but poorly when new data is presented.
In order to avoid this problem, the typical solution comes down to gather more data or to
simplify the model.

The present work shows an end-to-end framework to extrapolate measurements
carried out with a laser profilometer to a 3D surface using a commercial digital camera
combined with different light sources. The task we achieve to solve is constrained to the
single sample i.e., one model is developed for each sample. A CNN was trained, validated
and tested on the created dataset. The results showed good scores both with global texture
indicators and with the Pearson coefficient for spatial correlation. Besides its scientific
novelty, this paper brings an alternative solution to assess road surfaces, with two major
contributions. First, no expertise is needed in the field of photometric, computer vision, or
numerical optimisation to obtain the surface reconstruction. Second, the economical benefit
obtained by using a commercial camera instead of a professional instrumentation. This
methodology could establish a new approach for texture measurement systems allowing a
more affordable system for the least favoured sectors.

The remainder of this paper is structured as follows. Section 2 describes all the
materials used in this work. Section 3 elucidates the methodology used to build the
dataset with the corresponding pre- and post-processing. Afterwards, Section 4 presents
the obtained results. Section 5 presents the discussions and implications of the previous
sections. Finally, the conclusions are drawn in Section 6.

2. Materials

In the present work, an ad hoc dataset was created in order to be used to train a neural
network. In the following sub-sections, the used materials are presented.

2.1. Samples

Two core samples extracted from in situ roads were used to train one model at a
time. The surfaces studied are consistent with the most diffused typologies of surfaces
in Italy. Table 1 shows the information regarding the samples and Figure 1 shows the
two specimens.

Table 1. Samples Types.

Sample ID Type Grain Size [mm]

1 Dense Graded 0–6
2 Gap Graded 0–12

Each sample had a diameter of approximately 145 mm due to the width of the core
extractor and covered an area of 165 cm2. The samples were cleaned with water and a
thin brush and left to dry naturally for two days. Four markers containing a checker
pattern were added to each sample in order to use them as control points to fit a projective
transformation matrix. Each pattern contains 10 × 7 alternated white and black squares,
where each square side measures 1 mm; this yields a total of 54 control points per marker.

2.2. Camera and Lens

The camera used in this work is the Panasonic GX80-DCM which is among the most
affordable camera’s in the market that satisfied the minimum requirements for geometrical
and spatial resolution. The camera have a Four Thirds CMOS sensor (13 × 17.3 mm) with
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a resolution of 16 Megapixels. The sensor has the typical Bayer Pattern filter with the
arrangement as follows: BGGR; the default Zoom Lens H-FS12032E 12–32 mm was used
fixing the focal length to its minimum i.e., f-12 mm; ISO was set to 200, aperture fixed to an
f-number equals to 3.5 and shutter speed to ¼. All the images were taken in raw format.

Figure 1. Samples. Left: Sample ID 1—Dense Graded. Right: Sample ID 2—Gap Graded.

2.3. Laser

In this study a stationary profilometer laser was used to scan the profiles. The laser is
manufactured by Greenwood Engineering and graded as Class 1 according with the ASTM
E950 [22]. It is composed of a laser box containing the source and the receiver, a support
frame allowing the box to move in a horizontal direction parallel to the sample surface,
a displacement sensor, a control unit and management software. Table 2 summarises the
characteristics of the equipment.

Table 2. Characteristics of Profilometer Laser.

Device Type Wavelength Sampling
Rate

Sampling
Interval Resolution Measuring

Speed

Stationary Contact-
less B-D 16 kHz 0.1 mm 0.05 mm Slow

2.4. Lights

Four LED panels arranged in an 8 × 8 matrix were used with the scope to illuminate
the sample from different directions. Each matrix contains a total of 64 White LEDs, where
each light is individually addressable through a micro-controller board. Lights are 5050-
sized LEDs with an embedded micro-controller inside that allows to set the brightness
of each channel individually. Each LED can draw as much as 60 mA, yielding a total of
3.8 A per panel for full bright white. To supply the current to each matrix an external
5V DC power supply with an output current of 20 A was added. Additionally, a resistor
between the micro-controller and the data input was placed in order to prevent spikes on
the data line. The output is driven by a technique called Pulse Width Modulation (PWM)
that works with a frequency of 1.2 kHz. This frequency sets the threshold for the shutter
speed to 1/1000 before fluctuations in the light’s intensities captured by the sensor are
noticed. Table 3 summarises the characteristics of the LEDs.

Table 3. Characteristics of LEDs.

Colour Wavelength Range Temperature White Single LED
Dimension

Warm White 425–725 nm 2700–3000 K 5 × 5 mm
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2.5. Convolutional Neural Network

A CNN was built and trained on a CPU with a processor Intel(R) Xeon(R) Gold 5118
@ 2.30 GHz with a NVIDIA Quadro P5000 GPU. The entire pre-processing of the images
was developed in MATLAB. Once the dataset was ready, the training, validation and test
of the network was done in Python using TensorFlow v2.9.

3. Methods

The scope of the present work is to develop a reproducible end-to-end methodology
to obtain feasible results on the road surface estimation. The presented methodology
comprises several multi-disciplinary fields ranging from signal and image processing to
deep learning. It combines experimental data collection and pre-processing from two
different domains i.e., images and laser profiles, and eventually combines them both using
CNN. Figure 2 summarises the methodology.

Figure 2. Overall methodology chart. (1) Laboratory laser profiles. (2) Images inside box. (3) CNN.

As we can appreciate, the method consists of three main parts: The first one deals with
the measurements of the samples using the profilometer laser and the linkage between the
real-world and the image-world coordinates. The second part of the methodology deals
with the development of a black-box with the scope to isolate the source of lighting. As it
will be shown, with the same approach used in the first part, the corresponding coordinates
inside the box are retrieved as well as the pixel intensities and the unitary vectors pointing
towards the different light sources. Finally, the third step deals with the development of the
architecture of the CNN and the optimisation of the hyper-parameters. The methodology
developed in this section is the most important aspect of the study.

3.1. Camera Calibration

The camera calibration is an independent task that should be addressed before starting
to use the instrument. This procedure allows to retrieve the intrinsic parameters of the
camera, along with a number of coefficients that corrects for lens and sensor distortions
using high order polynomial functions based on Brown’s model [23]. In this work, a
professional software commonly used in photogrammetry was employed. The proposed
technique requires the camera to observe a LCD screen projecting a checker-board pattern
from different distances and perspectives. In order to obtain a robust calibration, ten
sessions were carried out in different days, with the same camera set-up. Afterwards,
for each correction coefficient and intrinsic camera parameter, a weighted mean x̄w was
calculated using the inverse of the squared errors as weights.
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x̄w =
∑N

i=1 xi/ε2
i

∑N
i=1 1/ε2

i
(1)

where xi is the i-th parameter, εi is the i-th associated error estimation and N is the total
number of measurements and is equal to ten.

3.2. Laser
3.2.1. Data Gathering

The laser was mounted on the transversal beam of the support frame and the camera
was positioned zenithally from the sample using a fixed tripod as shown in Figure 3.

Figure 3. Experimental Set-Up. From Top to Bottom: (1) Fixed Beam. (2) Laser Box. (3) Camera and
Tripod. (4) Sample. (5) Sample Holder.

One at the time, the samples were placed in between the path of the laser line inside a
special holder (element 5 in Figure 3) that allowed to rotate the samples around their z-axis
while the x-y plane was fixed. Before starting the procedure, the initial and ending point of
the session must be defined. In order to do so, two discontinuities close to the surface within
the profile path were introduced in a way that the distance between the beginning and end
of the profile matched 120 mm. Regarding the respective initial and ending points in the
image coordinate system, the laser was manually placed at the mentioned position and a
shot was taken for each one of them. This procedure was repeated twenty times in order to
minimise errors. Afterwards, in post-processing, an optimisation procedure was carried
out to estimate the best initial and ending positions by minimising the distance between
the real-world measurement and the estimated distance obtained using the transformation
matrix. Once our reference system had been defined, the measurement process takes place.

At each position three profiles were acquired using the profilometer laser and one
image was captured. Subsequently, the sample was rotated approximately one degree
and the process repeated until the end. In this way, the relative position for each rotation
was retrieved through the transformation matrix using the markers. At the end of the
procedure, a total of 180 positions were registered and a total of 540 profiles for each sample
were acquired.
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3.2.2. Post-Processing

Regarding the signal workflow, in this work a slight modification was applied to the
procedure suggested by the ISO 13473-1:2019 [24]. Table 4 illustrates the workflow applied
to the signal in the present work and their differences with the ISO.

Table 4. Laser workflow.

Steps Changes from ISO

Drop out correction and interpolation Same as ISO
Re-sampling Same as ISO

Spike identification and outlier removal Different from ISO
Removal of long-wavelength components Only slope suppression

Normalisation Not in ISO

The laser’s software provides an output already correcting the drop-out missing values
and re-sampling the signal to 0.1 mm. Next, for the spike identification and outliers removal,
two approaches were combined sequentially. The first one is a k-means based algorithm,
while the second one is based on the determination of the zones with fast variation of the
signal using the wavelet transform. The first outlier removal technique is a statistical-based
approach that allows to eliminate errors coming from the manual displacement of the laser
box, yielding a more robust estimate of the true profile. The procedure first estimates the
mean of the three runs. Then, it calculates a point-wise distance from each signal to the
mean. Finally, it discards the furthest point and calculates the mean of the two remaining
points. The second outlier removal is a wavelet-based approach. The wavelet transform
can be used to determine the fast variation of a signal. The wavelet transform of x(t) is
written as:

Xψ(u, s) =
∫ ∞

−∞
x(t)

1√
s

ψ̄

(
t− u

s

)
dt (2)

where ψ(t) is the wavelet and ψ̄(t) its complex conjugate, u and s are the shifting and
scaling parameters respectively.

In this work, the Mexican Hat wavelet was chosen as suggested by [25]. The choice
of the wavelet determines a threshold value which is a function of the wavelet itself and
the RMS value of the upper part of the signal. All points for which the wavelet transform
value is over the threshold as well as their two adjacent points are removed and replaced
by a linear interpolation between the closest valid readings. Figure 4 shows the identified
peaks in the upper part of the signal while Figure 5 displays the corresponding wavelet
transformation, the threshold value and the identified outliers.

Afterwards, since the signal was considerably short, the removal of long-wavelength
components was ignored and only the slope suppression was performed. Finally, the signal
was normalised between zero and one in order to be used as ground truth data by the CNN.

Figure 4. Outlier Detection. Upper Part vs. Original Signal.
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Figure 5. Outlier Detection. Wavelet Transformation.

3.2.3. Reference System

As mentioned above, for each laser measurement, one image was captured. This proce-
dure was conceived for two reasons. First, the relative position of each laser measurement
with respect to the reference system must be obtained; this can be accomplished using
the fixed markers placed at the samples. Second, the transformation matrix between any
two positions can be calculated, and therefore any measurement at any position can be
projected to another. This leads to an important practical conclusion: all the positions can
be projected into a single one.

In matrix representation, we can represent a projectivity as follows:

xproj = Px (3)

where P is the Transformation Matrix and is represented by a matrix chain as follows:

P =

[
sR t
0> 1

][
k 0

0> 1

][
λ 0

0> 1

][
I t

ν> ν

]
(4)

where the first term is a 4 DOF similarity matrix, the second term is a 1 DOF shear transfor-
mation matrix, the third term is a 1 DOF scaling term and finally the last term is a 2 DOF
elation matrix.

Figure 6 shows the sample at positions 0 and 45 with the mentioned markers. The
measured profile at the given position is displayed with an horizontal line, i.e., orange line
in the left image and yellow line in the right. After the transformation is fitted, the 45th line
can be projected into the 0th image and vice versa.

Figure 6. Projection of measurements at different positions. Left: 0th position, measured profile in
orange (horizontal), projected profile in yellow (45°). Right: 45th position, measured profile in yellow
(horizontal), projected profile in orange (135°).

Figure 7 present a plot of the same line extracted from two different images at two
different positions. The x-axis shows the distance in pixels while the y-axis stands for the
normalised intensities. At the top right corner, the figure displays the cross-correlation



Sensors 2022, 22, 6603 9 of 20

for the two extracted signals, showing that the maximum correlation between the signals
is when the lag is zero. The small differences noticed between the signals are due to the
change of the light conditions between sample positions.

Figure 7. Cross−correlation between samples.

Figures 8–10 exhibit a triplet graph, where the first two images show position 0 and 45,
respectively, while the third one displays an overlapped image of them using a composite
image with three different colour bands. Green regions highlight higher differences in
position 0 than 45, while magenta does the opposite. Grey regions in the composite image
show where the two images have the same intensities. It is evident from Figures 9 and 10
that the fitted transformation synchronises the images almost perfectly.

Figure 8. Triplet image. Left: 0th position. Centre: 45th position. Right: Overlapped before
transformation.

Figure 9. Triplet image. Left: 0th position. Centre: 45th position. Right: Overlapped after transfor-
mation 0th→ 45th.
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Figure 10. Triplet image. Left: 0th position. Centre: 45th position. Right: Overlapped after
transformation 45th→ 0th.

3.3. Lighting Box

In this study a special lighting box was constructed with the scope to isolate the
samples from environmental lighting and therefore to have only the contribution from
direct light sources. The building process followed the Fast Development Cycle suggested
by [26]. The structure of the box was made entirely of wood. The dimensions of the box
were carefully designed in order to achieve the desired optical scale for the camera. In the
top face, a hole with the dimension of the lens diameter was drilled with the purpose to
host it. Even though the hole was drilled accurately, a millimetric space between them still
exists; therefore, to fully block the incoming light a high-density polyurethane foam was
placed around the lens and the hole. All the interior walls, ceiling and floor of the box were
covered with light absorbing fabric in order to avoid unwanted reflections from the walls.

Regarding the lighting sources, four Arduino™ LEDs panels were used. Particularly,
only the central four LEDs were activated yielding a smaller 4 × 4 matrix. The position of
the LED was chosen to be perpendicular to a 175 mm line starting from the centre of the
sample with an elevation angle of 60° and azimuth angles equally distributed separated by
90°. Figure 11 shows an open view of the box design without the interior fabric cover.

Figure 11. Interior box design.

3.3.1. Data Gathering

The camera was positioned in the top hole and fixed to the Polylactic Acid (PLA)
piece holder. Next, the samples were introduced inside the box from the bottom hole and
positioned at the working distance with the help of a lifting platform.

The LED panels were programmed to turn on sequentially. For each panel only the
central 16 LEDs were displayed simultaneously and one shot per light position was taken.
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Additionally, an extra photo was taken with all the four lights simultaneously turned on in
order to use it later to obtain the transformation matrix.

Finally, the entire process was repeated 360 times rotating the sample approximately
half degree at the time. In this way, at the end of the procedure, 1440 photos were collected,
each one of them containing information regarding one position and one incoming light
direction. Remembering that in the first phase we collected the positions for 180 lasers’
profiles, now we have for each laser profile 360 different incoming lights. This yields us a
total of 64,800 instances per pavement sample.

3.3.2. Post-Processing

Finally, following the logic presented in Section 3.2.3, we can obtain the coordinates of
the measured laser profiles inside the box. To avoid redundancy we only show Figure 12
displaying the triplet after the transformation has been applied. Since the background is
now black, the differences in the surrounding part of the sample are all green.

Figure 12. Triplet image. Left: 0th position in reference system. Centre: 0th position inside the box.
Right: Overlapped after transformation Ref. Sys.→ Box.

3.4. Light Calibration

The light directions of the sources were calibrated following the procedure suggested
in [27], where the vectors pointing to the source are retrieved using a planar mirror contain-
ing a pattern of known dimensions. The technique assumes that the image is formed by
perspective projection and the intrinsic parameters of the camera are known. Using the
procedure described in [28], we retrieve the two-plane homography which relates the scene
points to the image points. In this way, we obtain for each specular point at the mirror
a vector pointing to the source. Repeating this procedure for several orientations of the
mirror, the point intersecting the lines is retrieved by solving an over determined system
using the Moore–Penrose Pseudo-inverse.

In this study, each individual LED direction was calculated separately, meaning that
16 light directions were obtained per panel and a total of 64 light directions calculated. The
procedure was carried out using ten different positions of the planar mirror per session.
Finally, for a robust estimation of the parameters, five sessions were carried out and the
weighted mean calculated.

3.5. CNN

Considering a dataset composed by two random variables (X, Y) ∈ Rn, where X
denotes the pixel intensity distribution in the area of interest and Y the correspondent
height value, then if we hypothesise that Y is a deterministic function of X, the problem
reduces to find the function f mapping f : X → Y that minimises a cost function L.

As mentioned before, an important difference between this work and usual approaches
in DL is that the task imposed to the network is not to generalise to other unseen samples,
but rather to extrapolate for each sample the obtained measurements with the profilometer
laser to the captured scene illuminated from different light positions. Therefore, one model
was built for each sample.

Once the dataset was shaped, cleaned and correctly normalised the data was sub-
divided into the corresponding train (90%), validation(5%) and test (5%) sets. There is
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no general rule for the data splitting ratio. The splitting percentage has an influence on
the variance. With less testing data, the statistical performance of the model has a greater
variance and if less training data is used the variance on the estimated parameters increases.

The choice of the splitting ratio was validated by checking the distribution similarity
of the three sets. Therefore, the three sets can be assumed equally representative of the
entire population, and the biggest amount of data is being used to train the model.

Each set contains the corresponding tensors pairs of input (features) and ground truth
(measured). The train set is used by the algorithm to learn by minimising the defined cost
function, while the validation set is used to determine the optimal architecture and tune
the hyper-parameters of the network. On the other hand, the test set is separated and never
seen by the model. At evaluation time, we compare the estimated reconstruction with the
true measured profile obtained with the profilometer.

A typical technique to avoid over-fitting is data augmentation. This allows to virtually
increase the size of the dataset and it is only used during inferring time i.e., only to train
and validation sets. In this paper, Random Flipping was used.

The Learning Rate was set to 0.01 to start and then adjusted during training phase using
a Learning Scheduler that reduces the Learning Rate between epochs when the validation
metric stop improving. The Learning Rate was updated by a factor of 0.1 after 5 epochs
without improvement. The Batch Size was chosen to be 8, which is a relatively small
value compared with typical values used in DL. The chosen Optimiser was the Nesterov-
accelerated Adaptive Moment Estimation (Nadam) algorithm which is an extension to
the Adaptive Movement Estimation (Adam) optimisation algorithm to add Nesterov’s
Accelerated Gradient (NAG) or Nesterov momentum.

The network hyperparameters are summarised in Table 5.

Table 5. CNN Architecture.

Learning
Rate

Batch
Size

Optimiser Layers Type Activation
Function

#
Kernels

Kernel
Size

0.01 8 Nadam

1a
DWC2D
1 + BN 2 ReLu 10 3 × 1

1b PWMM 3 - - -
2 Concatenate - - -
3 PointWise ReLu 1 1×1
4 Reshape - - -

5 Parallel
C1D 4 ReLu 90 k * × 1

6 Concatenate - - -
7 PointWise ReLu 1 1 × 1
8 Reshape - - -

9 FC 5 +
DO 6 ReLu - 1200

10 FC Sigmoid - 1200
1 Depth Wise Convolutional 2D. 2 Batch Normalisation. 3 Point Wise Math Multiplication. 4 Convolutional 1D.
5 Fully Connected. 6 Drop Out. * k = 3, 6, 10, 20, 40, 75, 150, 300 600.

The architecture of the proposed network is given by Figure 13.
The network has 10 layers. First, in parallel, one branch performs a depth-wise

convolution, i.e., a single convolutional filter per each input channel, while the other
branch multiplies the input intensities I in a point-wise manner by the inverse matrix
of the light source vector S. The matrix S contains the unitary vectors pointing to each
corresponding light source. All the vectors lay within a plane resting at the top face of
the surface. Next, three sequential layers concatenate the results, reduce the depth with
a point-wise convolution and reshape the output. Afterwards, 10 filters per branch with
variables dimensions are convoluted in parallel, the kernel sizes are shown as a footnote
in Table 5. These dimensions of the kernels were chosen to resemble the dimension of the
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bandwidths used for spectral analysis in 1/1 octave-band. Then, three sequential layers
of concatenation, point-wise and reshape were appended. Finally, two fully connected
dense layers were placed, where the first one have a drop out rate of 20%. All the selected
activation functions are displayed in Table 5.

Figure 13. Proposed CNN Architecture.

Three different loss functions were studied, the Mean Squared Error (MSE), the Mean
Absolute Error (MAE) and the Binary Cross-Entropy (BCE) [29]. Since their use is quite
diffuse in the field of DL, the formulation for each loss function is omitted. The MSE
penalises large prediction errors and therefore is more sensitive to outliers. On the other
hand, the MAE is more robust to outliers and yields results closer to the median, which
due to the nature of road profiles is a desired result. BCE is a measure of dissimilarity
between two distributions and is composed by two terms. While the first rewards correct
estimations, the second penalises the wrong predictions for each class. Using the BCE to
frame the reconstruction task as a multi label binary classification problem, where each
pixel intensity represents the probability that the pixel should be black, makes the model
converge faster [30]. The model was trained for a total of 100 Epochs i.e., a complete loop
of the entire dataset. Finally, in order to assess the performance of the model, six global
texture indicators where used as metrics to analyse the results, MSD, Arithmetic Mean
Height (Ra), Root Mean Square Height (Rq), Skewness (Rsk), Kurtosis (Rku) and Root Mean
Square Gradient (Rdq). The metrics are widely used in the field and their definition can be
found in [24] for the MPD and [31] for the others. For the MSD, the considered segment
length was 12 [cm], slightly over the 10 [cm] suggested by the ISO.

4. Results

The first step is to analyse the evolution of the different loss functions during inference.
This is displayed in Figure 14. Since the scale between the losses is different, the normalised
loss is shown. The x-axis represents the evolution in Epochs, while the y-axis shows the
normalised loss. The continuous lines represent the training set for each loss, while the
dashed lines stand for the validation set. The three losses converges eventually to zero
values on the train set, but since the normalised loss is considered, absolute minimum
values are not appropriate to be used for analysis. Therefore, the indicators of performance
during inference are the speed of convergence and the distance between the training and
validation set. It is clear from the graph, that the BCE is the most performing loss during
the training phase, being the fastest to converge and showing the smallest distance between
validation and training.

Regarding the test set, as mentioned before, the losses have different scales and direct
comparison is not possible; therefore, global texture indicators were used to analyse the
results. Tables 6–8 show the mean of the difference between the estimated metric and
the true value for the MSE, MAE and BCE, respectively. Again, it can be seen that the
BCE yields lower mean differences for all the metrics in consideration, indicating a better
performance against the others.
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Figure 14. Training vs. Validation.

Table 6. Mean difference on test set with MSE.

MSD Ra Rq Rsk Rku Rdq

Train 1.46 × 10−2 1.40 × 10−4 1.47 × 10−4 3.99 × 10−4 3.70 × 10−3 1.11 × 10−4

Valid 1.50 × 10−2 1.48 × 10−4 1.52 × 10−4 4.11 × 10−4 3.80 × 10−3 1.13 × 10−4

Test 1.50 × 10−2 1.57 × 10−4 1.64 × 10−4 4.16 × 10−4 3.85 × 10−3 1.15 × 10−4

Table 7. Mean difference on test set with MAE.

MSD Ra Rq Rsk Rku Rdq

Train 2.49 × 10−2 1.73 × 10−4 2.00 × 10−4 1.08 × 10−4 9.32 × 10−3 3.16 × 10−4

Valid 2.51 × 10−2 1.93 × 10−4 2.23 × 10−4 1.09 × 10−4 9.41 × 10−3 3.21 × 10−4

Test 2.49 × 10−2 1.91 × 10−4 2.24 × 10−4 1.10 × 10−4 9.57 × 10−3 3.24 × 10−4

Table 8. Mean difference on test set with BCE.

MSD Ra Rq Rsk Rku Rdq

Train 6.80 × 10−3 9.65 × 10−5 9.72 × 10−5 2.32 × 10−4 2.18 × 10−3 5.94 × 10−5

Valid 7.03 × 10−3 1.09 × 10−4 1.08 × 10−4 2.42 × 10−4 2.28 × 10−3 6.02 × 10−5

Test 7.22 × 10−3 1.07 × 10−4 1.06 × 10−4 2.53 × 10−4 2.36 × 10−3 6.28 × 10−5

However, is quite easy to obtain close values for two different profiles of the same
sample. This can be appreciated in Figure 15, where the image shows two different profiles
from the same sample, and in Table 9, where the correspondent indicators are calculated.

Consequently, the Pearson coefficient was chosen to assess the spatial correlation
existing between predicted and measured profiles. The mean and the standard deviation
on the test set of the Pearson’s correlation coefficient are shown in Table 10. Again, the BCE
shows the highest correlation mean and the lowest standard deviation with values equals
to µ = 0.9198 and σ = 0.0422.
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Figure 15. Two profiles from the same sample.

Table 9. Geometrical texture indicators.

MSD Ra Rq Rsk Rku Rdq

Profile 1 0.9259 0.6209 0.8142 −1.6012 4.8470 0.1187
Profile 140 0.9302 0.6015 0.7997 −1.5215 4.8369 0.0923

Table 10. Mean Pearson Correlation on test set.

r̄MSE
µ ± σ

r̄MAE
µ ± σ

r̄BCE
µ ± σ

0.8954 ± 0.0463 0.8407 ± 0.0885 0.9193 ± 0.0422

Figures 16 and 17 display a comparison of the reconstructed profiles using the BCE
loss against the ground truth measured profile for samples 1 and 2, respectively.

Figure 16. Sample 1 Reconstruction.

Figure 17. Sample 2 Reconstruction.

Finally, Figure 18 shows three zoom-in portions of the smoothed three-dimensional
reconstruction of the dense graded surface. The axis is only expressed for the bigger
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portion in the left part of the image. The x- and y-axis are in 10th of mm while the z-axis is
represented in mm.

Figure 18. Three–dimensional reconstruction at different scales. Left: 6 × 6 cm. Top Right: 3 × 3 cm.
Bottom Right: 1 × 1 cm.

5. Discussion

The discussion of the pitfalls for the chosen materials and the created dataset are
presented in Section 5.1. Then, some remarks on the methodology are drawn in Section 5.2.
Finally, extra analysis of the obtained results are presented in Section 5.3.

5.1. Materials

The use of in situ extracted samples is not compulsory for the method but provides a
convenient and safe workspace. In our particular case, since the method is expected to be
further developed to be used for monitoring purposes, the use of representative samples
as close as possible to the expected future samples was important. The use of custom
made samples in the laboratory would be also possible for investigation purposes, but it
would increase the complexity of the model since the Lambertian assumption could fail
due to the specular properties of virgin binder. On the other hand, this could simplify the
gathering procedure and increase exponentially the available amount of data. Moreover,
the similar reflective properties the surfaces would have, could help to generalise the model
to different surface types.

The economical cost associated with the profilometer laser used to sample the ground
truth data is probably the most limiting aspect for the dataset creation, but compared
against the cost associated with a 3D laser scan, the scale tips in favour of the laser. On
the other hand, if a 3D laser scan would have been available, the amount of data and the
spatial continuity of it, would have been better. Also, the use of markers and the entire
procedure to register the matching points to retrieve coordinates could have been avoided.

The photographic camera was chosen based to its associated practical characteristics,
i.e., compactness, simplicity to use, easy GUI, connection and remote control. Nevertheless,
zoom-lenses cameras are often discouraged for photometric purposes due to their calibra-
tion instability. Therefore, the dataset creation with the camera should be performed within
a short window of time after the calibration is carried out. For the calibration, several
sessions are advised and disabling all “smart” features that commercial cameras often offer
is compulsory. It is important to work with RAW format instead of the converted formats
that the commercial camera offers. The reason is that non-linear corrections are applied to
the intensity values to make them look “nicer” to human perception.

Regarding the LED lights, a commercial brand was chosen due to the simplicity
offered for connections and the coding flexibility to set-up the intensity magnitude. The
latter is extremely useful for an easy configuration and maximisation of data. All the
requirements and connection settings are supplied by the manufacturer as well as the
intrinsic characteristics of the lights. The authors do not encourage the use of specific
brands nor discourage the development of a custom system for the lighting.
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Finally, for the development of the Convolutional Neural Network, training and full
deployment of the model require a GPU. Fortunately, nowadays, there are some providers
with limited access free of charge that allows to use computing resources including GPUs
and TPUs.

5.2. Methodology

The presented methodology proposes an alternative solution to recover road surface
elevation maps from images taken with a commercial camera and different light sources.
The scope of this study was to prove the feasibility of the method.

The advantages of the proposed methodology is mainly linked with the minimum
knowledge required in the field of photometric, computer vision or numerical optimisation
to solve the surface reconstruction problem. On the other hand, the main drawback with
the current proposed methodology is associated with the practicality of it, i.e., one model
is required to be trained per sample. In addition, the required equipment to measure the
ground truth surface and the amount of time needed to gather the data can be questioned
since they are only needed to train the model but, as already stated, a new network have to
be trained for each sample. This opens the door to future investigation and the necessity to
develop a more generalised model.

5.3. Results

The results were previously introduced showing how the BCE had the best perfor-
mance. The small distance observed in Figure 14 between validation and training is an
indicator of an unbiased model. Meaning that the results are expected to generalise quite
well on unseen data. Nevertheless the test set is set aside for this purpose.

The results in Tables 6–8 exposed how these indicators are not appropriate for recon-
struction purposes and they are more suitable for more generic assessment of the sate of a
surface or for classification purposes. Nevertheless, these indicators are widely accepted in
the field and several studies used them. In addition, this parameters are insensitive to the
spatial correlation, meaning that if a shifted or flipped version of a profile is analysed with
these global metrics the same value would be obtained for both of them. This exposes the
necessity to use a different metric since global indicators by itself are poor descriptors for
similarity reconstruction analysis for road surfaces.

It was not possible to compare the obtained results with other studies working with
photometric deep learning for road surfaces, due to the unavailability of parameters weights
to build and run the models. Another constraint to compare against different methods lies
in the fact that most of the current DL models require different input information or the
expected ground truth are the normal directions. In the latter case, the ground truth used
in this methodology corresponds to laser profiles and the orientation of the faces are not
provided; therefore, the normal method only has one component compared to the three
expected for the other methods.

Therefore, the reconstructed profiles were compared against the measured ones. Partic-
ularly, sample ID 1 is a dense-graded road surface with grain sizes ranging from 0 to 6 mm,
which makes the surface quite closed and therefore a lower amplitude on the profile is
perceived. On the other hand, sample ID 2 is a gap-graded surface with grain sizes ranging
from 0 to 12 mm, which provides the surface a bigger height amplitude compared with
sample ID 1. This different nature on the profiles makes the model for the dense pavement
to perform slightly better. Regarding the gap-graded sample, the depression zones of
the profile are the regions where the model performs worst. This could be attributed to
the light occlusion due to the shape of the profile. In order to overcome this problem,
lights with different wavelengths are expected to be studied, hoping that lights with larger
wavelengths could penetrate further in to the gap-graded samples.

Finally, the 3D reconstruction was shown. Indeed, it should not be considered as
3D surface since each row and column from the image were considered as single profiles,
and a more precise term would be elevation raster. Small discrepancies occurred between
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some adjacent profiles and, therefore, a Gaussian filter was applied to the reconstruction to
improve the appearance for the view. This effect could be attributed to the noise introduced
by the CNN and opens the door for future investigations in order to improve the current
state of the model.

6. Conclusions

In the present paper, we started from the premise to develop a fast and low-cost
system as an alternative solution to assess road surfaces for the least favoured sectors. The
purpose of the study was to develop a methodology to obtain a faithful reconstruction of
the 3D road surface. In order to do so, extra information coming from a sensor was needed.
Keeping in mind the fast and low-cost objective, a commercial photographic camera was
chosen due to its associated practical characteristics, i.e., compactness, simplicity to use,
easy GUI, connection and remote control.

Due to the nature of the new sensor, radiometric concepts were studied to have a
better understanding on the laying phenomena of the interaction between the light and
the surface. From this study, photometric stereo came out to be the best fit for our case-
study. Therefore, a closed black-box was constructed with the scope to control the lighting
conditions. However, complex numerical methods are required to solve the problem.
Consequently, neural networks came out as a solution to avoid complex modelling and
expensive computational time. The imposed task to the neural network was to extrapolate
measurements obtained with a class 1 profilometer laser to the rest of the scene illuminated
with light sources positioned around the surface sample and captured with the camera
sensor. The chosen type of neural network was a CNN due to their advantages compared
against other types i.e., fast and less parameters.

The data was needed to be structured in pairs (input, ground truth), which means that
the correspondence between the image and the real world coordinates had to be found. For
this reason, four patterns with known dimensions were printed and attached on a small
flat surface over the sample. Afterwards, in post-processing, a transformation matrix was
fitted allowing to obtain the correspondence between them. The corresponding images
intensities and light directions per pixel were given as input and the measured laser profiles
as ground truth.

At inference time, three different loss functions were studied, MSE, MAE and BCE.
Results showed a faster convergence and better generalisation on the training and validation
set for the BCE. In order to assess the results for the test set, a group of global surface metrics
were analysed. The outcome showed that the results obtained with the proposed method
are practically identical when these indicators are used, This entail an important practical
application: the estimated indicators are practically the same as the ones calculated with
the professional instrument, showing that the system yields excellent results for general
assessment when global metrics are required. However, they were not sufficient to evaluate
a proper reconstruction. Therefore, the Pearson correlation coefficient was used. The results
proved that the BCE still outperformed the other losses and that faith-full reconstructions
were obtained.

Finally, a raster elevation reconstruction was carried out showing the necessity to
perform a Gaussian smoothing due to discontinuities obtained in some adjacent estimated
profiles.

Aside from the scientific novelty for the proposed method using CNN’s, this paper
brings an alternative solution to assess road surfaces, with three major contributions.
First, no expertise is required in the field of photometrics, computer vision or numerical
optimisation to obtain the surface reconstruction. Second, the associated economical
reduction obtained using a commercial camera instead of a professional instrumentation.
Third, the high accuracy achieved is remarkable. However, the vast amount of data needed
for the creation of the dataset as well as the associated time to train the network can be a
significant drawback. This encourages researchers to pursue a better generalised model
that works for all type of surfaces simultaneously. Nevertheless, the proposed methodology
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would stand, setting the base for this future work. This methodology could establish a
new approach for texture measurement, allowing a more affordable system for the least
favoured sectors.
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